BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Song S, Amores D, Chen C, McConnell K, Oh B, Poon A, George PM. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep 2019;9:19565. [PMID: 31863072 DOI: 10.1038/s41598-019-56021-w] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Santhanam S, Feig VR, Mcconnell KW, Song S, Gardner EE, Patel JJ, Shan D, Bao Z, George PM. Controlling the Stem Cell Environment Via Conducting Polymer Hydrogels to Enhance Therapeutic Potential. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201724] [Reference Citation Analysis]
2 Carthew J, Mail M, Collins J, Heath DE, Frith JE, Gelmi A. The fate of stem cells within smart biomaterials and constructs. New Trends in Smart Nanostructured Biomaterials in Health Sciences 2023. [DOI: 10.1016/b978-0-323-85671-3.00012-9] [Reference Citation Analysis]
3 Guan S, Wang Y, Xie F, Wang S, Xu W, Xu J, Sun C. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation. Molecules 2022;27. [PMID: 36500418 DOI: 10.3390/molecules27238326] [Reference Citation Analysis]
4 Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Progress in Polymer Science 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Reference Citation Analysis]
5 Zhang Y, Zhang M, Zhang R, Liu H, Chen H, Zhang X, Li C, Zeng Q, Chen Y, Huang G. Conductive GelMA/PEDOT: PSS Hybrid Hydrogel as a Neural Stem Cell Niche for Treating Cerebral Ischemia-Reperfusion Injury. Front Mater 2022;9:914994. [DOI: 10.3389/fmats.2022.914994] [Reference Citation Analysis]
6 O’hara-wright M, Mobini S, Gonzalez-cordero A. Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Front Cell Dev Biol 2022;10:901652. [DOI: 10.3389/fcell.2022.901652] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Oh B, Santhanam S, Azadian M, Swaminathan V, Lee AG, McConnell KW, Levinson A, Song S, Patel JJ, Gardner EE, George PM. Electrical modulation of transplanted stem cells improves functional recovery in a rodent model of stroke. Nat Commun 2022;13:1366. [PMID: 35292643 DOI: 10.1038/s41467-022-29017-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li S, Yu X, Li Y, Zhang T. Conductive polypyrrole-coated electrospun chitosan nanoparticles/poly(D,L-lactide) fibrous mat: influence of drug delivery and Schwann cells proliferation. Biomed Phys Eng Express 2022;8. [PMID: 35168214 DOI: 10.1088/2057-1976/ac5528] [Reference Citation Analysis]
9 Mutepfa AR, Hardy JG, Adams CF. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Front Med Technol 2022;4:693438. [DOI: 10.3389/fmedt.2022.693438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kanaan AF, Piedade AP. Electro-responsive polymer-based platforms for electrostimulation of cells. Mater Adv 2022;3:2337-53. [DOI: 10.1039/d1ma01012c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Berlet R, Anthony S, Brooks B, Wang ZJ, Sadanandan N, Shear A, Cozene B, Gonzales-Portillo B, Parsons B, Salazar FE, Lezama Toledo AR, Monroy GR, Gonzales-Portillo JV, Borlongan CV. Combination of Stem Cells and Rehabilitation Therapies for Ischemic Stroke. Biomolecules 2021;11:1316. [PMID: 34572529 DOI: 10.3390/biom11091316] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Liu Y, Feig VR, Bao Z. Conjugated Polymer for Implantable Electronics toward Clinical Application. Adv Healthc Mater 2021;10:e2001916. [PMID: 33899347 DOI: 10.1002/adhm.202001916] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
13 Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021;19:252. [PMID: 34425841 DOI: 10.1186/s12951-021-00993-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
14 Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021. [PMID: 34376834 DOI: 10.1038/s41583-021-00496-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
15 Garrudo FFF, Nogueira DES, Rodrigues CAV, Ferreira FA, Paradiso P, Colaço R, Marques AC, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Electrical stimulation of neural-differentiating iPSCs on novel coaxial electroconductive nanofibers. Biomater Sci 2021;9:5359-82. [PMID: 34223566 DOI: 10.1039/d1bm00503k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
16 Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021;275:120982. [PMID: 34214785 DOI: 10.1016/j.biomaterials.2021.120982] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
17 Feig VR, Santhanam S, McConnell KW, Liu K, Azadian M, Brunel LG, Huang Z, Tran H, George PM, Bao Z. Conducting polymer-based granular hydrogels for injectable 3D cell scaffolds. Adv Mater Technol 2021;6:2100162. [PMID: 34179344 DOI: 10.1002/admt.202100162] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
18 Oh B, Wu YW, Swaminathan V, Lam V, Ding J, George PM. Modulating the Electrical and Mechanical Microenvironment to Guide Neuronal Stem Cell Differentiation. Adv Sci (Weinh) 2021;8:2002112. [PMID: 33854874 DOI: 10.1002/advs.202002112] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
19 Dong C, Qiao F, Hou W, Yang L, Lv Y. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Applied Materials Today 2020;21:100870. [DOI: 10.1016/j.apmt.2020.100870] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zahumenska R, Nosal V, Smolar M, Okajcekova T, Skovierova H, Strnadel J, Halasova E. Induced Pluripotency: A Powerful Tool for In Vitro Modeling. Int J Mol Sci 2020;21:E8910. [PMID: 33255453 DOI: 10.3390/ijms21238910] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
21 Garrudo FFF, Mikael PE, Rodrigues CAV, Udangawa RW, Paradiso P, Chapman CA, Hoffman P, Colaço R, Cabral JMS, Morgado J, Linhardt RJ, Ferreira FC. Polyaniline-polycaprolactone fibers for neural applications: Electroconductivity enhanced by pseudo-doping. Mater Sci Eng C Mater Biol Appl 2021;120:111680. [PMID: 33545842 DOI: 10.1016/j.msec.2020.111680] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
22 Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020;12:E1637. [PMID: 32717878 DOI: 10.3390/polym12081637] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]