BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matsumoto K, Saitoh H, Doan TLH, Shiro A, Nakai K, Komatsu A, Tsujimoto M, Yasuda R, Kawachi T, Tajima T, Tamanoi F. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci Rep 2019;9:13275. [PMID: 31570738 DOI: 10.1038/s41598-019-49978-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Higashi Y, Matsumoto K, Saitoh H, Shiro A, Ma Y, Laird M, Chinnathambi S, Birault A, Doan TLH, Yasuda R, Tajima T, Kawachi T, Tamanoi F. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray. Sci Rep 2021;11:14192. [PMID: 34262055 DOI: 10.1038/s41598-021-93429-9] [Reference Citation Analysis]
2 Unruh C, Van Bavel N, Anikovskiy M, Prenner EJ. Benefits and Detriments of Gadolinium from Medical Advances to Health and Ecological Risks. Molecules 2020;25:E5762. [PMID: 33297578 DOI: 10.3390/molecules25235762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Moriai T, Tsukamoto T, Tanabe M, Kambe T, Yamamoto K. Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1-Nanometer Catalyst. Angew Chem Int Ed Engl 2020;59:23051-5. [PMID: 32844511 DOI: 10.1002/anie.202010190] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
4 Tamanoi F, Matsumoto K, Doan TLH, Shiro A, Saitoh H. Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. Nanomaterials (Basel) 2020;10:E1341. [PMID: 32660093 DOI: 10.3390/nano10071341] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
5 Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers (Basel) 2021;13:3185. [PMID: 34202342 DOI: 10.3390/cancers13133185] [Reference Citation Analysis]
6 Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine. Nanomaterials (Basel) 2020;10:E2186. [PMID: 33147800 DOI: 10.3390/nano10112186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
7 Damasco JA, Ohulchanskyy TY, Mahajan S, Chen G, Singh A, Kutscher HL, Huang H, Turowski SG, Spernyak JA, Singh AK, Lovell JF, Seshadri M, Prasad PN. Excretable, ultrasmall hexagonal NaGdF4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnol 2021;12:4. [PMID: 33603920 DOI: 10.1186/s12645-021-00075-x] [Reference Citation Analysis]
8 Anisimova N, Kiselevskiy M, Martynenko N, Willumeit-Römer R, Kornyushenkov E, Rodionov M, Dobatkin S, Estrin Y. Anti-tumour activity of Mg-6%Ag and Mg-10%Gd alloys in mice with inoculated melanoma. Mater Sci Eng C Mater Biol Appl 2021;130:112464. [PMID: 34702539 DOI: 10.1016/j.msec.2021.112464] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]