BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li C, Matavelli LC, Akhtar S, Siragy HM. (Pro)renin receptor contributes to renal mitochondria dysfunction, apoptosis and fibrosis in diabetic mice. Sci Rep 2019;9:11667. [PMID: 31406124 DOI: 10.1038/s41598-019-47055-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
Number Citing Articles
1 Videla LA, Marimán A, Ramos B, José Silva M, Del Campo A. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion 2022;63:9-22. [PMID: 34990812 DOI: 10.1016/j.mito.2021.12.006] [Reference Citation Analysis]
2 Xue K, Wang Y, Wang Y, Fang H. Advanced Oxidation Protein Product Promotes Oxidative Accentuation in Renal Epithelial Cells via the Soluble (Pro)renin Receptor-Mediated Intrarenal Renin-Angiotensin System and Nox4-H2O2 Signaling. Oxid Med Cell Longev 2021;2021:5710440. [PMID: 34873430 DOI: 10.1155/2021/5710440] [Reference Citation Analysis]
3 Culver SA, Akhtar S, Rountree-Jablin C, Keller SR, Cathro HP, Gildea JJ, Siragy HM. Knockout of Nephron ATP6AP2 Impairs Proximal Tubule Function and Prevents High-Fat Diet-Induced Obesity in Male Mice. Endocrinology 2021;162:bqab200. [PMID: 34534267 DOI: 10.1210/endocr/bqab200] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Yang G, Li Q, Peng J, Jin L, Zhu X, Zheng D, Zhang Y, Wang R, Song Y, Hu W, Xie X. Fucoxanthin regulates Nrf2 signaling to decrease oxidative stress and improves renal fibrosis depending on Sirt1 in HG-induced GMCs and STZ-induced diabetic rats. Eur J Pharmacol 2021;913:174629. [PMID: 34780751 DOI: 10.1016/j.ejphar.2021.174629] [Reference Citation Analysis]
5 Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021;173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Akhtar S, Culver SA, Siragy HM. Novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway. Sci Rep 2021;11:11367. [PMID: 34059756 DOI: 10.1038/s41598-021-90952-7] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Morosin SK, Lochrin AJ, Delforce SJ, Lumbers ER, Pringle KG. The (pro)renin receptor ((P)RR) and soluble (pro)renin receptor (s(P)RR) in pregnancy. Placenta 2021:S0143-4004(21)00141-7. [PMID: 34020806 DOI: 10.1016/j.placenta.2021.04.015] [Reference Citation Analysis]
8 Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021;10:130. [PMID: 33477607 DOI: 10.3390/antiox10010130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol 2020;11:755. [PMID: 32760286 DOI: 10.3389/fphys.2020.00755] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
10 Zhang D, Li B, Li B, Tang Y. Regulation of left atrial fibrosis induced by mitral regurgitation by SIRT1. Sci Rep 2020;10:7278. [PMID: 32350389 DOI: 10.1038/s41598-020-64308-6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]