BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cleveland BM, Yamaguchi G, Radler LM, Shimizu M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci Rep 2018;8:16054. [PMID: 30375441 DOI: 10.1038/s41598-018-34326-6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Maki JA, Cavallin JE, Lott KG, Saari TW, Ankley GT, Villeneuve DL. A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas). Aquat Toxicol 2020;222:105464. [PMID: 32160575 DOI: 10.1016/j.aquatox.2020.105464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Gratacap RL, Wargelius A, Edvardsen RB, Houston RD. Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends Genet 2019;35:672-84. [PMID: 31331664 DOI: 10.1016/j.tig.2019.06.006] [Cited by in Crossref: 53] [Cited by in F6Publishing: 29] [Article Influence: 17.7] [Reference Citation Analysis]
3 Yang Z, Yu Y, Tay YX, Yue GH. Genome editing and its applications in genetic improvement in aquaculture. Rev Aquacult 2022;14:178-91. [DOI: 10.1111/raq.12591] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Chen L, Xu J, Sun X, Xu P. Research advances and future perspectives of genomics and genetic improvement in allotetraploid common carp. Rev Aquac. [DOI: 10.1111/raq.12636] [Reference Citation Analysis]
5 Roy S, Kumar V, Behera BK, Parhi J, Mohapatra S, Chakraborty T, Das BK. CRISPR/Cas Genome Editing—Can It Become a Game Changer in Future Fisheries Sector? Front Mar Sci 2022;9:924475. [DOI: 10.3389/fmars.2022.924475] [Reference Citation Analysis]
6 Cleveland BM, Habara S, Oikawa J, Radler LM, Shimizu M. Compensatory Response of the Somatotropic Axis from IGFBP-2b Gene Editing in Rainbow Trout (Oncorhynchus mykiss). Genes (Basel) 2020;11:E1488. [PMID: 33322039 DOI: 10.3390/genes11121488] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mankiewicz JL, Picklo MJ, Idso J, Cleveland BM. Leptin Receptor Deficiency Results in Hyperphagia and Increased Fatty Acid Mobilization during Fasting in Rainbow Trout (Oncorhynchus mykiss). Biomolecules 2022;12:516. [DOI: 10.3390/biom12040516] [Reference Citation Analysis]
8 Breves J, Springer-miller R, Chenoweth D, Paskavitz A, Chang A, Regish A, Einarsdottir I, Björnsson BT, Mccormick S. Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr. Molecular and Cellular Endocrinology 2020;518:110989. [DOI: 10.1016/j.mce.2020.110989] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
9 Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021;78:2683-708. [PMID: 33388855 DOI: 10.1007/s00018-020-03725-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Zoppo M, Okoniewski N, Pantelyushin S, Vom Berg J, Schirmer K. A ribonucleoprotein transfection strategy for CRISPR/Cas9-mediated gene editing and single cell cloning in rainbow trout cells. Cell Biosci 2021;11:103. [PMID: 34082820 DOI: 10.1186/s13578-021-00618-0] [Reference Citation Analysis]
11 Straume AH, Kjærner-Semb E, Ove Skaftnesmo K, Güralp H, Kleppe L, Wargelius A, Edvardsen RB. Indel locations are determined by template polarity in highly efficient in vivo CRISPR/Cas9-mediated HDR in Atlantic salmon. Sci Rep 2020;10:409. [PMID: 31941961 DOI: 10.1038/s41598-019-57295-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Tan X, Wang L, Wu Z, Jiao S, Wang L, Zou Y, Jiang J, You F. Genome Editing in the Olive Flounder (Paralichthys olivaceus) Using CRISPR/Cas9 and a Simple Microinjection System. J Ocean Univ China 2021;20:1528-36. [DOI: 10.1007/s11802-021-4772-6] [Reference Citation Analysis]
13 Chan J, Zhang W, Xu Y, Xue Y, Zhang L. Electroporation-Based CRISPR/Cas9 Mosaic Mutagenesis of β-Tubulin in the Cultured Oyster. Front Mar Sci 2022;9:912409. [DOI: 10.3389/fmars.2022.912409] [Reference Citation Analysis]
14 Hasegawa R, Miura T, Kaneko N, Kizaki R, Oishi G, Tanaka H, Sato M, Shimizu M. Production of two recombinant insulin-like growth factor binding protein-1 subtypes specific to salmonids. Gen Comp Endocrinol 2020;299:113606. [PMID: 32890480 DOI: 10.1016/j.ygcen.2020.113606] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Straume AH, Kjærner-Semb E, Skaftnesmo KO, Güralp H, Lillico S, Wargelius A, Edvardsen RB. Single nucleotide replacement in the Atlantic salmon genome using CRISPR/Cas9 and asymmetrical oligonucleotide donors. BMC Genomics 2021;22:563. [PMID: 34294050 DOI: 10.1186/s12864-021-07823-8] [Reference Citation Analysis]
16 Jin YH, Liao B, Migaud H, Davie A. Physiological impact and comparison of mutant screening methods in piwil2 KO founder Nile tilapia produced by CRISPR/Cas9 system. Sci Rep 2020;10:12600. [PMID: 32724054 DOI: 10.1038/s41598-020-69421-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Gratacap RL, Jin YH, Mantsopoulou M, Houston RD. Efficient Genome Editing in Multiple Salmonid Cell Lines Using Ribonucleoprotein Complexes. Mar Biotechnol (NY) 2020;22:717-24. [PMID: 32946000 DOI: 10.1007/s10126-020-09995-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Luo M, Wang J, Dong Z, Wang C, Lu G. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications. Aquaculture and Fisheries 2022;7:121-30. [DOI: 10.1016/j.aaf.2021.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
19 Hallerman E. Genome editing in cultured fishes. CABI Agric Biosci 2021;2. [DOI: 10.1186/s43170-021-00066-3] [Reference Citation Analysis]
20 Izutsu A, Tadokoro D, Habara S, Ugachi Y, Shimizu M. Evaluation of circulating insulin-like growth factor (IGF)-I and IGF-binding proteins as growth indices in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology 2022. [DOI: 10.1016/j.ygcen.2022.114008] [Reference Citation Analysis]
21 Simora RMC, Xing, Bangs MR, Wang W, Ma X, Su B, Khan MGQ, Qin Z, Lu C, Alston V, Hettiarachchi D, Johnson A, Li S, Coogan M, Gurbatow J, Terhune JS, Wang X, Dunham RA. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Sci Rep 2020;10:22271. [PMID: 33335280 DOI: 10.1038/s41598-020-79409-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 Cleveland BM. A perspective of the future value and challenges of genetic engineering in aquaculture. J World Aquacult Soc 2018;50:890-3. [DOI: 10.1111/jwas.12652] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Okoli AS, Blix T, Myhr AI, Xu W, Xu X. Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res 2021. [PMID: 34304349 DOI: 10.1007/s11248-021-00274-7] [Reference Citation Analysis]
24 Li Q, Shao G, Ding Y, Xu L, Shao J, Ao J, Chen X. Effective CRISPR/Cas9-based genome editing in large yellow croaker (Larimichthys crocea). Aquaculture and Fisheries 2021. [DOI: 10.1016/j.aaf.2021.04.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020;286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Blix TB, Dalmo RA, Wargelius A, Myhr AI. Genome editing on finfish: Current status and implications for sustainability. Rev Aquacult 2021;13:2344-63. [DOI: 10.1111/raq.12571] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
27 Wray-cahen D, Bodnar A, Rexroad C, Siewerdt F, Kovich D. Advancing genome editing to improve the sustainability and resiliency of animal agriculture. CABI Agric Biosci 2022;3. [DOI: 10.1186/s43170-022-00091-w] [Reference Citation Analysis]
28 Cui W, Takahashi E, Morro B, Balseiro P, Albalat A, Pedrosa C, Mackenzie S, Nilsen TO, Sveier H, Ebbesson LO, Handeland SO, Shimizu M. Changes in circulating insulin-like growth factor-1 and its binding proteins in yearling rainbow trout during spring under natural and manipulated photoperiods and their relationships with gill Na+, K+-ATPase and body size. Comp Biochem Physiol A Mol Integr Physiol 2022;268:111205. [PMID: 35346822 DOI: 10.1016/j.cbpa.2022.111205] [Reference Citation Analysis]