BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise KM. A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Sci Rep 2017;7:10790. [PMID: 28883414 DOI: 10.1038/s41598-017-10820-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Henthorn NT, Warmenhoven JW, Sotiropoulos M, Mackay RI, Kirkby NF, Kirkby KJ, Merchant MJ. In Silico Non-Homologous End Joining Following Ion Induced DNA Double Strand Breaks Predicts That Repair Fidelity Depends on Break Density. Sci Rep 2018;8:2654. [PMID: 29422642 DOI: 10.1038/s41598-018-21111-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
2 Ingram SP, Henthorn NT, Warmenhoven JW, Kirkby NF, Mackay RI, Kirkby KJ, Merchant MJ. Hi-C implementation of genome structure for in silico models of radiation-induced DNA damage. PLoS Comput Biol 2020;16:e1008476. [PMID: 33326415 DOI: 10.1371/journal.pcbi.1008476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
3 Bertolet A, Cortés-giraldo M, Carabe-fernandez A. Implementation of the microdosimetric kinetic model using analytical microdosimetry in a treatment planning system for proton therapy. Physica Medica 2021;81:69-76. [DOI: 10.1016/j.ejmp.2020.11.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Schuemann J, McNamara AL, Warmenhoven JW, Henthorn NT, Kirkby KJ, Merchant MJ, Ingram S, Paganetti H, Held KD, Ramos-Mendez J, Faddegon B, Perl J, Goodhead DT, Plante I, Rabus H, Nettelbeck H, Friedland W, Kundrát P, Ottolenghi A, Baiocco G, Barbieri S, Dingfelder M, Incerti S, Villagrasa C, Bueno M, Bernal MA, Guatelli S, Sakata D, Brown JMC, Francis Z, Kyriakou I, Lampe N, Ballarini F, Carante MP, Davídková M, Štěpán V, Jia X, Cucinotta FA, Schulte R, Stewart RD, Carlson DJ, Galer S, Kuncic Z, Lacombe S, Milligan J, Cho SH, Sawakuchi G, Inaniwa T, Sato T, Li W, Solov'yov AV, Surdutovich E, Durante M, Prise KM, McMahon SJ. A New Standard DNA Damage (SDD) Data Format. Radiat Res 2019;191:76-92. [PMID: 30407901 DOI: 10.1667/RR15209.1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
5 Carabe A, Karagounis IV, Huynh K, Bertolet A, François N, Kim MM, Maity A, Abel E, Dale R. Radiobiological effectiveness difference of proton arc beams versus conventional proton and photon beams. Phys Med Biol 2020;65:165002. [PMID: 32413889 DOI: 10.1088/1361-6560/ab9370] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
6 Thompson SJ, Rooney A, Prise KM, Mcmahon SJ. Evaluating Iodine-125 DNA Damage Benchmarks of Monte Carlo DNA Damage Models. Cancers 2022;14:463. [DOI: 10.3390/cancers14030463] [Reference Citation Analysis]
7 Liew H, Meister S, Mein S, Tessonnier T, Kopp B, Held T, Haberer T, Abdollahi A, Debus J, Dokic I, Mairani A. Combined DNA Damage Repair Interference and Ion Beam Therapy: Development, Benchmark, and Clinical Implications of a Mechanistic Biological Model. Int J Radiat Oncol Biol Phys 2021:S0360-3016(21)02866-2. [PMID: 34710524 DOI: 10.1016/j.ijrobp.2021.09.048] [Reference Citation Analysis]
8 Kalospyros SA, Nikitaki Z, Kyriakou I, Kokkoris M, Emfietzoglou D, Georgakilas AG. A Mathematical Radiobiological Model (MRM) to Predict Complex DNA Damage and Cell Survival for Ionizing Particle Radiations of Varying Quality. Molecules 2021;26:840. [PMID: 33562730 DOI: 10.3390/molecules26040840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhu H, McNamara AL, McMahon SJ, Ramos-Mendez J, Henthorn NT, Faddegon B, Held KD, Perl J, Li J, Paganetti H, Schuemann J. Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio. Radiat Res 2020;194:9-21. [PMID: 32401689 DOI: 10.1667/RR15531.1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
10 Willers H, Allen A, Grosshans D, McMahon SJ, von Neubeck C, Wiese C, Vikram B. Toward A variable RBE for proton beam therapy. Radiother Oncol 2018;128:68-75. [PMID: 29910006 DOI: 10.1016/j.radonc.2018.05.019] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 11.5] [Reference Citation Analysis]
11 Pfuhl T, Friedrich T, Scholz M. Comprehensive comparison of local effect model IV predictions with the particle irradiation data ensemble. Med Phys 2021. [PMID: 34766635 DOI: 10.1002/mp.15343] [Reference Citation Analysis]
12 Underwood TS, McMahon SJ. Proton relative biological effectiveness (RBE): a multiscale problem. Br J Radiol 2019;92:20180004. [PMID: 29975153 DOI: 10.1259/bjr.20180004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
13 Plante I, Slaba T, Shavers Z, Hada M. A Bi-Exponential Repair Algorithm for Radiation-Induced Double-Strand Breaks: Application to Simulation of Chromosome Aberrations. Genes (Basel) 2019;10:E936. [PMID: 31744120 DOI: 10.3390/genes10110936] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
14 Ramos-Méndez J, Domínguez-Kondo N, Schuemann J, McNamara A, Moreno-Barbosa E, Faddegon B. LET-Dependent Intertrack Yields in Proton Irradiation at Ultra-High Dose Rates Relevant for FLASH Therapy. Radiat Res 2020;194:351-62. [PMID: 32857855 DOI: 10.1667/RADE-20-00084.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
15 McMahon SJ, Prise KM. Mechanistic Modelling of Radiation Responses. Cancers (Basel) 2019;11:E205. [PMID: 30744204 DOI: 10.3390/cancers11020205] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
16 Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin WG, Incerti S, Petrović I, Ristić Fira A. DNA double-strand breaks in cancer cells as a function of proton linear energy transfer and its variation in time. Int J Radiat Biol 2021;97:1229-40. [PMID: 34187289 DOI: 10.1080/09553002.2021.1948140] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 McNamara AL, Ramos-Méndez J, Perl J, Held K, Dominguez N, Moreno E, Henthorn NT, Kirkby KJ, Meylan S, Villagrasa C, Incerti S, Faddegon B, Paganetti H, Schuemann J. Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit. Phys Med Biol 2018;63:175018. [PMID: 30088810 DOI: 10.1088/1361-6560/aad8eb] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
18 Warmenhoven JW, Henthorn NT, Ingram SP, Chadwick AL, Sotiropoulos M, Korabel N, Fedotov S, Mackay RI, Kirkby KJ, Merchant MJ. Insights into the non-homologous end joining pathway and double strand break end mobility provided by mechanistic in silico modelling. DNA Repair 2020;85:102743. [DOI: 10.1016/j.dnarep.2019.102743] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
19 Mcmahon SJ. The linear quadratic model: usage, interpretation and challenges. Phys Med Biol 2019;64:01TR01. [DOI: 10.1088/1361-6560/aaf26a] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 16.5] [Reference Citation Analysis]
20 Mokari M, Moeini H, Soleimani M, Fereidouni E. Calculation and comparison of the direct and indirect DNA damage induced by low energy electrons using default and CPA100 cross section models within Geant4-DNA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2020;480:56-66. [DOI: 10.1016/j.nimb.2020.08.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lazar AA, Schulte R, Faddegon B, Blakely EA, Roach M 3rd. Clinical trials involving carbon-ion radiation therapy and the path forward. Cancer 2018;124:4467-76. [PMID: 30307603 DOI: 10.1002/cncr.31662] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
22 Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, Li J. Modelling of Cellular Survival Following Radiation-Induced DNA Double-Strand Breaks. Sci Rep 2018;8:16202. [PMID: 30385845 DOI: 10.1038/s41598-018-34159-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
23 McMahon SJ, Prise KM. A Mechanistic DNA Repair and Survival Model (Medras): Applications to Intrinsic Radiosensitivity, Relative Biological Effectiveness and Dose-Rate. Front Oncol 2021;11:689112. [PMID: 34268120 DOI: 10.3389/fonc.2021.689112] [Reference Citation Analysis]
24 Lühr A, von Neubeck C, Pawelke J, Seidlitz A, Peitzsch C, Bentzen SM, Bortfeld T, Debus J, Deutsch E, Langendijk JA, Loeffler JS, Mohan R, Scholz M, Sørensen BS, Weber DC, Baumann M, Krause M; “Radiobiology of Proton Therapy”. "Radiobiology of Proton Therapy": Results of an international expert workshop. Radiother Oncol 2018;128:56-67. [PMID: 29861141 DOI: 10.1016/j.radonc.2018.05.018] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 13.5] [Reference Citation Analysis]
25 Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S, Faddegon B. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiat Res 2019;191:125-38. [PMID: 30609382 DOI: 10.1667/RR15226.1] [Cited by in Crossref: 42] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
26 Paganetti H. Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 2018;5:2-14. [PMID: 30370315 DOI: 10.14338/IJPT-18-00011.1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
27 Vatner R, James CD, Sathiaseelan V, Bondra KM, Kalapurakal JA, Houghton PJ. Radiation therapy and molecular-targeted agents in preclinical testing for immunotherapy, brain tumors, and sarcomas: Opportunities and challenges. Pediatr Blood Cancer 2021;68 Suppl 2:e28439. [PMID: 32827353 DOI: 10.1002/pbc.28439] [Reference Citation Analysis]
28 Parisi A, Sato T, Matsuya Y, Kase Y, Magrin G, Verona C, Tran L, Rosenfeld A, Bianchi A, Olko P, Struelens L, Vanhavere F. Development of a new microdosimetric biological weighting function for the RBE10 assessment in case of the V79 cell line exposed to ions from 1H to 238U. Phys Med Biol 2020;65:235010. [PMID: 33274727 DOI: 10.1088/1361-6560/abbf96] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
29 Aguilar-Hernández I, Cárdenas-Chavez DL, López-Luke T, García-García A, Herrera-Domínguez M, Pisano E, Ornelas-Soto N. Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS. Biomed Opt Express 2020;11:388-405. [PMID: 32010523 DOI: 10.1364/BOE.11.000388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Mcmahon SJ, Paganetti H, Prise KM. LET-weighted doses effectively reduce biological variability in proton radiotherapy planning. Phys Med Biol 2018;63:225009. [DOI: 10.1088/1361-6560/aae8a5] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]