BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pushpakumar S, Ren L, Kundu S, Gamon A, Tyagi SC, Sen U. Toll-like Receptor 4 Deficiency Reduces Oxidative Stress and Macrophage Mediated Inflammation in Hypertensive Kidney. Sci Rep 2017;7:6349. [PMID: 28743964 DOI: 10.1038/s41598-017-06484-6] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Yang H, Song X, Wei Z, Xia C, Wang J, Shen L, Wang J. TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats. ACS Chem Neurosci 2020;11:2978-88. [PMID: 32898417 DOI: 10.1021/acschemneuro.0c00029] [Reference Citation Analysis]
2 Holterman CE, Boisvert NC, Thibodeau JF, Kamto E, Novakovic M, Abd-Elrahman KS, Ferguson SSG, Kennedy CRJ. Podocyte NADPH Oxidase 5 Promotes Renal Inflammation Regulated by the Toll-Like Receptor Pathway. Antioxid Redox Signal 2019;30:1817-30. [PMID: 30070142 DOI: 10.1089/ars.2017.7402] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
3 Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol 2020;21:270. [PMID: 32660446 DOI: 10.1186/s12882-020-01921-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
4 Wu L, Vasilijic S, Sun Y, Chen J, Landegger LD, Zhang Y, Zhou W, Ren J, Early S, Yin Z, Ho WW, Zhang N, Gao X, Lee GY, Datta M, Sagers JE, Brown A, Muzikansky A, Stemmer-Rachamimov A, Zhang L, Plotkin SR, Jain RK, Stankovic KM, Xu L. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci Transl Med 2021;13:eabd4816. [PMID: 34261799 DOI: 10.1126/scitranslmed.abd4816] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Orejudo M, Rodrigues-Diez RR, Rodrigues-Diez R, Garcia-Redondo A, Santos-Sánchez L, Rández-Garbayo J, Cannata-Ortiz P, Ramos AM, Ortiz A, Selgas R, Mezzano S, Lavoz C, Ruiz-Ortega M. Interleukin 17A Participates in Renal Inflammation Associated to Experimental and Human Hypertension. Front Pharmacol 2019;10:1015. [PMID: 31572188 DOI: 10.3389/fphar.2019.01015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
6 Habib R. Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 2021;7:e06441. [PMID: 33732942 DOI: 10.1016/j.heliyon.2021.e06441] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z, Zheng F, Zhou MS. Macrophage Depletion Lowered Blood Pressure and Attenuated Hypertensive Renal Injury and Fibrosis. Front Physiol 2018;9:473. [PMID: 29867533 DOI: 10.3389/fphys.2018.00473] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
8 Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β2GPI/β2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018;138:140-50. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
9 Zhang Y, Su X, Zou F, Xu T, Pan P, Hu C. Toll-like receptor-4 deficiency alleviates chronic intermittent hypoxia-induced renal injury, inflammation, and fibrosis. Sleep Breath 2019;23:503-13. [PMID: 30099700 DOI: 10.1007/s11325-018-1704-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
10 Sun GC, Tse J, Hsu YH, Ho CY, Tseng CJ, Cheng PW. μ-Opioid Receptor-Mediated AT1R-TLR4 Crosstalk Promotes Microglial Activation to Modulate Blood Pressure Control in the Central Nervous System. Antioxidants (Basel) 2021;10:1784. [PMID: 34829655 DOI: 10.3390/antiox10111784] [Reference Citation Analysis]
11 De Luca R, Davis PJ, Lin HY, Gionfra F, Percario ZA, Affabris E, Pedersen JZ, Marchese C, Trivedi P, Anastasiadou E, Negro R, Incerpi S. Thyroid Hormones Interaction With Immune Response, Inflammation and Non-thyroidal Illness Syndrome. Front Cell Dev Biol 2020;8:614030. [PMID: 33553149 DOI: 10.3389/fcell.2020.614030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
12 Sun Z, Cai D, Yang X, Shang Y, Li X, Jia Y, Yin C, Zou H, Xu Y, Sun Q, Zhang X. Stress Response Simulated by Continuous Injection of ACTH Attenuates Lipopolysaccharide-Induced Inflammation in Porcine Adrenal Gland. Front Vet Sci 2020;7:315. [PMID: 32671106 DOI: 10.3389/fvets.2020.00315] [Reference Citation Analysis]
13 Weber GJ, Foster J, Pushpakumar SB, Sen U. Altered microRNA regulation of short chain fatty acid receptors in the hypertensive kidney is normalized with hydrogen sulfide supplementation. Pharmacol Res 2018;134:157-65. [PMID: 29909116 DOI: 10.1016/j.phrs.2018.06.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
14 Bruning EE, Coller JK, Wardill HR, Bowen JM. Site-specific contribution of Toll-like receptor 4 to intestinal homeostasis and inflammatory disease. J Cell Physiol 2021;236:877-88. [PMID: 32730645 DOI: 10.1002/jcp.29976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Pakfetrat Z, Janfeshan S, Masjedi F, Rafiei M, Karimi Z. Involvement of oxidative stress and toll-like receptor-4 signaling pathways in gentamicin-induced nephrotoxicity in male Sprague Dawley rats. Drug Chem Toxicol 2021;:1-8. [PMID: 34538191 DOI: 10.1080/01480545.2021.1977024] [Reference Citation Analysis]
16 Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021;12:702797. [PMID: 34408663 DOI: 10.3389/fphys.2021.702797] [Reference Citation Analysis]
17 Majumder S, Amin M, Pushpakumar S, Sen U. Collagen receptor- and metalloproteinase-dependent hypertensive stress response in mesangial and glomerular endothelial cells. Mol Cell Biochem 2020;466:1-15. [PMID: 31912277 DOI: 10.1007/s11010-019-03680-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Pushpakumar S, Ren L, Juin SK, Majumder S, Kulkarni R, Sen U. Methylation-dependent antioxidant-redox imbalance regulates hypertensive kidney injury in aging. Redox Biol 2020;37:101754. [PMID: 33080442 DOI: 10.1016/j.redox.2020.101754] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lin K, Luo W, Yan J, Shen S, Shen Q, Wang J, Guan X, Wu G, Huang W, Liang G. TLR2 regulates angiotensin II-induced vascular remodeling and EndMT through NF-κB signaling. Aging (Albany NY) 2020;13:2553-74. [PMID: 33318302 DOI: 10.18632/aging.202290] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Rodríguez-González R, Pollesello P, Baluja A, Álvarez J. Effects of Levosimendan on Inflammation and Oxidative Stress Pathways in a Lipopolysaccharide-Stimulated Human Endothelial Cell Model. Biol Res Nurs 2019;21:466-72. [PMID: 31272201 DOI: 10.1177/1099800419861694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Qu D, Wang L, Huo M, Song W, Lau CW, Xu J, Xu A, Yao X, Chiu JJ, Tian XY, Huang Y. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc Res 2020;116:226-36. [PMID: 30785200 DOI: 10.1093/cvr/cvz046] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
22 Bai F, Zhang LH, Zhang WW, Zheng RH, Eskew JR, Bennett J, Wang NP, Bose HS, Zhao ZQ. Conservation of glucagon like peptide-1 level with liraglutide and linagilptin protects the kidney against angiotensin II-induced tissue fibrosis in rats. Eur J Pharmacol 2020;867:172844. [PMID: 31811859 DOI: 10.1016/j.ejphar.2019.172844] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Dela Justina V, Giachini FR, Sullivan JC, Webb RC. Toll-Like Receptors Contribute to Sex Differences in Blood Pressure Regulation. J Cardiovasc Pharmacol 2020;76:255-66. [PMID: 32902942 DOI: 10.1097/FJC.0000000000000869] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhang Y, Igwe OJ. Lipopolysaccharide (LPS)-mediated priming of toll-like receptor 4 enhances oxidant-induced prostaglandin E2 biosynthesis in primary murine macrophages. Int Immunopharmacol 2018;54:226-37. [PMID: 29161659 DOI: 10.1016/j.intimp.2017.11.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
25 Weber GJ, Purkayastha B, Ren L, Pushpakumar S, Sen U. Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. Journal of Hypertension 2018;36:2226-36. [DOI: 10.1097/hjh.0000000000001770] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
26 Braun F, Rinschen M, Buchner D, Bohl K, Plagmann I, Bachurski D, Richard Späth M, Antczak P, Göbel H, Klein C, Lackmann JW, Kretz O, Puelles VG, Wahba R, Hallek M, Schermer B, Benzing T, Huber TB, Beyer A, Stippel D, Kurschat CE, Müller RU. The proteomic landscape of small urinary extracellular vesicles during kidney transplantation. J Extracell Vesicles 2020;10:e12026. [PMID: 33304478 DOI: 10.1002/jev2.12026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Sogawa Y, Nagasu H, Itano S, Kidokoro K, Taniguchi S, Takahashi M, Kadoya H, Satoh M, Sasaki T, Kashihara N. The eNOS-NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone-induced renal injury model mice. PLoS One 2018;13:e0203823. [PMID: 30281670 DOI: 10.1371/journal.pone.0203823] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
28 Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Involvement of Toll-like Receptor 4 in Neutrophil-Mediated Inflammation, Oxidative Stress and Tissue Damage Induced by Scorpion Venom. Inflammation 2020;43:155-67. [PMID: 31654297 DOI: 10.1007/s10753-019-01105-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
29 Kavasi RM, Berdiaki A, Spyridaki I, Papoutsidakis A, Corsini E, Tsatsakis A, Tzanakakis GN, Nikitovic D. Contact allergen (PPD and DNCB)-induced keratinocyte sensitization is partly mediated through a low molecular weight hyaluronan (LMWHA)/TLR4/NF-κB signaling axis. Toxicol Appl Pharmacol 2019;377:114632. [PMID: 31226360 DOI: 10.1016/j.taap.2019.114632] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021;8:649785. [PMID: 33928135 DOI: 10.3389/fcvm.2021.649785] [Reference Citation Analysis]
31 Bernard K, Thannickal VJ. NADPH Oxidase Inhibition in Fibrotic Pathologies. Antioxid Redox Signal 2020;33:455-79. [PMID: 32129665 DOI: 10.1089/ars.2020.8032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Qin S, Peng D, Lu J, Ke Z. MiR‐182‐5p inhibited oxidative stress and apoptosis triggered by oxidized low‐density lipoprotein via targeting toll‐like receptor 4. J Cell Physiol 2018;233:6630-7. [DOI: 10.1002/jcp.26389] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
33 Zabad OM, Samra YA, Eissa LA. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci 2019;238:116965. [PMID: 31629762 DOI: 10.1016/j.lfs.2019.116965] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
34 Lazaridis A, Gavriilaki E, Douma S, Gkaliagkousi E. Toll-Like Receptors in the Pathogenesis of Essential Hypertension. A Forthcoming Immune-Driven Theory in Full Effect. Int J Mol Sci 2021;22:3451. [PMID: 33810594 DOI: 10.3390/ijms22073451] [Reference Citation Analysis]
35 Xiong D, Hu W, Ye ST, Tan YS. Isoliquiritigenin alleviated the Ang II-induced hypertensive renal injury through suppressing inflammation cytokines and oxidative stress-induced apoptosis via Nrf2 and NF-κB pathways. Biochem Biophys Res Commun 2018;506:161-8. [PMID: 30340829 DOI: 10.1016/j.bbrc.2018.09.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
36 Ma S, Zhang Y, He K, Wang P, Wang DH. Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury. Am J Physiol Renal Physiol 2019;317:F623-31. [PMID: 31339777 DOI: 10.1152/ajprenal.00069.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
37 Liu B, Tan P. PPAR γ/TLR4/TGF-β1 axis mediates the protection effect of erythropoietin on cyclosporin A-induced chronic nephropathy in rat. Ren Fail 2020;42:216-24. [PMID: 32090669 DOI: 10.1080/0886022X.2020.1729188] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
38 Majumder S, Pushpakumar S, Juin SK, Jala VR, Sen U. Toll-like receptor 4 mutation protects the kidney from Ang-II-induced hypertensive injury. Pharmacol Res 2021;175:106030. [PMID: 34896544 DOI: 10.1016/j.phrs.2021.106030] [Reference Citation Analysis]
39 Li L, Wang D, Wang X, Bai R, Wang C, Gao Y, Anastassiades T. N-Butyrylated hyaluronic acid ameliorates gout and hyperuricemia in animal models. Pharm Biol 2019;57:717-28. [PMID: 31622116 DOI: 10.1080/13880209.2019.1672755] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. [Interleukin-17A: Possible mediator and therapeutic target in hypertension]. Nefrologia (Engl Ed) 2021;41:244-57. [PMID: 33775443 DOI: 10.1016/j.nefro.2020.11.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Bhatt LK, Selokar I, Raut D, Hussain T. Novel Targets for Hypertension Drug Discovery. Curr Hypertens Rep 2021;23:19. [PMID: 33783647 DOI: 10.1007/s11906-021-01137-6] [Reference Citation Analysis]
42 Zambom FFF, Oliveira KC, Foresto-Neto O, Faustino VD, Ávila VF, Albino AH, Arias SCA, Volpini RA, Malheiros DMAC, Saraiva Camara NO, Zatz R, Fujihara CK. Pathogenic role of innate immunity in a model of chronic NO inhibition associated with salt overload. Am J Physiol Renal Physiol 2019;317:F1058-67. [PMID: 31411073 DOI: 10.1152/ajprenal.00251.2019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
43 Pooladanda V, Thatikonda S, Bale S, Pattnaik B, Sigalapalli DK, Bathini NB, Singh SB, Godugu C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis 2019;10:81. [PMID: 30692512 DOI: 10.1038/s41419-018-1247-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
44 Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos-Sanchez L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. Interleukin-17A: Potential mediator and therapeutic target in hypertension. Nefrologia 2021:S2013-2514(21)00057-2. [PMID: 34272191 DOI: 10.1016/j.nefroe.2021.06.003] [Reference Citation Analysis]
45 Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2019;19:517-32. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Cited by in Crossref: 101] [Cited by in F6Publishing: 97] [Article Influence: 50.5] [Reference Citation Analysis]
46 Del Pinto R, Ferri C. The role of Immunity in Fabry Disease and Hypertension: A Review of a Novel Common Pathway. High Blood Press Cardiovasc Prev 2020;27:539-46. [PMID: 33047250 DOI: 10.1007/s40292-020-00414-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Mol Neurobiol 2020;57:4825-44. [PMID: 32803490 DOI: 10.1007/s12035-020-02066-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
48 Salas-Hernández A, Ruz-Cortés F, Bruggendieck F, Espinoza-Perez C, Espitia-Corredor J, Varela NM, Quiñones LA, Sánchez-Ferrer C, Peiró C, Díaz-Araya G. Resolvin D1 reduces expression and secretion of cytokines and monocyte adhesion triggered by Angiotensin II, in rat cardiac fibroblasts. Biomed Pharmacother 2021;141:111947. [PMID: 34328122 DOI: 10.1016/j.biopha.2021.111947] [Reference Citation Analysis]
49 Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021;342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Nunes KP, de Oliveira AA, Mowry FE, Biancardi VC. Targeting toll-like receptor 4 signalling pathways: can therapeutics pay the toll for hypertension? Br J Pharmacol 2019;176:1864-79. [PMID: 29981161 DOI: 10.1111/bph.14438] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
51 Majumder S, Ren L, Pushpakumar S, Sen U. Hydrogen sulphide mitigates homocysteine-induced apoptosis and matrix remodelling in mesangial cells through Akt/FOXO1 signalling cascade. Cell Signal 2019;61:66-77. [PMID: 31085234 DOI: 10.1016/j.cellsig.2019.05.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
52 Sakai T, Imai J, Takagaki H, Ui M, Hatta S. Cytoplasmic OH scavenger TA293 attenuates cellular senescence and fibrosis by activating macrophages through oxidized phospholipids/TLR4. Life Sciences 2019;221:284-92. [DOI: 10.1016/j.lfs.2019.02.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]