BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koo J, MacEwan MR, Kang SK, Won SM, Stephen M, Gamble P, Xie Z, Yan Y, Chen YY, Shin J, Birenbaum N, Chung S, Kim SB, Khalifeh J, Harburg DV, Bean K, Paskett M, Kim J, Zohny ZS, Lee SM, Zhang R, Luo K, Ji B, Banks A, Lee HM, Huang Y, Ray WZ, Rogers JA. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat Med 2018;24:1830-6. [PMID: 30297910 DOI: 10.1038/s41591-018-0196-2] [Cited by in Crossref: 148] [Cited by in F6Publishing: 184] [Article Influence: 37.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhao H, Xue Z, Wu X, Wei Z, Guo Q, Xu M, Qu C, You C, Mei Y, Zhang M, Di Z, Guo Q. Biodegradable germanium electronics for integrated biosensing of physiological signals. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00196-2] [Reference Citation Analysis]
2 Wu P, Chen P, Xu C, Wang Q, Zhang F, Yang K, Jiang W, Feng J, Luo Z. Ultrasound-driven in vivo electrical stimulation based on biodegradable piezoelectric nanogenerators for enhancing and monitoring the nerve tissue repair. Nano Energy 2022;102:107707. [DOI: 10.1016/j.nanoen.2022.107707] [Reference Citation Analysis]
3 Xia X, Liang Q, Sun X, Yu D, Huang X, Mugo SM, Chen W, Wang D, Zhang Q. Intrinsically Electron Conductive, Antibacterial, and Anti‐swelling Hydrogels as Implantable Sensors for Bioelectronics. Adv Funct Materials. [DOI: 10.1002/adfm.202208024] [Reference Citation Analysis]
4 Xiang H, Zeng Y, Huang X, Wang N, Cao X, Wang ZL. From Triboelectric Nanogenerator to Multifunctional Triboelectric Sensors: A Chemical Perspective toward the Interface Optimization and Device Integration. Small 2022;:e2107222. [PMID: 36123149 DOI: 10.1002/smll.202107222] [Reference Citation Analysis]
5 Jin F, Li T, Wei Z, Xiong R, Qian L, Ma J, Yuan T, Wu Q, Lai C, Ma X, Wang F, Zhao Y, Sun F, Wang T, Feng ZQ. Biofeedback electrostimulation for bionic and long-lasting neural modulation. Nat Commun 2022;13:5302. [PMID: 36085331 DOI: 10.1038/s41467-022-33089-z] [Reference Citation Analysis]
6 Huang Y, Cui Y, Deng H, Wang J, Hong R, Hu S, Hou H, Dong Y, Wang H, Chen J, Li L, Xie Y, Sun P, Fu X, Yin L, Xiong W, Shi SH, Luo M, Wang S, Li X, Sheng X. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat Biomed Eng 2022. [PMID: 36065014 DOI: 10.1038/s41551-022-00931-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Liang L, Liu C, Cai P, Han S, Zhang R, Ren N, Wang J, Yu J, Shang S, Zhou W, Qiu J, Mao C, Chen X, Sun C, Liu H. Highly specific differentiation of MSCs into neurons directed by local electrical stimuli triggered wirelessly by electromagnetic induction nanogenerator. Nano Energy 2022;100:107483. [DOI: 10.1016/j.nanoen.2022.107483] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Liu X, Wang Y, Wang G, Ma Y, Zheng Z, Fan K, Liu J, Zhou B, Wang G, You Z, Fang Y, Wang X, Niu S. An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter 2022. [DOI: 10.1016/j.matt.2022.08.016] [Reference Citation Analysis]
9 Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. Adv Sci (Weinh) 2022;:e2202980. [PMID: 36031395 DOI: 10.1002/advs.202202980] [Reference Citation Analysis]
10 Nguyen TK, Barton M, Ashok A, Truong TA, Yadav S, Leitch M, Nguyen TV, Kashaninejad N, Dinh T, Hold L, Yamauchi Y, Nguyen NT, Phan HP. Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator. Proc Natl Acad Sci U S A 2022;119:e2203287119. [PMID: 35939711 DOI: 10.1073/pnas.2203287119] [Reference Citation Analysis]
11 Wei Z, Ma X, Zhao H, Wu X, Guo Q. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics. ACS Appl Mater Interfaces 2022. [PMID: 35830227 DOI: 10.1021/acsami.2c04647] [Reference Citation Analysis]
12 Huang Y, Li H, Hu T, Li J, Yiu CK, Zhou J, Li J, Huang X, Yao K, Qiu X, Zhou Y, Li D, Zhang B, Shi R, Liu Y, Wong TH, Wu M, Jia H, Gao Z, Zhang Z, He J, Zheng M, Song E, Wang L, Xu C, Yu X. Implantable Electronic Medicine Enabled by Bioresorbable Microneedles for Wireless Electrotherapy and Drug Delivery. Nano Lett 2022. [PMID: 35816764 DOI: 10.1021/acs.nanolett.2c01997] [Reference Citation Analysis]
13 Reeder JT, Xie Z, Yang Q, Seo MH, Yan Y, Deng Y, Jinkins KR, Krishnan SR, Liu C, McKay S, Patnaude E, Johnson A, Zhao Z, Kim MJ, Xu Y, Huang I, Avila R, Felicelli C, Ray E, Guo X, Ray WZ, Huang Y, MacEwan MR, Rogers JA. Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science 2022;377:109-15. [PMID: 35771907 DOI: 10.1126/science.abl8532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering 2022;9:292. [DOI: 10.3390/bioengineering9070292] [Reference Citation Analysis]
15 Brown MS, Somma L, Mendoza M, Noh Y, Mahler GJ, Koh A. Upcycling Compact Discs for Flexible and Stretchable Bioelectronic Applications. Nat Commun 2022;13:3727. [PMID: 35764646 DOI: 10.1038/s41467-022-31338-9] [Reference Citation Analysis]
16 Niu Q, Wei H, Hsiao BS, Zhang Y. Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices. Nano Energy 2022;96:107101. [DOI: 10.1016/j.nanoen.2022.107101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Yang H, Su Y, Sun Z, Ma B, Liu F, Kong Y, Sun C, Li B, Sang Y, Wang S, Li G, Qiu J, Liu C, Geng Z, Liu H. Gold Nanostrip Array-Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. Adv Sci (Weinh) 2022;:e2202376. [PMID: 35618610 DOI: 10.1002/advs.202202376] [Reference Citation Analysis]
18 Prominski A, Shi J, Li P, Yue J, Lin Y, Park J, Tian B, Rotenberg MY. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat Mater 2022. [PMID: 35618824 DOI: 10.1038/s41563-022-01249-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Corsi M, Paghi A, Mariani S, Golinelli G, Debrassi A, Egri G, Leo G, Vandini E, Vilella A, Dähne L, Giuliani D, Barillaro G. Bioresorbable Nanostructured Chemical Sensor for Monitoring of pH Level In Vivo. Adv Sci (Weinh) 2022;:e2202062. [PMID: 35618637 DOI: 10.1002/advs.202202062] [Reference Citation Analysis]
20 Tetsuka H, Pirrami L, Wang T, Demarchi D, Shin SR. Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties. Adv Funct Materials. [DOI: 10.1002/adfm.202202674] [Reference Citation Analysis]
21 Wang L, Chen K, Fan Y, Yin L. Novel implantable devices delivering electrical cues for tissue regeneration and functional restoration. Medicine in Novel Technology and Devices 2022. [DOI: 10.1016/j.medntd.2022.100146] [Reference Citation Analysis]
22 Liu X, Wang K, González-gonzález MA, Romero-ortega M, Wallace GG. Sensing and Stimulating Electrodes for Electroceuticals. Front Sens 2022;3:873862. [DOI: 10.3389/fsens.2022.873862] [Reference Citation Analysis]
23 Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. Adv Sci (Weinh) 2022;9:e2103875. [PMID: 35182046 DOI: 10.1002/advs.202103875] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
24 Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. Adv Mater 2022;34:e2107902. [PMID: 34897836 DOI: 10.1002/adma.202107902] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
25 Kim H, Kim MJ, Kwon YW, Jeon S, Lee SY, Kim CS, Choi BT, Shin YI, Hong SW, Shin HK. Benefits of a Skull-Interfaced Flexible and Implantable Multilight Emitting Diode Array for Photobiomodulation in Ischemic Stroke. Adv Sci (Weinh) 2022;9:e2104629. [PMID: 35076161 DOI: 10.1002/advs.202104629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Yang SM, Shim JH, Cho HU, Jang TM, Ko GJ, Shim J, Kim TH, Zhu J, Park S, Kim YS, Joung SY, Choe JC, Shin JW, Lee JH, Kang YM, Cheng H, Jung Y, Lee CH, Jang DP, Hwang SW. Hetero-Integration of Silicon Nanomembranes with 2D Materials for Bioresorbable, Wireless Neurochemical System. Adv Mater 2022;34:e2108203. [PMID: 35073597 DOI: 10.1002/adma.202108203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Pan T, Zou Y. Fully Implantable Neural Stimulator with Variable Parameters. Electronics 2022;11:1104. [DOI: 10.3390/electronics11071104] [Reference Citation Analysis]
28 Elabd R, Alabdulkarim A, Alsabah S, Hazan J, Alhalabi B, Thibaudeau S. Role of Electrical Stimulation in Peripheral Nerve Regeneration: A Systematic Review. Plastic and Reconstructive Surgery - Global Open 2022;10:e4115. [DOI: 10.1097/gox.0000000000004115] [Reference Citation Analysis]
29 Yan Z, Xu D, Lin Z, Wang P, Cao B, Ren H, Song F, Wan C, Wang L, Zhou J, Zhao X, Chen J, Huang Y, Duan X. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022;375:852-9. [PMID: 35201882 DOI: 10.1126/science.abl8941] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
30 Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C. Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS Nano 2022;16:2292-305. [PMID: 35098714 DOI: 10.1021/acsnano.1c08491] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
31 Nikbakhtnasrabadi F, Hosseini ES, Dervin S, Shakthivel D, Dahiya R. Smart Bandage with Inductor‐Capacitor Resonant Tank Based Printed Wireless Pressure Sensor on Electrospun Poly‐ L ‐Lactide Nanofibers. Adv Elect Materials. [DOI: 10.1002/aelm.202101348] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 13.0] [Reference Citation Analysis]
32 Yao G, Mo X, Yin C, Lou W, Wang Q, Huang S, Mao L, Chen S, Zhao K, Pan T, Huang L, Lin Y. A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing. Sci Adv 2022;8:eabl8379. [PMID: 35080981 DOI: 10.1126/sciadv.abl8379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
33 Wang P, Wang Y, Wang M, Sun G. Example Analysis of Digital Wireless Mapping Applied to Construction Engineering Measurement. Journal of Sensors 2022;2022:1-10. [DOI: 10.1155/2022/6599720] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhang F, Zhang M, Liu S, Li C, Ding Z, Wan T, Zhang P. Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration. Gels 2022;8:41. [DOI: 10.3390/gels8010041] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Khan AN, Cha Y, Giddens H, Hao Y. Recent advances in organ specific wireless bioelectronic devices: Perspective on biotelemetry and power transfer using antenna systems. Engineering 2022. [DOI: 10.1016/j.eng.2021.10.019] [Reference Citation Analysis]
36 Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
37 Shin JW, Chan Choe J, Lee JH, Han WB, Jang TM, Ko GJ, Yang SM, Kim YG, Joo J, Lim BH, Park E, Hwang SW. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. ACS Nano 2021;15:19310-20. [PMID: 34843199 DOI: 10.1021/acsnano.1c05463] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022;11:57-76. [PMID: 34938913 DOI: 10.1016/j.bioactmat.2021.09.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
39 Miao BA, Meng L, Tian B. Biology-guided engineering of bioelectrical interfaces. Nanoscale Horiz 2021. [PMID: 34904138 DOI: 10.1039/d1nh00538c] [Reference Citation Analysis]
40 Tang M, Zhang X, Yang A, Liu Y, Xie K, Zhou Y, Wang C, Liu J, Shi P, Lin X. Injectable Black Phosphorus Nanosheets for Wireless Nongenetic Neural Stimulation. Small 2021;:e2105388. [PMID: 34894073 DOI: 10.1002/smll.202105388] [Reference Citation Analysis]
41 Farahani A, Zarei-Hanzaki A, Abedi HR, Tayebi L, Mostafavi E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J Funct Biomater 2021;12:71. [PMID: 34940550 DOI: 10.3390/jfb12040071] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
42 Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng ZQ. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. Adv Mater 2021;33:e2104175. [PMID: 34608668 DOI: 10.1002/adma.202104175] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
43 Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today 2021;51:165-87. [DOI: 10.1016/j.mattod.2021.09.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
44 Morsada Z, Hossain MM, Islam MT, Mobin MA, Saha S. Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today 2021;25:101257. [DOI: 10.1016/j.apmt.2021.101257] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
45 Yan Z, Chen C, Rosso G, Qian Y, Fan C. Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms. Front Bioeng Biotechnol 2021;9:746074. [PMID: 34820361 DOI: 10.3389/fbioe.2021.746074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
46 Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. Adv Mater 2021;33:e2005786. [PMID: 34050691 DOI: 10.1002/adma.202005786] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
48 Chen P, Wang Q, Wan X, Yang M, Liu C, Xu C, Hu B, Feng J, Luo Z. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 2021;89:106327. [DOI: 10.1016/j.nanoen.2021.106327] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
49 Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. Adv Mater 2021;33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
50 Yang Q, Hu Z, Rogers JA. Functional Hydrogel Interface Materials for Advanced Bioelectronic Devices. Acc Mater Res 2021;2:1010-23. [DOI: 10.1021/accountsmr.1c00142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
51 Zhang S, Wang J, Zheng Z, Yan J, Zhang L, Li Y, Zhang J, Li G, Wang X, Kaplan D. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Acta Biomater 2021;134:116-30. [PMID: 34289421 DOI: 10.1016/j.actbio.2021.07.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
52 Miao L, Song Y, Ren Z, Xu C, Wan J, Wang H, Guo H, Xiang Z, Han M, Zhang H. 3D Temporary-Magnetized Soft Robotic Structures for Enhanced Energy Harvesting. Adv Mater 2021;33:e2102691. [PMID: 34396604 DOI: 10.1002/adma.202102691] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
53 Koo JH, Song J, Kim D, Son D. Soft Implantable Bioelectronics. ACS Materials Lett 2021;3:1528-40. [DOI: 10.1021/acsmaterialslett.1c00438] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
54 Lin A, Uva A, Babi J, Tran H. Materials design for resilience in the biointegration of electronics. MRS Bulletin 2021;46:860-9. [DOI: 10.1557/s43577-021-00174-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Tran H, Nikzad S, Chiong JA, Schuster NJ, Peña-alcántara AE, Feig VR, Zheng Y, Bao Z. Modular Synthesis of Fully Degradable Imine-Based Semiconducting p-Type and n-Type Polymers. Chem Mater 2021;33:7465-74. [DOI: 10.1021/acs.chemmater.1c02258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Fanelli A, Ghezzi D. Transient electronics: new opportunities for implantable neurotechnology. Curr Opin Biotechnol 2021;72:22-8. [PMID: 34464936 DOI: 10.1016/j.copbio.2021.08.011] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
57 Sheng H, Zhang X, Liang J, Shao M, Xie E, Yu C, Lan W. Recent Advances of Energy Solutions for Implantable Bioelectronics. Adv Healthc Mater 2021;10:e2100199. [PMID: 33930254 DOI: 10.1002/adhm.202100199] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
58 Ryu H, Seo MH, Rogers JA. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Adv Healthc Mater 2021;10:e2002236. [PMID: 33586341 DOI: 10.1002/adhm.202002236] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
59 Mei X, Ye D, Zhang F, Di C. Implantable application of polymer‐based biosensors. Journal of Polymer Science 2022;60:328-47. [DOI: 10.1002/pol.20210543] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
60 Lee WH, Cha GD, Kim DH. Flexible and biodegradable electronic implants for diagnosis and treatment of brain diseases. Curr Opin Biotechnol 2021;72:13-21. [PMID: 34425329 DOI: 10.1016/j.copbio.2021.07.027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Yang Q, Wei T, Yin RT, Wu M, Xu Y, Koo J, Choi YS, Xie Z, Chen SW, Kandela I, Yao S, Deng Y, Avila R, Liu TL, Bai W, Yang Y, Han M, Zhang Q, Haney CR, Benjamin Lee K, Aras K, Wang T, Seo MH, Luan H, Lee SM, Brikha A, Ghoreishi-Haack N, Tran L, Stepien I, Aird F, Waters EA, Yu X, Banks A, Trachiotis GD, Torkelson JM, Huang Y, Kozorovitskiy Y, Efimov IR, Rogers JA. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater 2021. [PMID: 34326506 DOI: 10.1038/s41563-021-01051-x] [Cited by in F6Publishing: 26] [Reference Citation Analysis]
62 Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021;7:3503-29. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
63 Zhang W, Zhang L, Liao Y, Cheng H. Conformal manufacturing of soft deformable sensors on the curved surface. Int J Extrem Manuf 2021;3:042001. [DOI: 10.1088/2631-7990/ac1158] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
64 Yao G, Kang L, Li C, Chen S, Wang Q, Yang J, Long Y, Li J, Zhao K, Xu W, Cai W, Lin Y, Wang X. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc Natl Acad Sci U S A 2021;118:e2100772118. [PMID: 34260393 DOI: 10.1073/pnas.2100772118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
65 Shim J, Rogers JA, Kang S. Physically transient electronic materials and devices. Materials Science and Engineering: R: Reports 2021;145:100624. [DOI: 10.1016/j.mser.2021.100624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
66 Choi YS, Yin RT, Pfenniger A, Koo J, Avila R, Benjamin Lee K, Chen SW, Lee G, Li G, Qiao Y, Murillo-Berlioz A, Kiss A, Han S, Lee SM, Li C, Xie Z, Chen YY, Burrell A, Geist B, Jeong H, Kim J, Yoon HJ, Banks A, Kang SK, Zhang ZJ, Haney CR, Sahakian AV, Johnson D, Efimova T, Huang Y, Trachiotis GD, Knight BP, Arora RK, Efimov IR, Rogers JA. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat Biotechnol 2021. [PMID: 34183859 DOI: 10.1038/s41587-021-00948-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 33] [Article Influence: 1.0] [Reference Citation Analysis]
67 Williams HJ, Shipley JR, Rutz C, Wikelski M, Wilkes M, Hawkes LA. Future trends in measuring physiology in free-living animals. Philos Trans R Soc Lond B Biol Sci 2021;376:20200230. [PMID: 34176330 DOI: 10.1098/rstb.2020.0230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
68 Jiang C, Li X, Lian SWM, Ying Y, Ho JS, Ping J. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems. ACS Nano 2021;15:9328-54. [PMID: 34124880 DOI: 10.1021/acsnano.1c02819] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
69 Liu Y, Zhou H, Zhou W, Meng S, Qi C, Liu Z, Kong T. Biocompatible, High‐Performance, Wet‐Adhesive, Stretchable All‐Hydrogel Supercapacitor Implant Based on PANI@rGO/Mxenes Electrode and Hydrogel Electrolyte. Adv Energy Mater 2021;11:2101329. [DOI: 10.1002/aenm.202101329] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
70 Ostroff E, Parekh K, Prominski A, Tian B. Biocompatible and Nanoenabled Technologies for Biological Modulation. Adv Materials Technologies 2022;7:2100216. [DOI: 10.1002/admt.202100216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Balog BM, Deng K, Askew T, Kuang M, Hanzlicek B, Damaser MS. Brain derived neurotrophic factor mediates accelerated recovery of regenerative electrical stimulation in an animal model of stress urinary incontinence. Exp Neurol 2021;343:113781. [PMID: 34102241 DOI: 10.1016/j.expneurol.2021.113781] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Han F, Ma X, Zhai Y, Cui L, Yang L, Zhu Z, Hao Y, Cheng G. Strategy for Designing a Cell Scaffold to Enable Wireless Electrical Stimulation for Enhanced Neuronal Differentiation of Stem Cells. Adv Healthc Mater 2021;10:e2100027. [PMID: 33887103 DOI: 10.1002/adhm.202100027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
73 Javeed S, Faraji AH, Dy C, Ray WZ, Macewan MR. Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. Interdisciplinary Neurosurgery 2021;24:101117. [DOI: 10.1016/j.inat.2021.101117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
74 Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. Micromachines (Basel) 2021;12:600. [PMID: 34067419 DOI: 10.3390/mi12060600] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
75 Lan Y, Zhang H, Min S, Kim D, Gong S, Katehi L, Xu Y, Ma Z. S- to X-Band Stretchable Inductors and Filters for Gigahertz Soft and Epidermal Electronics. ACS Appl Mater Interfaces 2021;13:25053-63. [PMID: 34018738 DOI: 10.1021/acsami.0c22003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Yoo JI, Kim SH, Ko HC. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res 2021;14:3143-58. [DOI: 10.1007/s12274-021-3533-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
77 Shrestha S, Shrestha BK, Joong OK, Park CH, Kim CS. Para-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. Biomater Sci 2021;9:1691-704. [PMID: 33410823 DOI: 10.1039/d0bm01034k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
78 Han WB, Yang SM, Rajaram K, Hwang S. Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bio‐Integrated Electronic Systems. Advanced Sustainable Systems 2022;6:2100075. [DOI: 10.1002/adsu.202100075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 Ferlauto L, Vagni P, Fanelli A, Zollinger EG, Monsorno K, Paolicelli RC, Ghezzi D. All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials 2021;274:120889. [PMID: 33992836 DOI: 10.1016/j.biomaterials.2021.120889] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
80 Guo H, D'andrea D, Zhao J, Xu Y, Qiao Z, Janes LE, Murthy NK, Li R, Xie Z, Song Z, Meda R, Koo J, Bai W, Choi YS, Jordan SW, Huang Y, Franz CK, Rogers JA. Advanced Materials in Wireless, Implantable Electrical Stimulators that Offer Rapid Rates of Bioresorption for Peripheral Axon Regeneration. Adv Funct Mater 2021;31:2102724. [DOI: 10.1002/adfm.202102724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
81 Ward PJ, Davey RA, Zajac JD, English AW. Neuronal androgen receptor is required for activity dependent enhancement of peripheral nerve regeneration. Dev Neurobiol 2021;81:411-23. [PMID: 33864349 DOI: 10.1002/dneu.22826] [Reference Citation Analysis]
82 Seo H, Han SI, Song KI, Seong D, Lee K, Kim SH, Park T, Koo JH, Shin M, Baac HW, Park OK, Oh SJ, Han HS, Jeon H, Kim YC, Kim DH, Hyeon T, Son D. Durable and Fatigue-Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling. Adv Mater 2021;33:e2007346. [PMID: 33739558 DOI: 10.1002/adma.202007346] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
83 Bae JY, Gwak EJ, Hwang GS, Hwang HW, Lee DJ, Lee JS, Joo YC, Sun JY, Jun SH, Ok MR, Kim JY, Kang SK. Biodegradable Metallic Glass for Stretchable Transient Electronics. Adv Sci (Weinh) 2021;8:2004029. [PMID: 34026449 DOI: 10.1002/advs.202004029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
84 Qian Y, Xu Y, Yan Z, Jin Y, Chen X, Yuan W, Fan C. Boron nitride nanosheets functionalized channel scaffold favors microenvironment rebalance cocktail therapy for piezocatalytic neuronal repair. Nano Energy 2021;83:105779. [DOI: 10.1016/j.nanoen.2021.105779] [Cited by in Crossref: 4] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
85 Haroun A, Le X, Gao S, Dong B, He T, Zhang Z, Wen F, Xu S, Lee C. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. Nano Ex 2021;2:022005. [DOI: 10.1088/2632-959x/abf3d4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
86 Li H, Gao F, Wang P, Yin L, Ji N, Zhang L, Zhao L, Hou G, Lu B, Chen Y, Ma Y, Feng X. Biodegradable Flexible Electronic Device with Controlled Drug Release for Cancer Treatment. ACS Appl Mater Interfaces 2021;13:21067-75. [PMID: 33908774 DOI: 10.1021/acsami.1c04653] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
87 Kang K, Park J, Kim K, Yu KJ. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res 2021;14:3096-111. [DOI: 10.1007/s12274-021-3490-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
88 Chen T, Jiang H, Zhu Y, Chen X, Zhang D, Li X, Shen F, Xia H, Min Y, Xie K. Highly Ordered 3D Tissue Engineering Scaffolds as a Versatile Culture Platform for Nerve Cells Growth. Macromol Biosci 2021;21:e2100047. [PMID: 33893711 DOI: 10.1002/mabi.202100047] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
89 Appusamy S, Krishnan S, Gopikrishna M, Raman S. Bio-based Materials for Microwave Devices: A Review. Journal of Elec Materi 2021;50:1893-921. [DOI: 10.1007/s11664-020-08672-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Huang D, Li J, Zhang G, Wang W, Xia L, Gong X, Zhou N. Biomaterials for Repairing Gaps After Peripheral Nerve Injury. sci adv mater 2021;13:530-6. [DOI: 10.1166/sam.2021.3963] [Reference Citation Analysis]
91 Kim K, Yoo J, Shim J, Ryu Y, Choi S, Lee J, Lee HM, Koo J, Kang S. Biodegradable Molybdenum/Polybutylene Adipate Terephthalate Conductive Paste for Flexible and Stretchable Transient Electronics. Adv Materials Technologies 2022;7:2001297. [DOI: 10.1002/admt.202001297] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
92 Paggi V, Akouissi O, Micera S, Lacour SP. Compliant peripheral nerve interfaces. J Neural Eng 2021;18:031001. [PMID: 33750743 DOI: 10.1088/1741-2552/abcdbe] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
93 Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2021. [PMID: 33686282 DOI: 10.1038/s41551-021-00683-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
94 Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021;15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 54.0] [Reference Citation Analysis]
95 Franklin D, Ueltschi T, Carlini A, Yao S, Reeder J, Richards B, Van Duyne RP, Rogers JA. Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation. ACS Nano 2021;15:2327-39. [PMID: 33439017 DOI: 10.1021/acsnano.0c10234] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
96 Luan H, Zhang Y. Programmable Stimulation and Actuation in Flexible and Stretchable Electronics. Advanced Intelligent Systems 2021;3:2000228. [DOI: 10.1002/aisy.202000228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
97 Phan HP. Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials. Micromachines (Basel) 2021;12:157. [PMID: 33562545 DOI: 10.3390/mi12020157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
98 Bai W, Irie M, Liu Z, Luan H, Franklin D, Nandoliya K, Guo H, Zang H, Weng Y, Lu D, Wu D, Wu Y, Song J, Han M, Song E, Yang Y, Chen X, Zhao H, Lu W, Monti G, Stepien I, Kandela I, Haney CR, Wu C, Won SM, Ryu H, Rwei A, Shen H, Kim J, Yoon H, Ouyang W, Liu Y, Suen E, Chen H, Okina J, Liang J, Huang Y, Ameer GA, Zhou W, Rogers JA. Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME Frontiers 2021;2021:1-14. [DOI: 10.34133/2021/8653218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
99 Han WB, Ko G, Jang T, Hwang S. Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Appl Electron Mater 2021;3:485-503. [DOI: 10.1021/acsaelm.0c00724] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
100 Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021;121:2109-46. [DOI: 10.1021/acs.chemrev.0c00897] [Cited by in Crossref: 15] [Cited by in F6Publishing: 61] [Article Influence: 15.0] [Reference Citation Analysis]
101 Gibney S, Hicks JM, Robinson A, Jain A, Sanjuan-Alberte P, Rawson FJ. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1693. [PMID: 33442962 DOI: 10.1002/wnan.1693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
102 Jiang J, Dai C, Liu X, Dai L, Li R, Ma K, Xu H, Zhao F, Zhang Z, He T, Niu X, Chen X, Zhang S. Implantation of regenerative complexes in traumatic brain injury canine models enhances the reconstruction of neural networks and motor function recovery. Theranostics 2021;11:768-88. [PMID: 33391504 DOI: 10.7150/thno.50540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
103 Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020;108:270-85. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
104 Wang L, Lu C, Yang S, Sun P, Wang Y, Guan Y, Liu S, Cheng D, Meng H, Wang Q, He J, Hou H, Li H, Lu W, Zhao Y, Wang J, Zhu Y, Li Y, Luo D, Li T, Chen H, Wang S, Sheng X, Xiong W, Wang X, Peng J, Yin L. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci Adv 2020;6:eabc6686. [PMID: 33310851 DOI: 10.1126/sciadv.abc6686] [Cited by in Crossref: 7] [Cited by in F6Publishing: 31] [Article Influence: 3.5] [Reference Citation Analysis]
105 Chen Y, Rommelfanger NJ, Mahdi AI, Wu X, Keene ST, Obaid A, Salleo A, Wang H, Hong G. How is flexible electronics advancing neuroscience research? Biomaterials 2021;268:120559. [PMID: 33310538 DOI: 10.1016/j.biomaterials.2020.120559] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
106 Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. Adv Mater 2020;32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
107 Zhang Q, Liang Q, Rogers JA. Water-soluble energy harvester as a promising power solution for temporary electronic implants. APL Materials 2020;8:120701. [DOI: 10.1063/5.0031151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
108 Dong C, Qiao F, Hou W, Yang L, Lv Y. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Applied Materials Today 2020;21:100870. [DOI: 10.1016/j.apmt.2020.100870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
109 Zhang J, Chen Y, Huang Y, Wu W, Deng X, Liu H, Li R, Tao J, Li X, Liu X, Gou M. A 3D-Printed Self-Adhesive Bandage with Drug Release for Peripheral Nerve Repair. Adv Sci (Weinh) 2020;7:2002601. [PMID: 33304766 DOI: 10.1002/advs.202002601] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
110 Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020;6:23. [PMID: 33292861 DOI: 10.1186/s42234-020-00059-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
111 Tseng CP, Silberg JJ, Bennett GN, Verduzco R. 100th Anniversary of Macromolecular Science Viewpoint: Soft Materials for Microbial Bioelectronics. ACS Macro Lett 2020;9:1590-603. [PMID: 35617074 DOI: 10.1021/acsmacrolett.0c00573] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
112 Ko G, Han SD, Kim J, Zhu J, Han WB, Chung J, Yang SM, Cheng H, Kim D, Kang C, Hwang S. Biodegradable, flexible silicon nanomembrane-based NOx gas sensor system with record-high performance for transient environmental monitors and medical implants. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-020-00253-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
113 Ransom SC, Shahrestani S, Lien BV, Tafreshi AR, Brown NJ, Hanst B, Lehrich BM, Ransom RC, Sahyouni R. Translational Approaches to Electrical Stimulation for Peripheral Nerve Regeneration. Neurorehabil Neural Repair 2020;34:979-85. [PMID: 33043791 DOI: 10.1177/1545968320962508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
114 Choi JS, Lee HJ, Rajaraman S, Kim DH. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosens Bioelectron 2021;171:112687. [PMID: 33059168 DOI: 10.1016/j.bios.2020.112687] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
115 Yao K, Liu Y, Li D, He J, Li J, Lam RH, Xie Z, Wang L, Yu X. Mechanics designs-performance relationships in epidermal triboelectric nanogenerators. Nano Energy 2020;76:105017. [DOI: 10.1016/j.nanoen.2020.105017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
116 Kazemzadeh Farizhandi AA, Khalajabadi SZ, Krishnadoss V, Noshadi I. Synthesized biocompatible and conductive ink for 3D printing of flexible electronics. Journal of the Mechanical Behavior of Biomedical Materials 2020;110:103960. [DOI: 10.1016/j.jmbbm.2020.103960] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
117 Lee G, Choi YS, Yoon H, Rogers JA. Advances in Physicochemically Stimuli-Responsive Materials for On-Demand Transient Electronic Systems. Matter 2020;3:1031-52. [DOI: 10.1016/j.matt.2020.08.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
118 Deng J, Yuk H, Wu J, Varela CE, Chen X, Roche ET, Guo CF, Zhao X. Electrical bioadhesive interface for bioelectronics. Nat Mater 2021;20:229-36. [DOI: 10.1038/s41563-020-00814-2] [Cited by in Crossref: 41] [Cited by in F6Publishing: 126] [Article Influence: 20.5] [Reference Citation Analysis]
119 Kim CC, Kim Y, Jeong SH, Oh KH, Nam KT, Sun JY. An Implantable Ionic Wireless Power Transfer System Facilitating Electrosynthesis. ACS Nano 2020;14:11743-52. [PMID: 32865969 DOI: 10.1021/acsnano.0c04464] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
120 Lee GH, Lee GS, Byun J, Yang JC, Jang C, Kim S, Kim H, Park JK, Lee HJ, Yook JG, Kim SO, Park S. Deep-Learning-Based Deconvolution of Mechanical Stimuli with Ti3C2Tx MXene Electromagnetic Shield Architecture via Dual-Mode Wireless Signal Variation Mechanism. ACS Nano 2020;14:11962-72. [PMID: 32813495 DOI: 10.1021/acsnano.0c05105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
121 Zhu M, He T, Lee C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews 2020;7:031305. [DOI: 10.1063/5.0016485] [Cited by in Crossref: 45] [Cited by in F6Publishing: 57] [Article Influence: 22.5] [Reference Citation Analysis]
122 Singh R, Bathaei MJ, Istif E, Beker L. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Adv Healthc Mater 2020;9:e2000790. [PMID: 32790033 DOI: 10.1002/adhm.202000790] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
123 Koo J, Kim SB, Choi YS, Xie Z, Bandodkar AJ, Khalifeh J, Yan Y, Kim H, Pezhouh MK, Doty K, Lee G, Chen YY, Lee SM, D'Andrea D, Jung K, Lee K, Li K, Jo S, Wang H, Kim JH, Kim J, Choi SG, Jang WJ, Oh YS, Park I, Kwak SS, Park JH, Hong D, Feng X, Lee CH, Banks A, Leal C, Lee HM, Huang Y, Franz CK, Ray WZ, MacEwan M, Kang SK, Rogers JA. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci Adv 2020;6:eabb1093. [PMID: 32923633 DOI: 10.1126/sciadv.abb1093] [Cited by in Crossref: 19] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
124 Song KI, Seo H, Seong D, Kim S, Yu KJ, Kim YC, Kim J, Kwon SJ, Han HS, Youn I, Lee H, Son D. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat Commun 2020;11:4195. [PMID: 32826916 DOI: 10.1038/s41467-020-18025-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
125 Chen X, Xie X, Liu Y, Zhao C, Wen M, Wen Z. Advances in Healthcare Electronics Enabled by Triboelectric Nanogenerators. Adv Funct Mater 2020;30:2004673. [DOI: 10.1002/adfm.202004673] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 22.0] [Reference Citation Analysis]
126 Lee T, Kim S, Kim J, Park SC, Yoon J, Park C, Sohn H, Ahn JH, Min J. Recent Advances in Biomolecule-Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials (Basel) 2020;13:E3520. [PMID: 32784985 DOI: 10.3390/ma13163520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
127 Lu D, Yan Y, Deng Y, Yang Q, Zhao J, Seo M, Bai W, Macewan MR, Huang Y, Ray WZ, Rogers JA. Bioresorbable Wireless Sensors as Temporary Implants for In Vivo Measurements of Pressure. Adv Funct Mater 2020;30:2003754. [DOI: 10.1002/adfm.202003754] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
128 Lu D, Yan Y, Avila R, Kandela I, Stepien I, Seo MH, Bai W, Yang Q, Li C, Haney CR, Waters EA, MacEwan MR, Huang Y, Ray WZ, Rogers JA. Bioresorbable, Wireless, Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature. Adv Healthc Mater 2020;9:e2000942. [PMID: 32597568 DOI: 10.1002/adhm.202000942] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
129 Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, Wang L. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS Appl Mater Interfaces 2020;12:36860-72. [PMID: 32649170 DOI: 10.1021/acsami.0c08457] [Cited by in Crossref: 6] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
130 Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020;49:7978-8035. [PMID: 32672777 DOI: 10.1039/d0cs00333f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
131 Zuo KJ, Gordon T, Chan KM, Borschel GH. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp Neurol 2020;332:113397. [PMID: 32628968 DOI: 10.1016/j.expneurol.2020.113397] [Cited by in Crossref: 9] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
132 Palmroth A, Salpavaara T, Vuoristo P, Karjalainen S, Kääriäinen T, Miettinen S, Massera J, Lekkala J, Kellomäki M. Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS Appl Mater Interfaces 2020;12:31148-61. [PMID: 32568505 DOI: 10.1021/acsami.0c07278] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
133 Li R, Qi H, Ma Y, Deng Y, Liu S, Jie Y, Jing J, He J, Zhang X, Wheatley L, Huang C, Sheng X, Zhang M, Yin L. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat Commun 2020;11:3207. [PMID: 32587309 DOI: 10.1038/s41467-020-17008-8] [Cited by in Crossref: 28] [Cited by in F6Publishing: 62] [Article Influence: 14.0] [Reference Citation Analysis]
134 Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Appl Mater Interfaces 2020;12:34337-61. [DOI: 10.1021/acsami.0c07614] [Cited by in Crossref: 14] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
135 Choi YS, Koo J, Lee YJ, Lee G, Avila R, Ying H, Reeder J, Hambitzer L, Im K, Kim J, Lee K, Cheng J, Huang Y, Kang S, Rogers JA. Biodegradable Polyanhydrides as Encapsulation Layers for Transient Electronics. Adv Funct Mater 2020;30:2000941. [DOI: 10.1002/adfm.202000941] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
136 Yao G, Yin C, Wang Q, Zhang T, Chen S, Lu C, Zhao K, Xu W, Pan T, Gao M, Lin Y. Flexible bioelectronics for physiological signals sensing and disease treatment. Journal of Materiomics 2020;6:397-413. [DOI: 10.1016/j.jmat.2019.12.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
137 Ju C, Park E, Kim T, Kim T, Kang M, Lee KS, Park SM. Effectiveness of electrical stimulation on nerve regeneration after crush injury: Comparison between invasive and non-invasive stimulation. PLoS One 2020;15:e0233531. [PMID: 32453807 DOI: 10.1371/journal.pone.0233531] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
138 Morris AH, Orbach SM, Bushnell GG, Oakes RS, Jeruss JS, Shea LD. Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Res 2020;80:3786-94. [PMID: 32409307 DOI: 10.1158/0008-5472.CAN-20-0079] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
139 Petty AJ, Keate RL, Jiang B, Ameer GA, Rivnay J. Conducting Polymers for Tissue Regeneration in Vivo. Chem Mater 2020;32:4095-115. [DOI: 10.1021/acs.chemmater.0c00767] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
140 Li J, Liang JY, Laken SJ, Langer R, Traverso G. Clinical Opportunities for Continuous Biosensing and Closed-Loop Therapies. Trends in Chemistry 2020;2:319-40. [DOI: 10.1016/j.trechm.2020.02.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
141 Won SM, Song E, Reeder JT, Rogers JA. Emerging Modalities and Implantable Technologies for Neuromodulation. Cell 2020;181:115-35. [DOI: 10.1016/j.cell.2020.02.054] [Cited by in Crossref: 39] [Cited by in F6Publishing: 63] [Article Influence: 19.5] [Reference Citation Analysis]
142 Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil 2020;17:43. [PMID: 32151268 DOI: 10.1186/s12984-020-00667-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 6.5] [Reference Citation Analysis]
143 Yang Q, Lee S, Xue Y, Yan Y, Liu T, Kang S, Lee YJ, Lee SH, Seo M, Lu D, Koo J, Macewan MR, Yin RT, Ray WZ, Huang Y, Rogers JA. Materials, Mechanics Designs, and Bioresorbable Multisensor Platforms for Pressure Monitoring in the Intracranial Space. Adv Funct Mater 2020;30:1910718. [DOI: 10.1002/adfm.201910718] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 14.5] [Reference Citation Analysis]
144 Liao J, Zou Y, Jiang D, Liu Z, Qu X, Li Z, Liu R, Fan Y, Shi B, Li Z, Zheng L. Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting. Nano Energy 2020;69:104417. [DOI: 10.1016/j.nanoen.2019.104417] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
145 Koo J, Lee C, Chu CR, Kang S, Lee HM. Integration of Ultrathin Silicon and Metal Nanowires for High‐Performance Transparent Electronics. Adv Mater Technol 2020;5:1900962. [DOI: 10.1002/admt.201900962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
146 Choi Y, Koo J, Rogers JA. Inorganic materials for transient electronics in biomedical applications. MRS Bull 2020;45:103-12. [DOI: 10.1557/mrs.2020.25] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
147 Kang S, Yin L, Bettinger C. The emergence of transient electronic devices. MRS Bull 2020;45:87-95. [DOI: 10.1557/mrs.2020.19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
148 Li J, Long Y, Yang F, Wang X. Degradable Piezoelectric Biomaterials for Wearable and Implantable Bioelectronics. Curr Opin Solid State Mater Sci 2020;24:100806. [PMID: 32313430 DOI: 10.1016/j.cossms.2020.100806] [Cited by in Crossref: 16] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
149 La Mattina AA, Mariani S, Barillaro G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. Adv Sci (Weinh) 2020;7:1902872. [PMID: 32099766 DOI: 10.1002/advs.201902872] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 18.5] [Reference Citation Analysis]
150 Zhao S, Mehta AS, Zhao M. Biomedical applications of electrical stimulation. Cell Mol Life Sci 2020;77:2681-99. [PMID: 31974658 DOI: 10.1007/s00018-019-03446-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
151 Feiner R, Dvir T. Engineering Smart Hybrid Tissues with Built-In Electronics. iScience 2020;23:100833. [PMID: 31982781 DOI: 10.1016/j.isci.2020.100833] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
152 Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 2020;5:149-65. [PMID: 32728478 DOI: 10.1038/s41578-019-0167-3] [Cited by in Crossref: 107] [Cited by in F6Publishing: 191] [Article Influence: 53.5] [Reference Citation Analysis]
153 Yao K, Yao J, Hai Z, Li D, Xie Z, Yu X; Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China. . Acta Phys Sin 2020;69:178701. [DOI: 10.7498/aps.69.20200664] [Reference Citation Analysis]
154 Liu H, Li M, Liu S, Jia P, Guo X, Feng S, Lu TJ, Yang H, Li F, Xu F. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics. Mater Horiz 2020;7:203-13. [DOI: 10.1039/c9mh01211g] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 13.5] [Reference Citation Analysis]
155 Liu Z, Zhang Y, Yang T, Liu Y, Zhou W, Wang Z, Liu Y, Kong T. Soft ionic devices by perfusable all-hydrogel microfluidics. J Mater Chem C 2020;8:2320-5. [DOI: 10.1039/c9tc05639d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
156 Pei F, Tian B. Nanoelectronics for Minimally Invasive Cellular Recordings. Adv Funct Mater 2020;30:1906210. [DOI: 10.1002/adfm.201906210] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
157 Senger JB, Chan KM, Webber CA. Conditioning electrical stimulation is superior to postoperative electrical stimulation, resulting in enhanced nerve regeneration and functional recovery. Exp Neurol 2020;325:113147. [PMID: 31837321 DOI: 10.1016/j.expneurol.2019.113147] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
158 Chen X, Villa NS, Zhuang Y, Chen L, Wang T, Li Z, Kong T. Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Adv Energy Mater 2020;10:1902769. [DOI: 10.1002/aenm.201902769] [Cited by in Crossref: 43] [Cited by in F6Publishing: 52] [Article Influence: 14.3] [Reference Citation Analysis]
159 Wang H, Sun P, Yin L, Sheng X. 3D electronic and photonic structures as active biological interfaces. InfoMat 2020;2:527-52. [DOI: 10.1002/inf2.12054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
160 Li C, Guo C, Fitzpatrick V, Ibrahim A, Zwierstra MJ, Hanna P, Lechtig A, Nazarian A, Lin SJ, Kaplan DL. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater 2020;5:61-81. [DOI: 10.1038/s41578-019-0150-z] [Cited by in Crossref: 102] [Cited by in F6Publishing: 134] [Article Influence: 34.0] [Reference Citation Analysis]
161 Gao D, Parida K, Lee PS. Emerging Soft Conductors for Bioelectronic Interfaces. Adv Funct Mater 2020;30:1907184. [DOI: 10.1002/adfm.201907184] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 12.7] [Reference Citation Analysis]
162 Tran H, Feig VR, Liu K, Wu HC, Chen R, Xu J, Deisseroth K, Bao Z. Stretchable and Fully Degradable Semiconductors for Transient Electronics. ACS Cent Sci 2019;5:1884-91. [PMID: 31807690 DOI: 10.1021/acscentsci.9b00850] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 14.0] [Reference Citation Analysis]
163 Song Y, Min J, Gao W. Wearable and Implantable Electronics: Moving toward Precision Therapy. ACS Nano 2019;13:12280-6. [PMID: 31725255 DOI: 10.1021/acsnano.9b08323] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 26.3] [Reference Citation Analysis]
164 Lee J, Cho HR, Cha GD, Seo H, Lee S, Park CK, Kim JW, Qiao S, Wang L, Kang D, Kang T, Ichikawa T, Kim J, Lee H, Lee W, Kim S, Lee ST, Lu N, Hyeon T, Choi SH, Kim DH. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat Commun 2019;10:5205. [PMID: 31729383 DOI: 10.1038/s41467-019-13198-y] [Cited by in Crossref: 55] [Cited by in F6Publishing: 84] [Article Influence: 18.3] [Reference Citation Analysis]
165 Wang J, He T, Lee C. Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 2019;65:104039. [DOI: 10.1016/j.nanoen.2019.104039] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 16.3] [Reference Citation Analysis]
166 Zuo KJ, Shafa G, Antonyshyn K, Chan K, Gordon T, Borschel GH. A single session of brief electrical stimulation enhances axon regeneration through nerve autografts. Exp Neurol 2020;323:113074. [PMID: 31655047 DOI: 10.1016/j.expneurol.2019.113074] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
167 Chatterjee S, Saxena M, Padmanabhan D, Jayachandra M, Pandya HJ. Futuristic medical implants using bioresorbable materials and devices. Biosensors and Bioelectronics 2019;142:111489. [DOI: 10.1016/j.bios.2019.111489] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
168 Zhang X, Weber CM, Bellan LM. Thermoresponsive Transient Radio Frequency Antennas: Toward Triggered Wireless Transient Circuits. Adv Mater Technol 2019;4:1900528. [DOI: 10.1002/admt.201900528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
169 Huang X, Wang L, Wang H, Zhang B, Wang X, Stening RYZ, Sheng X, Yin L. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics. Small 2020;16:e1902827. [PMID: 31513333 DOI: 10.1002/smll.201902827] [Cited by in Crossref: 25] [Cited by in F6Publishing: 37] [Article Influence: 8.3] [Reference Citation Analysis]
170 Guo Q, Koo J, Xie Z, Avila R, Yu X, Ning X, Zhang H, Liang X, Kim SB, Yan Y, Macewan MR, Lee HM, Song A, Di Z, Huang Y, Mei Y, Rogers JA. A Bioresorbable Magnetically Coupled System for Low‐Frequency Wireless Power Transfer. Adv Funct Mater 2019;29:1905451. [DOI: 10.1002/adfm.201905451] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 11.3] [Reference Citation Analysis]
171 Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019;95:91-111. [PMID: 31004844 DOI: 10.1016/j.actbio.2019.04.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
172 Houshyar S, Bhattacharyya A, Shanks R. Peripheral Nerve Conduit: Materials and Structures. ACS Chem Neurosci 2019;10:3349-65. [PMID: 31273975 DOI: 10.1021/acschemneuro.9b00203] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 17.0] [Reference Citation Analysis]
173 Rüegg M, Blum R, Boero G, Brugger J. Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants. Adv Funct Mater 2019;29:1903051. [DOI: 10.1002/adfm.201903051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
174 Park S, Liu CY, Ward PJ, Jaiswal PB, English AW. Effects of Repeated 20-Hz Electrical Stimulation on Functional Recovery Following Peripheral Nerve Injury. Neurorehabil Neural Repair 2019;33:775-84. [PMID: 31328654 DOI: 10.1177/1545968319862563] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
175 Wang J, Wang H, He T, He B, Thakor NV, Lee C. Investigation of Low-Current Direct Stimulation for Rehabilitation Treatment Related to Muscle Function Loss Using Self-Powered TENG System. Adv Sci (Weinh) 2019;6:1900149. [PMID: 31380204 DOI: 10.1002/advs.201900149] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 18.3] [Reference Citation Analysis]
176 Acarón Ledesma H, Li X, Carvalho-de-Souza JL, Wei W, Bezanilla F, Tian B. An atlas of nano-enabled neural interfaces. Nat Nanotechnol 2019;14:645-57. [PMID: 31270446 DOI: 10.1038/s41565-019-0487-x] [Cited by in Crossref: 46] [Cited by in F6Publishing: 61] [Article Influence: 15.3] [Reference Citation Analysis]
177 Oh JY, Bao Z. Second Skin Enabled by Advanced Electronics. Adv Sci (Weinh) 2019;6:1900186. [PMID: 31179225 DOI: 10.1002/advs.201900186] [Cited by in Crossref: 102] [Cited by in F6Publishing: 97] [Article Influence: 34.0] [Reference Citation Analysis]
178 Cha GD, Kang D, Lee J, Kim DH. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Adv Healthc Mater 2019;8:e1801660. [PMID: 30957984 DOI: 10.1002/adhm.201801660] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 19.0] [Reference Citation Analysis]
179 Hernandez-reynoso AG, Nandam S, O’brien JM, Kanneganti A, Cogan SF, Freeman DK, Romero-ortega MI. Miniature electroparticle-cuff for wireless peripheral neuromodulation. J Neural Eng 2019;16:046002. [DOI: 10.1088/1741-2552/ab1c36] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
180 Rogers JA. Materials for biointegrated electronic and microfluidic systems. MRS Bull 2019;44:195-202. [DOI: 10.1557/mrs.2019.46] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Gao Y, Mohammadifar M, Choi S. From Microbial Fuel Cells to Biobatteries: Moving toward On‐Demand Micropower Generation for Small‐Scale Single‐Use Applications. Adv Mater Technol 2019;4:1900079. [DOI: 10.1002/admt.201900079] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
182 Russell C, Roche AD, Chakrabarty S. Peripheral nerve bionic interface: a review of electrodes. Int J Intell Robot Appl 2019;3:11-8. [DOI: 10.1007/s41315-019-00086-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
183 Teng L, Zhu L, Handschuh-wang S, Zhou X. Robust, multiscale liquid-metal patterning enabled by a sacrificial sealing layer for flexible and wearable wireless powering. J Mater Chem C 2019;7:15243-51. [DOI: 10.1039/c9tc04876f] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
184 Lewis S. Boosting regeneration. Nat Rev Neurosci 2018;19:713. [PMID: 30348965 DOI: 10.1038/s41583-018-0083-3] [Reference Citation Analysis]