BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: He J, Lu C, Jiang H, Han F, Shi X, Wu J, Wang L, Chen T, Wang J, Zhang Y, Yang H, Zhang G, Sun X, Wang B, Chen P, Wang Y, Xia Y, Peng H. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021;597:57-63. [PMID: 34471277 DOI: 10.1038/s41586-021-03772-0] [Cited by in Crossref: 77] [Cited by in F6Publishing: 93] [Article Influence: 77.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu B, Wei W, Guo Y, Hou Yip W, Kang Tay B, Hou C, Zhang Q, Li Y, Wang H. Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application. Chemical Engineering Journal 2023;453:139749. [DOI: 10.1016/j.cej.2022.139749] [Reference Citation Analysis]
2 Xiong Y, Yan X, Li T, Jin H, Chen Z, Xu X, Ji X, Ge X. Micro-tabless-pouch-cell (MTPC) with high energy density and exposed functional current collector for flexible device. Chemical Engineering Journal 2023;451:138913. [DOI: 10.1016/j.cej.2022.138913] [Reference Citation Analysis]
3 Li X, Li Y, Zhao X, Kang F, Dong L. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Materials 2022;53:505-13. [DOI: 10.1016/j.ensm.2022.09.023] [Reference Citation Analysis]
4 Wang S, Cheng T, Zhang YZ, Wu X, Xiao S, Lai W. Deformable lithium-ion batteries for wearable and implantable electronics. Applied Physics Reviews 2022;9:041310. [DOI: 10.1063/5.0117252] [Reference Citation Analysis]
5 Xiao X, Yin J, Shen S, Che Z, Wan X, Wang S, Chen J. Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science 2022;26:101042. [DOI: 10.1016/j.cossms.2022.101042] [Reference Citation Analysis]
6 He X, Gu J, Hao Y, Zheng M, Wang L, Yu J, Qin X. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal 2022;450:137937. [DOI: 10.1016/j.cej.2022.137937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Li W, Song Z, Kong H, Chen M, Liu S, Bao Y, Ma Y, Sun Z, Liu Z, Wang W, Niu L. An integrated wearable self-powered platform for real-time and continuous temperature monitoring. Nano Energy 2022;104:107935. [DOI: 10.1016/j.nanoen.2022.107935] [Reference Citation Analysis]
8 Yang L, Zhang L, Sun D. Harvesting Electricity from Atmospheric Moisture by Engineering an Organic Acid Gradient in Paper. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c12777] [Reference Citation Analysis]
9 Xu Q, Geng S, Yuan B, Liao M, Ye L, Zhao X, Wang Y, Zhang X, Wang S, Qu Z, Miao H, Yang Z, Gao Y, Wang B, Zhou Y, Peng H, Sun H. A Low‐Cost and Recyclable Mg/SOCl 2 Primary Battery Via Synergistic Solvation and Kinetics Regulation. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202210343] [Reference Citation Analysis]
10 Feng W, Wen X, Wang Y, Song L, Li X, Du R, Yang J, Li H, He J, Shi J. Interfacial Coupling SnSe 2 /SnSe Heterostructures as Long Cyclic Anodes of Lithium‐Ion Battery. Advanced Science 2022. [DOI: 10.1002/advs.202204671] [Reference Citation Analysis]
11 Wang C, Liu H, Liang Y, Li D, Zhao X, Chen J, Huang W, Gao L, Fan L. Molecular‐level Designed Polymer Electrolyte for High‐Voltage Lithium–Metal Solid‐State Batteries. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209828] [Reference Citation Analysis]
12 Dong C, Leber A, Yan D, Banerjee H, Laperrousaz S, Das Gupta T, Shadman S, Reis PM, Sorin F. 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci Adv 2022;8. [DOI: 10.1126/sciadv.abo0869] [Reference Citation Analysis]
13 Li M, Li Z, Ye X, He W, Qu L, Tian M. A Smart Self‐Powered Rope for Water/Fire Rescue. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202210111] [Reference Citation Analysis]
14 Huang T, Wang G, Shahbazi M, Bai Y, Zhang J, Feng G, Asadian E, Ghorbani‐bidkorpeh F, Yang Z, Li Y, Huo Q, Liu Y, Liu D. Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202210627] [Reference Citation Analysis]
15 Zuo L, Lu D, Yang T, Yue D, Li W, Ma Q, Chen Y, Zheng C, Wu X. Recent achievements of free‐standing material and interface optimization in high‐energy‐density flexible lithium batteries. Carbon Neutralization 2022. [DOI: 10.1002/cnl2.33] [Reference Citation Analysis]
16 Wu P, Zheng Z, Shi B, Liu C, Chen S, Xu B, Liu A. SiOC Phase Control and Carbon Nanoribbon Growth by Introducing Oxygen at Atom Level for Lithium‐Ion Batteries. Small Methods 2022. [DOI: 10.1002/smtd.202201299] [Reference Citation Analysis]
17 Deng T, Chen Y, Liu Y, Shang Z, Gong J. Constructing Janus Microsphere Membranes for Particulate Matter Filtration, Directional Water Vapor Transfer, and High‐Efficiency Broad‐Spectrum Sterilization. Small 2022. [DOI: 10.1002/smll.202205010] [Reference Citation Analysis]
18 Wei X, Zhang W, Fan X. Nonprinted IC Textiles for Wearable Electronics. Acc Mater Res 2022. [DOI: 10.1021/accountsmr.2c00150] [Reference Citation Analysis]
19 Chen G, Shen S, Tat T, Zhao X, Zhou Y, Fang Y, Chen J. Wearable respiratory sensors for COVID‐19 monitoring. VIEW 2022;3:20220024. [DOI: 10.1002/viw.20220024] [Reference Citation Analysis]
20 Chen M, Liu J, Li P, Gharavi H, Hao Y, Ouyang J, Hu J, Hu L, Hou C, Humar I, Wei L, Yang G, Tao G. Fabric computing: Concepts, opportunities, and challenges. The Innovation 2022;3:100340. [DOI: 10.1016/j.xinn.2022.100340] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Miao J, Fan T. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon 2022. [DOI: 10.1016/j.carbon.2022.11.018] [Reference Citation Analysis]
22 Mu H, Zhang Z, Lian C, Tian X, Wang G. Integrated Construction Improving Electrochemical Performance of Stretchable Supercapacitors Based on Ant-Nest Amphiphilic Gel Electrolytes. Small 2022;:e2204357. [PMID: 36269875 DOI: 10.1002/smll.202204357] [Reference Citation Analysis]
23 Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. Adv Sci (Weinh) 2022;:e2203808. [PMID: 36253094 DOI: 10.1002/advs.202203808] [Reference Citation Analysis]
24 Chou Y, Liu Y, Zeng Y, Yen S. Radiation protection evaluation and spontaneous discharge performance of betavoltaic tritium batteries using well-aligned titanium dioxide nanotube arrays. Radiation Effects and Defects in Solids. [DOI: 10.1080/10420150.2022.2133715] [Reference Citation Analysis]
25 Wang S, Ma Z, Zhao W, Zhang W, Li C, Yang S, Liu J, Guo Z, Zhao H, Ren L. Temperature-Shift-Induced Mechanical Property Evolution of Lithium-Ion Battery Separator Using Cyclic Nanoindentation. ACS Appl Mater Interfaces 2022. [PMID: 36223313 DOI: 10.1021/acsami.2c11680] [Reference Citation Analysis]
26 Zhu D, Zhang Z, Chen M, Li P, Xiang Y, Ouyang J, Huang Z, Liu X, Wang F, Yang M, Zeng H, Hong P, Wei L, Hou C, Tao G. A Perspective on Rhythmic Gymnastics Performance Analysis Powered by Intelligent Fabric. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00197-w] [Reference Citation Analysis]
27 Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. Adv Sci (Weinh) 2022;:e2203856. [PMID: 36192164 DOI: 10.1002/advs.202203856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ye L, Cheng X, Liao M, Zhao T, Huang X, Kang X, Zhang K, Sun X, Wang B, Peng H. Deformation-tolerant metal anodes for flexible sodium–air fiber batteries. eScience 2022. [DOI: 10.1016/j.esci.2022.10.001] [Reference Citation Analysis]
29 Gao L, Liu Y, Hao Y, Zheng Z, Kong S, Zhang L, Yang X. Self supported selenium doped Fe2P hierarchical microsphere arrays enabling high performance sodium ion batteries. Journal of Alloys and Compounds 2022;918:165647. [DOI: 10.1016/j.jallcom.2022.165647] [Reference Citation Analysis]
30 Zhang Y, Wang J, Alfred M, Lv P, Huang F, Cai Y, Qiao H, Wei Q. Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Materials 2022;51:181-211. [DOI: 10.1016/j.ensm.2022.06.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Du X, Zhang K. Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy 2022;101:107600. [DOI: 10.1016/j.nanoen.2022.107600] [Reference Citation Analysis]
32 Ruan H, Zhang L, Li S, Li L, Huang Y, Gao S, Tian Y, Guo S. Spatially Confined Silicon Nanoparticles Anchored in Porous Carbon as Lithium-Ion-Battery Anode Materials. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03196] [Reference Citation Analysis]
33 Xu H, Lu J, Li Y, Fang R, Zhang W, Xu X, Wang Y, Liu Q, Shang D. Improvement of weight stability in Li-ion-based electrolyte-gated transistor synapse by silica protective process. Appl Phys Lett 2022;121:113505. [DOI: 10.1063/5.0107556] [Reference Citation Analysis]
34 Deng L, Wei T, Liu J, Zhan L, Chen W, Cao J. Recent Developments of Carbon-Based Anode Materials for Flexible Lithium-Ion Batteries. Crystals 2022;12:1279. [DOI: 10.3390/cryst12091279] [Reference Citation Analysis]
35 Dong J, Peng Y, Pu L, Chang K, Li L, Zhang C, Ma P, Huang Y, Liu T. Perspiration-Wicking and Luminescent On-Skin Electronics Based on Ultrastretchable Janus E-Textiles. Nano Lett 2022. [PMID: 36083829 DOI: 10.1021/acs.nanolett.2c02647] [Reference Citation Analysis]
36 He Y, Jing L, Ji Y, Zhu Z, Feng L, Fu X, Wang Y. Revisiting the electrode manufacturing: A look into electrode rheology and active material microenvironment. Journal of Energy Chemistry 2022;72:41-55. [DOI: 10.1016/j.jechem.2022.04.038] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Li Y, Wang Y, Zhang H, Zhao P, Chen L, Ma J, Chen X, Lin Z, Qiu J, Cao G. Recent progress of fiber-shaped batteries towards wearable application. J Cent South Univ 2022;29:2837-2856. [DOI: 10.1007/s11771-022-5131-5] [Reference Citation Analysis]
38 Shveda RA, Rajappan A, Yap TF, Liu Z, Bell MD, Jumet B, Sanchez V, Preston DJ. A wearable textile-based pneumatic energy harvesting system for assistive robotics. Sci Adv 2022;8:eabo2418. [PMID: 36001663 DOI: 10.1126/sciadv.abo2418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy‐Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202204960] [Reference Citation Analysis]
40 Man Z, Zhu X, Ye S, Wu G, Bao N. Recent Advances and Future Perspectives of Fiber-Shaped Batteries. Energy Fuels. [DOI: 10.1021/acs.energyfuels.2c01835] [Reference Citation Analysis]
41 Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2022. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Reference Citation Analysis]
42 Tat T, Chen G, Zhao X, Zhou Y, Xu J, Chen J. Smart Textiles for Healthcare and Sustainability. ACS Nano 2022. [PMID: 35969207 DOI: 10.1021/acsnano.2c06287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Yang Y, Cui T, Li D, Ji S, Chen Z, Shao W, Liu H, Ren TL. Breathable Electronic Skins for Daily Physiological Signal Monitoring. Nanomicro Lett 2022;14:161. [PMID: 35943631 DOI: 10.1007/s40820-022-00911-8] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
44 Wang J, Ye T, Li Y, Wang L, Li L, Li F, He E, Zhang Y. Ultrasoft all-hydrogel aqueous lithium-ion battery with a coaxial fiber structure. Polym J. [DOI: 10.1038/s41428-022-00688-y] [Reference Citation Analysis]
45 Gong W, Guo Y, Yang W, Wu Z, Xing R, Liu J, Wei W, Zhou J, Guo Y, Li K, Hou C, Li Y, Zhang Q, Dickey MD, Wang H. Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management. ACS Nano 2022. [PMID: 35930746 DOI: 10.1021/acsnano.2c04252] [Reference Citation Analysis]
46 Zhu W, Shi C, Zhao J, Wang Y, Hu Y. Structure and electrochemical performance of MoS2 based on different molybdenum-sulfur mole ratios. Journal of Physics and Chemistry of Solids 2022;167:110749. [DOI: 10.1016/j.jpcs.2022.110749] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Dai H, Zhao Y, Zhang Z, Yang J, Liu S, Zhou J, Sun G. Ostwald ripening and sulfur escaping enabled chrysanthemum-like architectures composed of NiS2/NiS@C heterostructured petals with enhanced charge storage capacity and rate capability. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116671] [Reference Citation Analysis]
48 Zhai S, Chen Y. Graphene-Based Fiber Supercapacitors. Acc Mater Res . [DOI: 10.1021/accountsmr.2c00087] [Reference Citation Analysis]
49 Lu J, Zhang L, Xing C, Jia G, Lu Z, Tian Q, Zhang S, Lv J. Polypyrrole and cotton fabric‐based flexible micro‐supercapacitors. J of Applied Polymer Sci. [DOI: 10.1002/app.52801] [Reference Citation Analysis]
50 Chen M, Li P, Wang R, Xiang Y, Huang Z, Yu Q, He M, Liu J, Wang J, Su M, Zhang M, Jian A, Ouyang J, Zhang C, Li J, Dong M, Zeng S, Wu J, Hong P, Hou C, Zhou N, Zhang D, Zhou H, Tao G. Multifunctional Fiber-Enabled Intelligent Health Agents. Adv Mater 2022;:e2200985. [PMID: 35820163 DOI: 10.1002/adma.202200985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Wang F, Zhao S, Jiang Q, Li R, Zhao Y, Huang Y, Wu X, Wang B, Zhang R. Advanced functional carbon nanotube fibers from preparation to application. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100989] [Reference Citation Analysis]
52 Wei L, Liu S, Balaish M, Li Z, Zhou X, Rupp JL, Guo X. Customizable solid-state batteries toward shape-conformal and structural power supplies. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.06.007] [Reference Citation Analysis]
53 Dai J, Qin H, Dong WX, Cong HP, Yu SH. Autonomous Self-Healing of Highly Stretchable Supercapacitors at All Climates. Nano Lett 2022. [PMID: 35748657 DOI: 10.1021/acs.nanolett.2c01635] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Li Q, Wang D, Yan B, Zhao Y, Fan J, Zhi C. Dendrite Issues for Zinc Anodes in a Flexible Cell Configuration for Zinc-Based Wearable Energy-Storage Devices. Angew Chem Int Ed Engl 2022;61:e202202780. [PMID: 35347828 DOI: 10.1002/anie.202202780] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
55 Ding C, Wang J, Yuan W, Zhou X, Lin Y, Zhu G, Li J, Zhong T, Su W, Cui Z. Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS Appl Mater Interfaces 2022. [PMID: 35723443 DOI: 10.1021/acsami.2c03807] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Yang P, Wei G, Liu A, Huo F, Zhang Z. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00165-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Li H, Wang H, Chan D, Xu Z, Wang K, Ge M, Zhang Y, Chen S, Tang Y. Nature‐inspired materials and designs for flexible lithium‐ion batteries. Carbon Energy. [DOI: 10.1002/cey2.187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Liu R, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater. [DOI: 10.1038/s41578-022-00441-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
59 Xiong T, He B, Zhou T, Wang Z, Wang Z, Xin J, Zhang H, Zhou X, Liu Y, Wei L. Stretchable fiber‐shaped aqueous aluminum ion batteries. EcoMat. [DOI: 10.1002/eom2.12218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Liu J, Wang M, Gu C, Li J, Liang Y, Wang H, Cui Y, Liu CS. Supramolecular Gel-Derived Highly Efficient Bifunctional Catalysts for Omnidirectionally Stretchable Zn-Air Batteries with Extreme Environmental Adaptability. Adv Sci (Weinh) 2022;:e2200753. [PMID: 35522020 DOI: 10.1002/advs.202200753] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Wan J, Hu R, Li J, Mi S, Xian J, Xiao Z, Liu Z, Mei A, Xu S, Fan M, Jiang H, Zhang Q, Liu H, Xu W. A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor. Carbohydrate Polymers 2022;284:119230. [DOI: 10.1016/j.carbpol.2022.119230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Du K, Lin R, Yin L, Ho JS, Wang J, Lim CT. Electronic textiles for energy, sensing, and communication. iScience 2022;25:104174. [DOI: 10.1016/j.isci.2022.104174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Lin J, Hu H, Luo J, Miao L, Yang Z, Chen M, Zhang M, Ou JZ. Micro/Nanoarrays and Their Applications in Flexible Sensors: A Review. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
64 Hu J, Wei H, Wu Q, Zhao X, Chen K, Sun J, Cui Z, Wang C. Preparation and characterization of luminescent polyimide/glass composite fiber. Journal of Materials Research and Technology 2022;18:4329-4339. [DOI: 10.1016/j.jmrt.2022.04.101] [Reference Citation Analysis]
65 Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. Adv Mater 2022;34:e2109355. [PMID: 35083786 DOI: 10.1002/adma.202109355] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 26.0] [Reference Citation Analysis]
66 Li N, Yang S, Chen H, Jiao S, Song W. Mechano-electrochemical perspectives on flexible lithium-ion batteries. Int J Miner Metall Mater 2022;29:1019-36. [DOI: 10.1007/s12613-022-2486-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Liu Y, Zhou X, Yan H, Zhu Z, Shi X, Peng Y, Chen L, Chen P, Peng H. Robust Memristive Fiber for Woven Textile Memristor. Adv Funct Materials. [DOI: 10.1002/adfm.202201510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Yan C, Wang Y, Deng X, Xu Y. Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect. Nanomicro Lett 2022;14:98. [PMID: 35394219 DOI: 10.1007/s40820-022-00836-2] [Reference Citation Analysis]
69 Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5:142-56. [DOI: 10.1038/s41928-022-00723-z] [Cited by in Crossref: 51] [Cited by in F6Publishing: 65] [Article Influence: 51.0] [Reference Citation Analysis]
70 He N, Song J, Liao J, Zhao F, Gao W. Separator threads in yarn-shaped supercapacitors to avoid short-circuiting upon length. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00150-2] [Reference Citation Analysis]
71 Wang L, Lu J, Li Q, Li L, He E, Jiao Y, Ye T, Zhang Y. A Core–Sheath Sensing Yarn‐Based Electrochemical Fabric System for Powerful Sweat Capture and Stable Sensing. Adv Funct Materials 2022;32:2200922. [DOI: 10.1002/adfm.202200922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
72 Zhang L, Al-mamun M, Wang L, Dou Y, Qu L, Dou SX, Liu HK, Zhao H. The typical structural evolution of silicon anode. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100811] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Gao L, Zhang L, Yang X. N, S-codoped porous carbon nanosheets decorated with Fe3C nanoparticles as high-performance anode materials for lithium ion hybrid supercapacitors. Rare Met . [DOI: 10.1007/s12598-021-01927-6] [Reference Citation Analysis]
74 Ahmed A, Sharma S, Adak B, Hossain MM, Lachance AM, Mukhopadhyay S, Sun L. Two‐dimensional MXenes : New frontier of wearable and flexible electronics. InfoMat. [DOI: 10.1002/inf2.12295] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
75 Liao M, Wang C, Hong Y, Zhang Y, Cheng X, Sun H, Huang X, Ye L, Wu J, Shi X, Kang X, Zhou X, Wang J, Li P, Sun X, Chen P, Wang B, Wang Y, Xia Y, Cheng Y, Peng H. Industrial scale production of fibre batteries by a solution-extrusion method. Nat Nanotechnol . [DOI: 10.1038/s41565-021-01062-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
76 Wang S, Xu Q, Sun H. Functionalization of Fiber Devices: Materials, Preparations and Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00120-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
77 Lei S, Liu Z, Liu C, Li J, Lu B, Liang S, Zhou J. Opportunities for biocompatible and safe zinc-based batteries. Energy Environ Sci 2022. [DOI: 10.1039/d2ee02267b] [Reference Citation Analysis]
78 Yin L, Kim KN, Trifonov A, Podhajny T, Wang J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ Sci 2022;15:82-101. [DOI: 10.1039/d1ee03113a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
79 Zhang H, Chen P, Xia H, Xu G, Wang Y, Zhang T, Sun W, Turgunov M, Zhang W, Sun Z. An integrated self-healing anode assembled via dynamic encapsulation of liquid metal with a 3D Ti3C2Tx network for enhanced lithium storage. Energy Environ Sci 2022. [DOI: 10.1039/d2ee02147a] [Reference Citation Analysis]
80 Zhang W, Miao J, Zuo X, Zhang X, Qu L. Weaving a magnificent world: 1D fibrous electrodes and devices for stretchable and wearable electronics. J Mater Chem C. [DOI: 10.1039/d2tc02524h] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
81 Shao R, Ma R, An X, Wang C, Sun S. Challenges and emerging opportunities in transistor-based ultrathin electronics: design and fabrication for healthcare applications. J Mater Chem C. [DOI: 10.1039/d1tc04384f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Chen M, Wang R, Wang R, Zhou Y, He Z, Liu X, He M, Wang J, Huang C, Zhou H, Hong P, Hou C, Zhou N, Zhang D, Tao G. Digital medical education empowered by intelligent fabric space. NSO 2022;1:20220011. [DOI: 10.1360/nso/20220011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Yu Y, Wang X, Yang C, Shang L. Twisted fiber batteries for wearable electronic devices. Smart Materials in Medicine 2022;3:1-3. [DOI: 10.1016/j.smaim.2021.11.001] [Reference Citation Analysis]
84 Liu X, Ji H, Peng B, Cui Z, Liu Q, Zhao Q, Yang L, Wang D. Cotton textile inspires MoS2@reduced graphene oxide anodes towards high-rate capability or long-cycle stability sodium/lithium-ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi02010f] [Reference Citation Analysis]
85 Tian Y, Yang M, Wang C. Highly efficient flexible Li–S full batteries with hollow Ru–RuO 2− x nanofibers as robust polysulfide anchoring-catalysts and lithium dendrite inhibitors. J Mater Chem A 2022;10:8826-36. [DOI: 10.1039/d2ta01573k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Liman MLR, Islam MT. Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives. J Mater Chem A 2022;10:2697-735. [DOI: 10.1039/d1ta09384c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
87 Lu X, Ye Y, Shang W, Huang S, Wang H, Gan T, Chen G, Deng L, Wu Q, Zhou X. Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics. J Mater Chem A. [DOI: 10.1039/d2ta05702f] [Reference Citation Analysis]
88 Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic Textiles for Wearable Point-of-Care Systems. Chem Rev 2021. [PMID: 34939791 DOI: 10.1021/acs.chemrev.1c00502] [Cited by in Crossref: 67] [Cited by in F6Publishing: 86] [Article Influence: 67.0] [Reference Citation Analysis]
89 Shi X, Das P, Wu Z. Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Lett 2022;7:267-81. [DOI: 10.1021/acsenergylett.1c01854] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
90 Kim J, Kang JG, Choi J, Braun PV, Kim S. Fiber Electrodes Mesostructured on Carbon Fibers for Energy Storage. ACS Appl Energy Mater 2021;4:13716-24. [DOI: 10.1021/acsaem.1c02423] [Reference Citation Analysis]
91 Zhao S, Qu G, Wang C, Zhang Y, Li C, Li X, Sun J, Leng J, Xu X. Towards advanced aqueous zinc battery by exploiting synergistic effects between crystalline phosphide and amorphous phosphate. Nanoscale 2021;13:18586-95. [PMID: 34730594 DOI: 10.1039/d1nr05903c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
92 Wu Y, Mechael SS, Carmichael TB. Wearable E-Textiles Using a Textile-Centric Design Approach. Acc Chem Res 2021;54:4051-64. [PMID: 34665618 DOI: 10.1021/acs.accounts.1c00433] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
93 Zhu L, Sun H, Zhu M. Fibers to power the future. Joule 2021;5:2764-5. [DOI: 10.1016/j.joule.2021.10.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Zhai S, Jiang Z, Chen X, Hui KN, Chen F. Flexible one-dimensional Zn-based electrochemical energy storage devices: recent progress and future perspectives. J Mater Chem A 2021;9:26573-26602. [DOI: 10.1039/d1ta07832a] [Reference Citation Analysis]