BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, Haber JE, Noordermeer D, Legube G. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 2021;590:660-5. [PMID: 33597753 DOI: 10.1038/s41586-021-03193-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Stanic M, Mekhail K. Integration of DNA damage responses with dynamic spatial genome organization. Trends Genet 2021:S0168-9525(21)00261-4. [PMID: 34598804 DOI: 10.1016/j.tig.2021.08.016] [Reference Citation Analysis]
2 Curti L, Campaner S. MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment. Int J Mol Sci 2021;22:6168. [PMID: 34201047 DOI: 10.3390/ijms22126168] [Reference Citation Analysis]
3 Oldenkamp R, Rowland BD. A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022:S1097-2765(22)00317-3. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Reference Citation Analysis]
4 Rawal CC, Butova NL, Mitra A, Chiolo I. An Expanding Toolkit for Heterochromatin Repair Studies. Genes 2022;13:529. [DOI: 10.3390/genes13030529] [Reference Citation Analysis]
5 Mangelinck A, Mann C. DNA methylation and histone variants in aging and cancer. Int Rev Cell Mol Biol 2021;364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022;:1-18. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Reference Citation Analysis]
7 Spegg V, Altmeyer M. Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair (Amst) 2021;106:103179. [PMID: 34311273 DOI: 10.1016/j.dnarep.2021.103179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Caron P, Pobega E, Polo SE. DNA Double-Strand Break Repair: All Roads Lead to HeterochROMAtin Marks. Front Genet 2021;12:730696. [PMID: 34539757 DOI: 10.3389/fgene.2021.730696] [Reference Citation Analysis]
9 Mohan C, Das C, Tyler J. Histone and Chromatin Dynamics Facilitating DNA repair. DNA Repair (Amst) 2021;107:103183. [PMID: 34419698 DOI: 10.1016/j.dnarep.2021.103183] [Reference Citation Analysis]
10 Lorat Y, Reindl J, Isermann A, Rübe C, Friedl AA, Rübe CE. Focused Ion Microbeam Irradiation Induces Clustering of DNA Double-Strand Breaks in Heterochromatin Visualized by Nanoscale-Resolution Electron Microscopy. Int J Mol Sci 2021;22:7638. [PMID: 34299263 DOI: 10.3390/ijms22147638] [Reference Citation Analysis]
11 Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol 2021;22:445-64. [PMID: 33767413 DOI: 10.1038/s41580-021-00349-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
12 Reilly A, Philip Creamer J, Stewart S, Stolla MC, Wang Y, Du J, Wellington R, Busch S, Estey EH, Becker PS, Fang M, Keel SB, Abkowitz JL, Soma LA, Ma J, Duan Z, Doulatov S. Lamin B1 deletion in myeloid neoplasms causes nuclear anomaly and altered hematopoietic stem cell function. Cell Stem Cell 2022. [DOI: 10.1016/j.stem.2022.02.010] [Reference Citation Analysis]
13 Zhang Y, Zhang X, Dai HQ, Hu H, Alt FW. The role of chromatin loop extrusion in antibody diversification. Nat Rev Immunol 2022. [PMID: 35169260 DOI: 10.1038/s41577-022-00679-3] [Reference Citation Analysis]
14 Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol. [DOI: 10.1038/s41580-022-00452-3] [Reference Citation Analysis]
15 Verma P, Greenberg RA. Communication between chromatin and homologous recombination. Curr Opin Genet Dev 2021;71:1-9. [PMID: 34098484 DOI: 10.1016/j.gde.2021.05.006] [Reference Citation Analysis]
16 Grey C, de Massy B. Chromosome Organization in Early Meiotic Prophase. Front Cell Dev Biol 2021;9:688878. [PMID: 34150782 DOI: 10.3389/fcell.2021.688878] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Sebastian R, Aladjem MI, Oberdoerffer P. Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Front Genet 2021;12:746380. [PMID: 34745220 DOI: 10.3389/fgene.2021.746380] [Reference Citation Analysis]
18 Zhang S, Tao W, Han JJ. 3D chromatin structure changes during spermatogenesis and oogenesis. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.05.032] [Reference Citation Analysis]
19 Moeglin E, Desplancq D, Stoessel A, Massute C, Ranniger J, McEwen AG, Zeder-Lutz G, Oulad-Abdelghani M, Chiper M, Lafaye P, Di Ventura B, Didier P, Poterszman A, Weiss E. A Novel Nanobody Precisely Visualizes Phosphorylated Histone H2AX in Living Cancer Cells under Drug-Induced Replication Stress. Cancers (Basel) 2021;13:3317. [PMID: 34282773 DOI: 10.3390/cancers13133317] [Reference Citation Analysis]
20 Luo S, Qiao R, Zhang X. DNA Damage Response and Repair in Adaptive Immunity. Front Cell Dev Biol 2022;10:884873. [DOI: 10.3389/fcell.2022.884873] [Reference Citation Analysis]
21 Brandão HB, Ren Z, Karaboja X, Mirny LA, Wang X. DNA-loop-extruding SMC complexes can traverse one another in vivo. Nat Struct Mol Biol 2021;28:642-51. [PMID: 34312537 DOI: 10.1038/s41594-021-00626-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Scherzer M, Giordano F, Ferran MS, Ström L. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection. Life Sci Alliance 2022;5:e202101244. [PMID: 35086935 DOI: 10.26508/lsa.202101244] [Reference Citation Analysis]
23 San Martin Alonso M, Noordermeer SM. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021;49:4848-63. [PMID: 33755171 DOI: 10.1093/nar/gkab178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Merigliano C, Chiolo I. Multi-scale dynamics of heterochromatin repair. Curr Opin Genet Dev 2021;71:206-15. [PMID: 34717276 DOI: 10.1016/j.gde.2021.09.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Savocco J, Piazza A. Recombination-mediated genome rearrangements. Curr Opin Genet Dev 2021;71:63-71. [PMID: 34325160 DOI: 10.1016/j.gde.2021.06.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Biswas B, Chaaban R, Chakraborty S, Devaux A, Dian AL, Minello A, Singh JK, Vagner S, Uguen P, Lambert S, Dutertre M, Carreira A. At the crossroads of RNA biology, genome integrity and cancer. Bull Cancer 2022:S0007-4551(22)00118-7. [PMID: 35597618 DOI: 10.1016/j.bulcan.2022.02.014] [Reference Citation Analysis]
27 Xie H, Wang W, Qi W, Jin W, Xia B. Targeting DNA Repair Response Promotes Immunotherapy in Ovarian Cancer: Rationale and Clinical Application. Front Immunol 2021;12:661115. [PMID: 34712221 DOI: 10.3389/fimmu.2021.661115] [Reference Citation Analysis]
28 Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021;79:18. [PMID: 34971404 DOI: 10.1007/s00018-021-04075-3] [Reference Citation Analysis]
29 Shibata A, Jeggo PA. ATM's Role in the Repair of DNA Double-Strand Breaks. Genes (Basel) 2021;12:1370. [PMID: 34573351 DOI: 10.3390/genes12091370] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Rivas MA, Durmaz C, Kloetgen A, Chin CR, Chen Z, Bhinder B, Koren A, Viny AD, Scharer CD, Boss JM, Elemento O, Mason CE, Melnick AM. Cohesin Core Complex Gene Dosage Contributes to Germinal Center Derived Lymphoma Phenotypes and Outcomes. Front Immunol 2021;12:688493. [PMID: 34621263 DOI: 10.3389/fimmu.2021.688493] [Reference Citation Analysis]
31 Kieffer SR, Lowndes NF. Immediate-Early, Early, and Late Responses to DNA Double Stranded Breaks. Front Genet 2022;13:793884. [DOI: 10.3389/fgene.2022.793884] [Reference Citation Analysis]
32 Bloom K, Kolbin D. Mechanisms of DNA Mobilization and Sequestration. Genes 2022;13:352. [DOI: 10.3390/genes13020352] [Reference Citation Analysis]
33 Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Reference Citation Analysis]
34 Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021;11:1487. [PMID: 34680120 DOI: 10.3390/biom11101487] [Reference Citation Analysis]