BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Darcq E, Kieffer BL. Opioid receptors: drivers to addiction? Nat Rev Neurosci 2018;19:499-514. [PMID: 29934561 DOI: 10.1038/s41583-018-0028-x] [Cited by in Crossref: 121] [Cited by in F6Publishing: 105] [Article Influence: 40.3] [Reference Citation Analysis]
Number Citing Articles
1 Galaj E, Newman AH, Xi ZX. Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neurosci Biobehav Rev 2020;114:38-52. [PMID: 32376243 DOI: 10.1016/j.neubiorev.2020.04.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
2 Albores-Garcia D, McGlothan JL, Bursac Z, Guilarte TR. Chronic developmental lead exposure increases μ-opiate receptor levels in the adolescent rat brain. Neurotoxicology 2021;82:119-29. [PMID: 33248188 DOI: 10.1016/j.neuro.2020.11.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Schmidhammer H, Erli F, Guerrieri E, Spetea M. Development of Diphenethylamines as Selective Kappa Opioid Receptor Ligands and Their Pharmacological Activities. Molecules 2020;25:E5092. [PMID: 33147885 DOI: 10.3390/molecules25215092] [Reference Citation Analysis]
4 Nasseef MT, Singh JP, Ehrlich AT, McNicholas M, Park DW, Ma W, Kulkarni P, Kieffer BL, Darcq E. Oxycodone-Mediated Activation of the Mu Opioid Receptor Reduces Whole Brain Functional Connectivity in Mice. ACS Pharmacol Transl Sci 2019;2:264-74. [PMID: 32259060 DOI: 10.1021/acsptsci.9b00021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
5 Gibula-Tarlowska E, Grochecki P, Silberring J, Kotlinska JH. The kisspeptin derivative kissorphin reduces the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in rats. Alcohol 2019;81:11-9. [PMID: 30981809 DOI: 10.1016/j.alcohol.2019.04.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
6 Yazdanfar N, Farnam A, Sadigh-Eteghad S, Mahmoudi J, Sarkaki A. Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Res Bull 2021;170:98-105. [PMID: 33592274 DOI: 10.1016/j.brainresbull.2021.02.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hansson AC, Gründer G, Hirth N, Noori HR, Spanagel R, Sommer WH. Dopamine and opioid systems adaptation in alcoholism revisited: Convergent evidence from positron emission tomography and postmortem studies. Neuroscience & Biobehavioral Reviews 2019;106:141-64. [DOI: 10.1016/j.neubiorev.2018.09.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
8 Clark SD, Abi-Dargham A. The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence. Biol Psychiatry 2019;86:502-11. [PMID: 31376930 DOI: 10.1016/j.biopsych.2019.05.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
9 Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Vijayan R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res 2020;158:104855. [PMID: 32438036 DOI: 10.1016/j.phrs.2020.104855] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Spetea M, Schmidhammer H. Recent Chemical and Pharmacological Developments on 14-Oxygenated-N-methylmorphinan-6-ones. Molecules 2021;26:5677. [PMID: 34577147 DOI: 10.3390/molecules26185677] [Reference Citation Analysis]
11 Liu J, Bharadwaj A. Drug Abuse and the Internet: Evidence from Craigslist. Management Science 2020;66:2040-9. [DOI: 10.1287/mnsc.2019.3479] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Lefevre EM, Pisansky MT, Toddes C, Baruffaldi F, Pravetoni M, Tian L, Kono TJY, Rothwell PE. Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system. Neuropsychopharmacology 2020;45:1781-92. [PMID: 32079024 DOI: 10.1038/s41386-020-0643-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
13 Albores-Garcia D, McGlothan JL, Guilarte TR. Early-life lead exposure and neurodevelopmental disorders. Curr Opin Toxicol 2021;26:22-7. [PMID: 34013137 DOI: 10.1016/j.cotox.2021.03.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhang L, Roy S. Opioid Modulation of the Gut-Brain Axis in Opioid-Associated Comorbidities. Cold Spring Harb Perspect Med 2021;11:a040485. [PMID: 32816876 DOI: 10.1101/cshperspect.a040485] [Reference Citation Analysis]
15 Browne CA, Jacobson ML, Lucki I. Novel Targets to Treat Depression: Opioid-Based Therapeutics. Harv Rev Psychiatry 2020;28:40-59. [DOI: 10.1097/hrp.0000000000000242] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
16 Kumar M, Rainville JR, Williams K, Lile JA, Hodes GE, Vassoler FM, Turner JR. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology 2021;186:108469. [PMID: 33485944 DOI: 10.1016/j.neuropharm.2021.108469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Martins CC, Rosa SG, Recchi AMS, Nogueira CW, Zeni G. m-Trifluoromethyl-diphenyl diselenide (m-CF3-PhSe)2 modulates the hippocampal neurotoxic adaptations and abolishes a depressive-like phenotype in a short-term morphine withdrawal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020;98:109803. [PMID: 31689445 DOI: 10.1016/j.pnpbp.2019.109803] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nazari S, Pourmand SM, Makki SM, Brand S, Vousooghi N. Potential biomarkers of addiction identified by real-time PCR in human peripheral blood lymphocytes: a narrative review. Biomark Med 2022;16:739-58. [PMID: 35658670 DOI: 10.2217/bmm-2021-0291] [Reference Citation Analysis]
19 Slavov S, Mattes W, Beger RD. Determination of structural factors affecting binding to mu, kappa and delta opioid receptors. Arch Toxicol 2020;94:1215-27. [PMID: 32107589 DOI: 10.1007/s00204-020-02684-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Stein C. Opioid analgesia: recent developments. Current Opinion in Supportive & Palliative Care 2020;14:112-7. [DOI: 10.1097/spc.0000000000000495] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Muratspahić E, Tomašević N, Nasrollahi-Shirazi S, Gattringer J, Emser FS, Freissmuth M, Gruber CW. Plant-Derived Cyclotides Modulate κ-Opioid Receptor Signaling. J Nat Prod 2021;84:2238-48. [PMID: 34308635 DOI: 10.1021/acs.jnatprod.1c00301] [Reference Citation Analysis]
22 Manandhar P, Connor M, Santiago M. Tapentadol shows lower intrinsic efficacy at µ receptor than morphine and oxycodone. Pharmacol Res Perspect 2022;10:e00921. [PMID: 35084120 DOI: 10.1002/prp2.921] [Reference Citation Analysis]
23 Huang P, Gentile TA, Muschamp JW, Liu-Chen LY. The kappa opioid receptor agonist U50,488H did not affect brain-stimulation reward while it elicited conditioned place aversion in mice. BMC Res Notes 2020;13:384. [PMID: 32799930 DOI: 10.1186/s13104-020-05227-7] [Reference Citation Analysis]
24 Smith MT, Kong D, Kuo A, Imam MZ, Williams CM. Analgesic Opioid Ligand Discovery Based on Nonmorphinan Scaffolds Derived from Natural Sources. J Med Chem 2022. [PMID: 34995453 DOI: 10.1021/acs.jmedchem.0c01915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Corli O, Damia G, Galli F, Verrastro C, Broggini M. Lack of Efficacy: When Opioids Do Not Achieve Analgesia from the Beginning of Treatment in Cancer Patients. Cancer Manag Res 2019;11:10337-44. [PMID: 31849523 DOI: 10.2147/CMAR.S211818] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Azevedo K, Johnson M, Wassermann M, Evans-Wall J. Drugs of Abuse-Opioids, Sedatives, Hypnotics. Crit Care Clin 2021;37:501-16. [PMID: 34053703 DOI: 10.1016/j.ccc.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, Gueven N, Dietis N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals (Basel) 2021;14:1091. [PMID: 34832873 DOI: 10.3390/ph14111091] [Reference Citation Analysis]
28 Chen YC, Lee CY, Chen SJ. Narcotic Addiction in Failed Back Surgery Syndrome. Cell Transplant 2019;28:239-47. [PMID: 30168351 DOI: 10.1177/0963689718796072] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Ji MJ, Yang J, Gao ZQ, Zhang L, Liu C. The Role of the Kappa Opioid System in Comorbid Pain and Psychiatric Disorders: Function and Implications. Front Neurosci 2021;15:642493. [PMID: 33716658 DOI: 10.3389/fnins.2021.642493] [Reference Citation Analysis]
30 Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Reference Citation Analysis]
31 Dumitrascuta M, Bermudez M, Trovato O, De Neve J, Ballet S, Wolber G, Spetea M. Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking. Molecules 2021;26:3267. [PMID: 34071603 DOI: 10.3390/molecules26113267] [Reference Citation Analysis]
32 Verholleman A, Victorri-Vigneau C, Laforgue E, Derkinderen P, Verstuyft C, Grall-Bronnec M. Naltrexone Use in Treating Hypersexuality Induced by Dopamine Replacement Therapy: Impact of OPRM1 A/G Polymorphism on Its Effectiveness. Int J Mol Sci 2020;21:E3002. [PMID: 32344532 DOI: 10.3390/ijms21083002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Zhou M, Wang Q, Zheng C, John Rush A, Volkow ND, Xu R. Drug repurposing for opioid use disorders: integration of computational prediction, clinical corroboration, and mechanism of action analyses. Mol Psychiatry 2021. [PMID: 33432189 DOI: 10.1038/s41380-020-01011-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
34 Meier IM, Eikemo M, Leknes S. The Role of Mu-Opioids for Reward and Threat Processing in Humans: Bridging the Gap from Preclinical to Clinical Opioid Drug Studies. Curr Addict Rep 2021;8:306-18. [PMID: 34722114 DOI: 10.1007/s40429-021-00366-8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Southerland WA, Gillis J, Kuppalli S, Fonseca A, Mendelson A, Horine SV, Bansal N, Gulati A. Dual Enkephalinase Inhibitors and Their Role in Chronic Pain Management. Curr Pain Headache Rep 2021;25:29. [PMID: 33761014 DOI: 10.1007/s11916-021-00949-0] [Reference Citation Analysis]
36 Valentino RJ, Volkow ND. Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018;43:2514-20. [PMID: 30250308 DOI: 10.1038/s41386-018-0225-3] [Cited by in Crossref: 124] [Cited by in F6Publishing: 103] [Article Influence: 31.0] [Reference Citation Analysis]
37 Jacotte-Simancas A, Fucich EA, Stielper ZF, Molina PE. Traumatic brain injury and the misuse of alcohol, opioids, and cannabis. Int Rev Neurobiol 2021;157:195-243. [PMID: 33648670 DOI: 10.1016/bs.irn.2020.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Cahill C, Tejeda HA, Spetea M, Chen C, Liu-Chen LY. Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. Handb Exp Pharmacol 2021. [PMID: 33754230 DOI: 10.1007/164_2021_433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Muratspahić E, Retzl B, Duerrauer L, Freissmuth M, Becker CFW, Gruber CW. Genome Mining-Based Discovery of Blenny Fish-Derived Peptides Targeting the Mouse κ-Opioid Receptor. Front Pharmacol 2021;12:773029. [PMID: 34744752 DOI: 10.3389/fphar.2021.773029] [Reference Citation Analysis]
40 Galaj E, Xi ZX. Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 2021;200:173072. [PMID: 33227308 DOI: 10.1016/j.pbb.2020.173072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Zjawiony JK, Machado AS, Menegatti R, Ghedini PC, Costa EA, Pedrino GR, Lukas SE, Franco OL, Silva ON, Fajemiroye JO. Cutting-Edge Search for Safer Opioid Pain Relief: Retrospective Review of Salvinorin A and Its Analogs. Front Psychiatry 2019;10:157. [PMID: 30971961 DOI: 10.3389/fpsyt.2019.00157] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Nasseef MT, Devenyi GA, Mechling AE, Harsan LA, Chakravarty MM, Kieffer BL, Darcq E. Deformation-based Morphometry MRI Reveals Brain Structural Modifications in Living Mu Opioid Receptor Knockout Mice. Front Psychiatry 2018;9:643. [PMID: 30559685 DOI: 10.3389/fpsyt.2018.00643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Carmack SA, Keeley RJ, Vendruscolo JCM, Lowery-Gionta EG, Lu H, Koob GF, Stein EA, Vendruscolo LF. Heroin addiction engages negative emotional learning brain circuits in rats. J Clin Invest 2019;129:2480-4. [PMID: 30913040 DOI: 10.1172/JCI125534] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
44 Mahinthichaichan P, Vo QN, Ellis CR, Shen J. Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor. JACS Au 2021;1:2208-15. [PMID: 34977892 DOI: 10.1021/jacsau.1c00341] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020;170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
46 Boulos LJ, Ben Hamida S, Bailly J, Maitra M, Ehrlich AT, Gavériaux-Ruff C, Darcq E, Kieffer BL. Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology 2020;45:247-55. [PMID: 31005059 DOI: 10.1038/s41386-019-0395-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
47 van Gastel J, Hendrickx JO, Leysen H, Santos-Otte P, Luttrell LM, Martin B, Maudsley S. β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Front Pharmacol 2018;9:1369. [PMID: 30546309 DOI: 10.3389/fphar.2018.01369] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
48 Moningka H, Lichenstein S, Yip SW. Current understanding of the neurobiology of opioid use disorder: An overview. Curr Behav Neurosci Rep 2019;6:1-11. [PMID: 34485022 DOI: 10.1007/s40473-019-0170-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
49 Karin O, Raz M, Alon U. An opponent process for alcohol addiction based on changes in endocrine gland mass. iScience 2021;24:102127. [PMID: 33665551 DOI: 10.1016/j.isci.2021.102127] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Ferracane MJ, Brice-Tutt AC, Coleman JS, Simpson GG, Wilson LL, Eans SO, Stacy HM, Murray TF, McLaughlin JP, Aldrich JV. Design, Synthesis, and Characterization of the Macrocyclic Tetrapeptide cyclo[Pro-Sar-Phe-d-Phe]: A Mixed Opioid Receptor Agonist-Antagonist Following Oral Administration. ACS Chem Neurosci 2020;11:1324-36. [PMID: 32251585 DOI: 10.1021/acschemneuro.0c00086] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
51 Panagis G, Vlachou S, Higuera-matas A, Simon MJ. Editorial: Neurobehavioral Mechanisms of Reward: Theoretical and Technical Perspectives and Their Implications for Psychopathology. Front Behav Neurosci 2022;16:967922. [DOI: 10.3389/fnbeh.2022.967922] [Reference Citation Analysis]
52 Johnson KVA, Burnet PWJ. Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neurosci 2020;21:32. [PMID: 32698770 DOI: 10.1186/s12868-020-00583-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Jia X, Ciallella HL, Russo DP, Zhao L, James MH, Zhu H. Construction of a Virtual Opioid Bioprofile: A Data-Driven QSAR Modeling Study to Identify New Analgesic Opioids. ACS Sustain Chem Eng 2021;9:3909-19. [PMID: 34239782 DOI: 10.1021/acssuschemeng.0c09139] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
54 Avril T, Chevet E. Stress signaling in pain control. Science 2019;365:224-5. [PMID: 31320525 DOI: 10.1126/science.aay2721] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
55 Stoveken HM, Zucca S, Masuho I, Grill B, Martemyanov KA. The orphan receptor GPR139 signals via Gq/11 to oppose opioid effects. J Biol Chem 2020;295:10822-30. [PMID: 32576659 DOI: 10.1074/jbc.AC120.014770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Carli M, Donnini S, Pellegrini C, Coppi E, Bocci G. Opioid receptors beyond pain control: The role in cancer pathology and the debated importance of their pharmacological modulation. Pharmacological Research 2020;159:104938. [DOI: 10.1016/j.phrs.2020.104938] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
57 Patterson Silver Wolf DA, Gold M. Treatment resistant opioid use disorder (TROUD): Definition, rationale, and recommendations. J Neurol Sci 2020;411:116718. [PMID: 32078842 DOI: 10.1016/j.jns.2020.116718] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Escelsior A, Sterlini B, Murri MB, Serafini G, Aguglia A, da Silva BP, Corradi A, Valente P, Amore M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behavioural Brain Research 2020;393:112734. [DOI: 10.1016/j.bbr.2020.112734] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Cahill CM, Lueptow L, Kim H, Shusharla R, Bishop A, Evans CJ. Kappa Opioid Signaling at the Crossroads of Chronic Pain and Opioid Addiction. Handb Exp Pharmacol 2021. [PMID: 33547588 DOI: 10.1007/164_2021_434] [Reference Citation Analysis]
60 Tamura EK, Oliveira-Silva KS, Ferreira-Moraes FA, Marinho EAV, Guerrero-Vargas NN. Circadian rhythms and substance use disorders: A bidirectional relationship. Pharmacol Biochem Behav 2021;201:173105. [PMID: 33444601 DOI: 10.1016/j.pbb.2021.173105] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hazani HM, Naina Mohamed I, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Pakri Mohamed RM, Mohamad Isa MF, Abdulrahman SM, Ramadah R, Kamaluddin MR, Kumar J. Goofballing of Opioid and Methamphetamine: The Science Behind the Deadly Cocktail. Front Pharmacol 2022;13:859563. [DOI: 10.3389/fphar.2022.859563] [Reference Citation Analysis]
62 Zhang L, Mccarthy DM, Eskow Jaunarajs KL, Biederman J, Spencer TJ, Bhide PG. Frontal Cortical Monoamine Release, Attention, and Working Memory in a Perinatal Nicotine Exposure Mouse Model Following Kappa Opioid Receptor Antagonism. Cerebral Cortex 2021;31:483-96. [DOI: 10.1093/cercor/bhaa238] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
63 Jullié D, Stoeber M, Sibarita JB, Zieger HL, Bartol TM, Arttamangkul S, Sejnowski TJ, Hosy E, von Zastrow M. A Discrete Presynaptic Vesicle Cycle for Neuromodulator Receptors. Neuron 2020;105:663-677.e8. [PMID: 31837915 DOI: 10.1016/j.neuron.2019.11.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
64 Zhou H, Rentsch CT, Cheng Z, Kember RL, Nunez YZ, Sherva RM, Tate JP, Dao C, Xu K, Polimanti R, Farrer LA, Justice AC, Kranzler HR, Gelernter J; Veterans Affairs Million Veteran Program. Association of OPRM1 Functional Coding Variant With Opioid Use Disorder: A Genome-Wide Association Study. JAMA Psychiatry 2020;77:1072-80. [PMID: 32492095 DOI: 10.1001/jamapsychiatry.2020.1206] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 17.5] [Reference Citation Analysis]
65 Negrete-Díaz JV, Shumilov K, Real MÁ, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodríguez-Moreno A, Rivera A. Pharmacological activation of dopamine D4 receptor modulates morphine-induced changes in the expression of GAD65/67 and GABAB receptors in the basal ganglia. Neuropharmacology 2019;152:22-9. [PMID: 30682345 DOI: 10.1016/j.neuropharm.2019.01.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
66 Daiwile AP, Jayanthi S, Cadet JL. Sex- and Brain Region-specific Changes in Gene Expression in Male and Female Rats as Consequences of Methamphetamine Self-administration and Abstinence. Neuroscience 2021;452:265-79. [PMID: 33242543 DOI: 10.1016/j.neuroscience.2020.11.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Malev O, Lovrić M, Stipaničev D, Repec S, Martinović-Weigelt D, Zanella D, Ivanković T, Sindičić Đuretec V, Barišić J, Li M, Klobučar G. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). Environ Pollut 2020;266:115162. [PMID: 32771868 DOI: 10.1016/j.envpol.2020.115162] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
68 Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019;33:1475-90. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Reference Citation Analysis]
69 Galusca B, Traverse B, Costes N, Massoubre C, Le Bars D, Estour B, Germain N, Redouté J. Decreased cerebral opioid receptors availability related to hormonal and psychometric profile in restrictive-type anorexia nervosa. Psychoneuroendocrinology 2020;118:104711. [PMID: 32460196 DOI: 10.1016/j.psyneuen.2020.104711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Lemos Duarte M, Devi LA. Post-translational Modifications of Opioid Receptors. Trends Neurosci 2020;43:417-32. [PMID: 32459993 DOI: 10.1016/j.tins.2020.03.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
71 Welsch L, Bailly J, Darcq E, Kieffer BL. The Negative Affect of Protracted Opioid Abstinence: Progress and Perspectives From Rodent Models. Biol Psychiatry 2020;87:54-63. [PMID: 31521334 DOI: 10.1016/j.biopsych.2019.07.027] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
72 Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt1]DALDA, and KGOP01, Binding to the mu Opioid Receptor. Molecules 2020;25:E2087. [PMID: 32365707 DOI: 10.3390/molecules25092087] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
73 Seoane-Collazo P, Liñares-Pose L, Rial-Pensado E, Romero-Picó A, Moreno-Navarrete JM, Martínez-Sánchez N, Garrido-Gil P, Iglesias-Rey R, Morgan DA, Tomasini N, Malone SA, Senra A, Folgueira C, Medina-Gomez G, Sobrino T, Labandeira-García JL, Nogueiras R, Domingos AI, Fernández-Real JM, Rahmouni K, Diéguez C, López M. Central nicotine induces browning through hypothalamic κ opioid receptor. Nat Commun 2019;10:4037. [PMID: 31492869 DOI: 10.1038/s41467-019-12004-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
74 Rahman N, Mihalkovic A, Geary O, Haffey R, Hamilton J, Thanos PK. Chronic aerobic exercise: Autoradiographic assessment of GABA(a) and mu-opioid receptor binding in adult rats. Pharmacol Biochem Behav 2020;196:172980. [PMID: 32593790 DOI: 10.1016/j.pbb.2020.172980] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
75 Ehrlich AT, Kieffer BL, Darcq E. Current strategies toward safer mu opioid receptor drugs for pain management. Expert Opin Ther Targets 2019;23:315-26. [PMID: 30802415 DOI: 10.1080/14728222.2019.1586882] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
76 Lorente JD, Cuitavi J, Campos-Jurado Y, Hipólito L. Pain-induced alterations in the dynorphinergic system within the mesocorticolimbic pathway: Implication for alcohol addiction. J Neurosci Res 2020. [PMID: 32770601 DOI: 10.1002/jnr.24703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Wu B, Hand W, Alexov E. Opioid Addiction and Opioid Receptor Dimerization: Structural Modeling of the OPRD1 and OPRM1 Heterodimer and Its Signaling Pathways. Int J Mol Sci 2021;22:10290. [PMID: 34638633 DOI: 10.3390/ijms221910290] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Coussens NP, Sittampalam GS, Jonson SG, Hall MD, Gorby HE, Tamiz AP, McManus OB, Felder CC, Rasmussen K. The Opioid Crisis and the Future of Addiction and Pain Therapeutics. J Pharmacol Exp Ther 2019;371:396-408. [PMID: 31481516 DOI: 10.1124/jpet.119.259408] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
79 Shram MJ, Spencer RH, Qian J, Munera CL, Lewis ME, Henningfield JE, Webster L, Menzaghi F. Evaluation of the abuse potential of difelikefalin, a selective kappa-opioid receptor agonist, in recreational polydrug users. Clin Transl Sci 2021. [PMID: 34708917 DOI: 10.1111/cts.13173] [Reference Citation Analysis]
80 Muratspahić E, Tomašević N, Koehbach J, Duerrauer L, Hadžić S, Castro J, Schober G, Sideromenos S, Clark RJ, Brierley SM, Craik DJ, Gruber CW. Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. J Med Chem 2021;64:9042-55. [PMID: 34162205 DOI: 10.1021/acs.jmedchem.1c00158] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Yang W, Zhang M, Tang F, Du Y, Fan L, Luo J, Yan C, Wang S, Zhang J, Yuan K, Liu J. Recovery of superior frontal gyrus cortical thickness and resting-state functional connectivity in abstinent heroin users after 8 months of follow-up. Hum Brain Mapp 2022. [PMID: 35324057 DOI: 10.1002/hbm.25841] [Reference Citation Analysis]
82 Welsch L, Kieffer BL. Opioid peptide signal in the brain makes mice hungrier for reward. Nature 2021;598:568-70. [DOI: 10.1038/d41586-021-02723-z] [Reference Citation Analysis]
83 Ju ZH, Liang X, Ren YY, Shu LW, Yan YH, Cui X. Neurons derived from human-induced pluripotent stem cells express mu and kappa opioid receptors. Neural Regen Res 2021;16:653-8. [PMID: 33063716 DOI: 10.4103/1673-5374.295341] [Reference Citation Analysis]
84 Brejchova J, Holan V, Svoboda P. Expression of Opioid Receptors in Cells of the Immune System. Int J Mol Sci 2020;22:E315. [PMID: 33396783 DOI: 10.3390/ijms22010315] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
85 Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020;17:17-42. [PMID: 31919661 DOI: 10.1007/s13311-019-00828-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
86 Nakamoto K, Taniguchi A, Tokuyama S. Changes in opioid receptors, opioid peptides and morphine antinociception in mice subjected to early life stress. Eur J Pharmacol 2020;881:173173. [PMID: 32511976 DOI: 10.1016/j.ejphar.2020.173173] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
87 Ko MC, Husbands SM. Pleiotropic Effects of Kappa Opioid Receptor-Related Ligands in Non-human Primates. Handb Exp Pharmacol 2020. [PMID: 33274403 DOI: 10.1007/164_2020_419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Bailly J, Del Rossi N, Runtz L, Li JJ, Park D, Scherrer G, Tanti A, Birling MC, Darcq E, Kieffer BL. Targeting Morphine-Responsive Neurons: Generation of a Knock-In Mouse Line Expressing Cre Recombinase from the Mu-Opioid Receptor Gene Locus. eNeuro 2020;7:ENEURO. [PMID: 32381649 DOI: 10.1523/ENEURO.0433-19.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
89 Yang W, Yang R, Tang F, Luo J, Zhang J, Chen C, Duan C, Deng Y, Fan L, Liu J. Decreased Relative Cerebral Blood Flow in Unmedicated Heroin-Dependent Individuals. Front Psychiatry 2020;11:643. [PMID: 32760297 DOI: 10.3389/fpsyt.2020.00643] [Reference Citation Analysis]
90 Shokirova H, Inomata T, Saitoh T, Zhu J, Fujio K, Okumura Y, Yanagawa A, Fujimoto K, Sung J, Eguchi A, Miura M, Nagino K, Hirosawa K, Kuwahara M, Akasaki Y, Nagase H, Murakami A. Topical administration of the kappa opioid receptor agonist nalfurafine suppresses corneal neovascularization and inflammation. Sci Rep 2021;11:8647. [PMID: 33883646 DOI: 10.1038/s41598-021-88118-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
91 Levran O, Randesi M, Adelson M, Kreek MJ. OPRD1 SNPs associated with opioid addiction are cis-eQTLs for the phosphatase and actin regulator 4 gene, PHACTR4, a mediator of cytoskeletal dynamics. Transl Psychiatry 2021;11:316. [PMID: 34031368 DOI: 10.1038/s41398-021-01439-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
92 Arout CA, Waters AJ, MacLean RR, Compton P, Sofuoglu M. Minocycline does not affect experimental pain or addiction-related outcomes in opioid maintained patients. Psychopharmacology (Berl) 2019;236:2857-66. [PMID: 30564869 DOI: 10.1007/s00213-018-5146-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
93 Zhuang T, Xiong J, Hao S, Du W, Liu Z, Liu B, Zhang G, Chen Y. Bifunctional μ opioid and σ1 receptor ligands as novel analgesics with reduced side effects. Eur J Med Chem 2021;223:113658. [PMID: 34175542 DOI: 10.1016/j.ejmech.2021.113658] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
94 Ehrlich AT, Darcq E. Recent advances in basic science methodology to evaluate opioid safety profiles and to understand opioid activities. Fac Rev 2021;10:15. [PMID: 33718932 DOI: 10.12703/r/10-15] [Reference Citation Analysis]
95 [DOI: 10.1101/19007039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Machelska H, Celik MÖ. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front Immunol 2020;11:300. [PMID: 32194554 DOI: 10.3389/fimmu.2020.00300] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
97 Gegenhuber B, Weinland C, Kornhuber J, Mühle C, Lenz B. OPRM1 A118G and serum β-endorphin interact with sex and digit ratio (2D:4D) to influence risk and course of alcohol dependence. European Neuropsychopharmacology 2018;28:1418-28. [DOI: 10.1016/j.euroneuro.2018.09.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
98 Cuitavi J, Hipólito L, Canals M. The Life Cycle of the Mu-Opioid Receptor. Trends Biochem Sci 2021;46:315-28. [PMID: 33127216 DOI: 10.1016/j.tibs.2020.10.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
99 Ehrlich AT, Darcq E. Recommending buprenorphine for pain management. Pain Manag 2019;9:13-6. [PMID: 30507294 DOI: 10.2217/pmt-2018-0069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
100 Cao DN, Li F, Wu N, Li J. Insights into the mechanisms underlying opioid use disorder and potential treatment strategies. Br J Pharmacol 2021. [PMID: 34128238 DOI: 10.1111/bph.15592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Wang CW, Ma M, Lu WG, Luo RQ. Association between prodynorphin gene polymorphisms and opioid dependence susceptibility: a meta-analysis. BMC Psychiatry 2019;19:281. [PMID: 31510971 DOI: 10.1186/s12888-019-2272-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
102 Chen R, Blosser TR, Djekidel MN, Hao J, Bhattacherjee A, Chen W, Tuesta LM, Zhuang X, Zhang Y. Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nat Neurosci 2021. [PMID: 34663959 DOI: 10.1038/s41593-021-00938-x] [Reference Citation Analysis]
103 Brice-Tutt AC, Wilson LL, Eans SO, Stacy HM, Simons CA, Simpson GG, Coleman JS, Ferracane MJ, Aldrich JV, McLaughlin JP. Multifunctional opioid receptor agonism and antagonism by a novel macrocyclic tetrapeptide prevents reinstatement of morphine-seeking behaviour. Br J Pharmacol 2020;177:4209-22. [PMID: 32562259 DOI: 10.1111/bph.15165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
104 Teague CD, Nestler EJ. Key transcription factors mediating cocaine-induced plasticity in the nucleus accumbens. Mol Psychiatry 2021. [PMID: 34079067 DOI: 10.1038/s41380-021-01163-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
105 Huskinson SL, Platt DM, Brasfield M, Follett ME, Prisinzano TE, Blough BE, Freeman KB. Quantification of observable behaviors induced by typical and atypical kappa-opioid receptor agonists in male rhesus monkeys. Psychopharmacology (Berl) 2020;237:2075-87. [PMID: 32372348 DOI: 10.1007/s00213-020-05519-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
106 Faouzi A, Uprety R, Gomes I, Massaly N, Keresztes AI, Le Rouzic V, Gupta A, Zhang T, Yoon HJ, Ansonoff M, Allaoa A, Pan YX, Pintar J, Morón JA, Streicher JM, Devi LA, Majumdar S. Synthesis and Pharmacology of a Novel μ-δ Opioid Receptor Heteromer-Selective Agonist Based on the Carfentanyl Template. J Med Chem 2020;63:13618-37. [PMID: 33170687 DOI: 10.1021/acs.jmedchem.0c00901] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
107 Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020;375:332-48. [PMID: 32913006 DOI: 10.1124/jpet.120.000134] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
108 Ballester J, Baker AK, Martikainen IK, Koppelmans V, Zubieta JK, Love TM. Risk for opioid misuse in chronic pain patients is associated with endogenous opioid system dysregulation. Transl Psychiatry 2022;12:20. [PMID: 35022382 DOI: 10.1038/s41398-021-01775-z] [Reference Citation Analysis]
109 Zeng SL, Sudlow LC, Berezin MY. Using Xenopus oocytes in neurological disease drug discovery. Expert Opin Drug Discov 2020;15:39-52. [PMID: 31674217 DOI: 10.1080/17460441.2020.1682993] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
110 Balyan R, Hahn D, Huang H, Chidambaran V. Pharmacokinetic and pharmacodynamic considerations in developing a response to the opioid epidemic. Expert Opin Drug Metab Toxicol 2020;16:125-41. [PMID: 31976778 DOI: 10.1080/17425255.2020.1721458] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Ruisoto P, Contador I. The role of stress in drug addiction. An integrative review. Physiol Behav 2019;202:62-8. [PMID: 30711532 DOI: 10.1016/j.physbeh.2019.01.022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
112 Manchira Krishnan S, Gc VS, Sandhu HK, Underwood M, Eldabe S, Manca A, Iglesias Urrutia CP; I-WOTCH team. Protocol for an economic analysis of the randomised controlled trial of Improving the Well-being of people with Opioid Treated CHronic pain: I-WOTCH Study. BMJ Open 2020;10:e037243. [PMID: 33444175 DOI: 10.1136/bmjopen-2020-037243] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Zhang L, Zhang JT, Hang L, Liu T. Mu Opioid Receptor Heterodimers Emerge as Novel Therapeutic Targets: Recent Progress and Future Perspective. Front Pharmacol 2020;11:1078. [PMID: 32760281 DOI: 10.3389/fphar.2020.01078] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
114 Levran O, Even-Tov E, Zhao L. A hominid-specific shift in cerebellar expression, upstream retrotransposons, and a potential cis-regulatory mechanism: bioinformatics analyses of the mu-opioid receptor gene. Heredity (Edinb) 2020;124:325-35. [PMID: 31712748 DOI: 10.1038/s41437-019-0282-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
115 Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2021;219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
116 Baldo BA, Rose MA. Mechanisms of opioid-induced respiratory depression. Arch Toxicol 2022. [PMID: 35471232 DOI: 10.1007/s00204-022-03300-7] [Reference Citation Analysis]
117 Tejeda HA, Bonci A. Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Research 2019;1713:91-101. [DOI: 10.1016/j.brainres.2018.09.023] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 13.3] [Reference Citation Analysis]
118 Love T, Shabalin AA, Kember RL, Docherty AR, Zhou H, Koppelmans V, Gelernter J, Baker AK, Hartwell E, Dubroff J, Zubieta JK, Kranzler HR. Unique and joint associations of polygenic risk for major depression and opioid use disorder with endogenous opioid system function. Neuropsychopharmacology 2022. [PMID: 35545664 DOI: 10.1038/s41386-022-01325-1] [Reference Citation Analysis]
119 Patterson Silver Wolf DA, Dulmus C, Wilding G, Barczykowski A, Yu J, Beeler-stinn S, Asher Blackdeer A, Harvey S, Rodriguez NM. Profiles and Predictors of Treatment-Resistant Opioid Use Disorder (TROUD): A Secondary Data Analysis of Treatment Episode Data Set’s 2017 Admissions. Alcoholism Treatment Quarterly 2021;39:517-32. [DOI: 10.1080/07347324.2021.1895015] [Reference Citation Analysis]
120 Bossert JM, Kiyatkin EA, Korah H, Hoots JK, Afzal A, Perekopskiy D, Thomas S, Fredriksson I, Blough BE, Negus SS, Epstein DH, Shaham Y. In a Rat Model of Opioid Maintenance, the G Protein-Biased Mu Opioid Receptor Agonist TRV130 Decreases Relapse to Oxycodone Seeking and Taking and Prevents Oxycodone-Induced Brain Hypoxia. Biol Psychiatry 2020;88:935-44. [PMID: 32305216 DOI: 10.1016/j.biopsych.2020.02.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]