BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wajner M. Neurological manifestations of organic acidurias. Nat Rev Neurol 2019;15:253-71. [DOI: 10.1038/s41582-019-0161-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 de Souza Almeida RR, Bobermin LD, Parmeggiani B, Wartchow KM, Souza DO, Gonçalves CA, Wajner M, Leipnitz G, Quincozes-Santos A. Methylmalonic acid induces inflammatory response and redox homeostasis disruption in C6 astroglial cells: potential glioprotective roles of melatonin and resveratrol. Amino Acids 2022. [PMID: 35927507 DOI: 10.1007/s00726-022-03191-z] [Reference Citation Analysis]
2 Seminotti B, Brondani M, Ribeiro RT, Leipnitz G, Wajner M. Disturbance of Mitochondrial Dynamics, Endoplasmic Reticulum-Mitochondria Crosstalk, Redox Homeostasis, and Inflammatory Response in the Brain of Glutaryl-CoA Dehydrogenase-Deficient Mice: Neuroprotective Effects of Bezafibrate. Mol Neurobiol 2022. [PMID: 35639256 DOI: 10.1007/s12035-022-02887-3] [Reference Citation Analysis]
3 Beletić A, Tijanić A, Chrastina P, Nikolić T, Stefanović A, Stanković S. The markers of the organic acidemias and their ratios in healthy neonates in Serbian population. Drug Metab Pers Ther 2022. [PMID: 35254746 DOI: 10.1515/dmpt-2021-0218] [Reference Citation Analysis]
4 Calderón C, Lämmerhofer M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2022;207:114430. [PMID: 34757254 DOI: 10.1016/j.jpba.2021.114430] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Seminotti B, Grings M, Tucci P, Leipnitz G, Saso L. Nuclear Factor Erythroid-2-Related Factor 2 Signaling in the Neuropathophysiology of Inherited Metabolic Disorders. Front Cell Neurosci 2021;15:785057. [PMID: 34955754 DOI: 10.3389/fncel.2021.785057] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
6 Leipnitz G, Hatch GM, Mohsen AW, Wanders RJA. Editorial: Mitochondrial Disorders: Biochemical and Molecular Basis of Disease. Front Genet 2021;12:769770. [PMID: 34868257 DOI: 10.3389/fgene.2021.769770] [Reference Citation Analysis]
7 Zhou W, Cai H, Li H, Ji Z, Gu M. Quantification of Differential Metabolites in Dried Blood Spots Using Second-Tier Testing for SCADD/IBDD Disorders Based on Large-Scale Newborn Screening in a Chinese Population. Front Pediatr 2021;9:757424. [PMID: 34869113 DOI: 10.3389/fped.2021.757424] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Tarrada A, Frismand-Kryloff S, Hingray C. Functional neurologic disorders in an adult with propionic acidemia: a case report. BMC Psychiatry 2021;21:587. [PMID: 34809590 DOI: 10.1186/s12888-021-03596-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 de Melo Reis RA, Isaac AR, Freitas HR, de Almeida MM, Schuck PF, Ferreira GC, Andrade-da-Costa BLDS, Trevenzoli IH. Quality of Life and a Surveillant Endocannabinoid System. Front Neurosci 2021;15:747229. [PMID: 34776851 DOI: 10.3389/fnins.2021.747229] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
10 Barbieri Caus L, Pasquetti MV, Seminotti B, Woontner M, Wajner M, Calcagnotto ME. Increased susceptibility to quinolinic acid-induced seizures and long-term changes in brain oscillations in an animal model of glutaric acidemia type I. J Neurosci Res 2021. [PMID: 34713466 DOI: 10.1002/jnr.24980] [Reference Citation Analysis]
11 Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2021. [PMID: 34665389 DOI: 10.1007/s10571-021-01156-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
12 Walker MA, Miranda M, Allred A, Mootha VK. On the dynamic and even reversible nature of Leigh syndrome: Lessons from human imaging and mouse models. Curr Opin Neurobiol 2021;72:80-90. [PMID: 34656053 DOI: 10.1016/j.conb.2021.09.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ribeiro RT, Seminotti B, Zanatta Â, de Oliveira FH, Amaral AU, Leipnitz G, Wajner M. Neuronal Death, Glial Reactivity, Microglia Activation, Oxidative Stress and Bioenergetics Impairment Caused by Intracerebroventricular Administration of D-2-hydroxyglutaric Acid to Neonatal Rats. Neuroscience 2021;471:115-32. [PMID: 34333063 DOI: 10.1016/j.neuroscience.2021.07.024] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Guerreiro G, Faverzani J, Moura AP, Volfart V, Gome Dos Reis B, Sitta A, Gonzalez EA, de Lima Rosa G, Coitinho AS, Baldo G, Wajner M, Vargas CR. Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Arch Biochem Biophys 2021;709:108970. [PMID: 34181873 DOI: 10.1016/j.abb.2021.108970] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 May FJ, Head PE, Venturoni LE, Chandler RJ, Venditti CP. Central nervous system-targeted adeno-associated virus gene therapy in methylmalonic acidemia. Mol Ther Methods Clin Dev 2021;21:765-76. [PMID: 34169115 DOI: 10.1016/j.omtm.2021.04.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Zschocke J. Inherited disorders of intermediary metabolism – a group-based approach. Medizinische Genetik 2021;33:21-7. [DOI: 10.1515/medgen-2021-2053] [Reference Citation Analysis]
17 de Moura Alvorcem L, Britto R, Cecatto C, Cristina Roginski A, Rohden F, Nathali Scholl J, Guma FCR, Figueiró F, Umpierrez Amaral A, Zanatta G, Seminotti B, Wajner M, Leipnitz G. Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. J Neurochem 2021;158:262-81. [PMID: 33837559 DOI: 10.1111/jnc.15363] [Reference Citation Analysis]
18 Rodrigues FS, França AP, Broetto N, Furian AF, Oliveira MS, Santos ARS, Royes LFF, Fighera MR. Sustained glial reactivity induced by glutaric acid may be the trigger to learning delay in early and late phases of development: Involvement of p75NTR receptor and protection by N-acetylcysteine. Brain Res 2020;1749:147145. [PMID: 33035499 DOI: 10.1016/j.brainres.2020.147145] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Wajner M, Vargas CR, Amaral AU. Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Arch Biochem Biophys 2020;696:108646. [PMID: 33098870 DOI: 10.1016/j.abb.2020.108646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Märtner EMC, Maier EM, Mengler K, Thimm E, Schiergens KA, Marquardt T, Santer R, Weinhold N, Marquardt I, Das AM, Freisinger P, Grünert SC, Vossbeck J, Steinfeld R, Baumgartner MR, Beblo S, Dieckmann A, Näke A, Lindner M, Heringer-Seifert J, Lenz D, Hoffmann GF, Mühlhausen C, Ensenauer R, Garbade SF, Kölker S, Boy N. Impact of interventional and non-interventional variables on anthropometric long-term development in glutaric aciduria type 1: A national prospective multi-centre study. J Inherit Metab Dis 2021;44:629-38. [PMID: 33274439 DOI: 10.1002/jimd.12335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
21 Phua CS, Kumar KR, Levy S. Clinical characteristics and diagnostic clues to Neurometabolic causes of dystonia. Journal of the Neurological Sciences 2020;419:117167. [DOI: 10.1016/j.jns.2020.117167] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
22 Perales-Clemente E, Hewitt AL, Studinski AL, Tillema JM, Laxen WJ, Oglesbee D, Graff AH, Rinaldo P, Lanpher BC. Bilateral subdural hematomas and retinal hemorrhages mimicking nonaccidental trauma in a patient with D-2-hydroxyglutaric aciduria. JIMD Rep 2021;58:21-8. [PMID: 33728243 DOI: 10.1002/jmd2.12188] [Reference Citation Analysis]
23 Grings M, Wajner M, Leipnitz G. Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cell Mol Neurobiol. [DOI: 10.1007/s10571-020-00976-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
24 Seminotti B, Amaral AU, Grings M, Ribeiro CAJ, Leipnitz G, Wajner M. Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdh-/-) Mice to Oxidative Stress. Neurotox Res 2020;38:1024-36. [PMID: 33001399 DOI: 10.1007/s12640-020-00291-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Dimitrov B, Molema F, Williams M, Schmiesing J, Mühlhausen C, Baumgartner MR, Schumann A, Kölker S. Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise. J Inherit Metab Dis 2021;44:9-21. [PMID: 32412122 DOI: 10.1002/jimd.12254] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
26 Guerreiro G, Diaz Jaques CE, Wajner M, Vargas CR. Elevated levels of BDNF and cathepsin‐ d as possible peripheral markers of neurodegeneration in plasma of patients with glutaric acidemia type I. Int j dev neurosci 2020;80:42-9. [DOI: 10.1002/jdn.10006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]