BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ralto KM, Rhee EP, Parikh SM. NAD+ homeostasis in renal health and disease. Nat Rev Nephrol 2020;16:99-111. [PMID: 31673160 DOI: 10.1038/s41581-019-0216-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu W, Li L, Zhang L. NAD+ Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020;11:901. [PMID: 32903597 DOI: 10.3389/fphys.2020.00901] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
2 Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020;319:F1105-16. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
3 Wang TY, Wang RF, Bu ZY, Targher G, Byrne CD, Sun DQ, Zheng MH. Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol 2022. [PMID: 35013596 DOI: 10.1038/s41581-021-00519-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
4 Braga PC, Alves MG, Rodrigues AS, Oliveira PF. Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022;23:1776. [PMID: 35163697 DOI: 10.3390/ijms23031776] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Ke J, Zhao F, Luo Y, Deng F, Wu X. MiR-124 Negatively Regulated PARP1 to Alleviate Renal Ischemia-reperfusion Injury by Inhibiting TNFα/RIP1/RIP3 Pathway. Int J Biol Sci 2021;17:2099-111. [PMID: 34131409 DOI: 10.7150/ijbs.58163] [Reference Citation Analysis]
6 Standage SW, Xu S, Brown L, Ma Q, Koterba A, Lahni P, Devarajan P, Kennedy MA. NMR-based serum and urine metabolomic profile reveals suppression of mitochondrial pathways in experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2021;320:F984-F1000. [PMID: 33843271 DOI: 10.1152/ajprenal.00582.2020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ding XQ, Jian TY, Gai YN, Niu GT, Liu Y, Meng XH, Li J, Lyu H, Ren BR, Chen J. Chicoric Acid Attenuated Renal Tubular Injury in HFD-Induced Chronic Kidney Disease Mice through the Promotion of Mitophagy via the Nrf2/PINK/Parkin Pathway. J Agric Food Chem 2022. [PMID: 35195395 DOI: 10.1021/acs.jafc.1c07795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ma N, Wei Z, Hu J, Gu W, Ci X. Farrerol Ameliorated Cisplatin-Induced Chronic Kidney Disease Through Mitophagy Induction via Nrf2/PINK1 Pathway. Front Pharmacol 2021;12:768700. [PMID: 34858188 DOI: 10.3389/fphar.2021.768700] [Reference Citation Analysis]
10 He S, Gao Q, Wu X, Shi J, Zhang Y, Yang J, Li X, Du S, Zhang Y, Yu J. NAD+ ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med 2022. [PMID: 35137552 DOI: 10.1111/jcmm.17222] [Reference Citation Analysis]
11 Jang HS, Noh MR, Kim J, Padanilam BJ. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front Med (Lausanne) 2020;7:65. [PMID: 32226789 DOI: 10.3389/fmed.2020.00065] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
12 Martin WP, Chuah YHD, Abdelaal M, Pedersen A, Malmodin D, Abrahamsson S, Hutter M, Godson C, Brennan EP, Fändriks L, le Roux CW, Docherty NG. Medications Activating Tubular Fatty Acid Oxidation Enhance the Protective Effects of Roux-en-Y Gastric Bypass Surgery in a Rat Model of Early Diabetic Kidney Disease. Front Endocrinol 2022;12:757228. [DOI: 10.3389/fendo.2021.757228] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yao W, Liao H, Pang M, Pan L, Guan Y, Huang X, Hei Z, Luo C, Ge M, Yan L. Inhibition of the NADPH Oxidase Pathway Reduces Ferroptosis during Septic Renal Injury in Diabetic Mice. Oxidative Medicine and Cellular Longevity 2022;2022:1-16. [DOI: 10.1155/2022/1193734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
14 Piechowicz J, Gamian A, Zwolińska D, Polak-Jonkisz D. Adenine Nucleotide Metabolites in Uremic Erythrocytes as Metabolic Markers of Chronic Kidney Disease in Children. J Clin Med 2021;10:5208. [PMID: 34768727 DOI: 10.3390/jcm10215208] [Reference Citation Analysis]
15 Amjad S, Nisar S, Bhat AA, Shah AR, Frenneaux MP, Fakhro K, Haris M, Reddy R, Patay Z, Baur J, Bagga P. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol Metab 2021;49:101195. [PMID: 33609766 DOI: 10.1016/j.molmet.2021.101195] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
16 Bugarski M, Ghazi S, Polesel M, Martins JR, Hall AM. Changes in NAD and Lipid Metabolism Drive Acidosis-Induced Acute Kidney Injury. J Am Soc Nephrol 2021;32:342-56. [PMID: 33478973 DOI: 10.1681/ASN.2020071003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
17 de Boer IH, Alpers CE, Azeloglu EU, Balis UGJ, Barasch JM, Barisoni L, Blank KN, Bomback AS, Brown K, Dagher PC, Dighe AL, Eadon MT, El-Achkar TM, Gaut JP, Hacohen N, He Y, Hodgin JB, Jain S, Kellum JA, Kiryluk K, Knight R, Laszik ZG, Lienczewski C, Mariani LH, McClelland RL, Menez S, Moledina DG, Mooney SD, O'Toole JF, Palevsky PM, Parikh CR, Poggio ED, Rosas SE, Rosengart MR, Sarwal MM, Schaub JA, Sedor JR, Sharma K, Steck B, Toto RD, Troyanskaya OG, Tuttle KR, Vazquez MA, Waikar SS, Williams K, Wilson FP, Zhang K, Iyengar R, Kretzler M, Himmelfarb J; Kidney Precision Medicine Project. Rationale and design of the Kidney Precision Medicine Project. Kidney Int 2021;99:498-510. [PMID: 33637194 DOI: 10.1016/j.kint.2020.08.039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
18 Verissimo T, Faivre A, Rinaldi A, Lindenmeyer M, Delitsikou V, Veyrat-Durebex C, Heckenmeyer C, Fernandez M, Berchtold L, Dalga D, Cohen C, Naesens M, Ricksten SE, Martin PY, Pugin J, Merlier F, Haupt K, Rutkowski JM, Moll S, Cippà PE, Legouis D, de Seigneux S. Decreased Renal Gluconeogenesis Is a Hallmark of Chronic Kidney Disease. J Am Soc Nephrol 2022:ASN. [PMID: 35273087 DOI: 10.1681/ASN.2021050680] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zeng M, Wei TF, Chen C, Shen C, Gao TY, Xie X, Wu M, Lu YB, Zhang WP. Nicotinamide phosphoribosyltransferase inhibitor ameliorates mouse aging-induced cognitive impairment. J Cereb Blood Flow Metab 2021;:271678X211006291. [PMID: 33818184 DOI: 10.1177/0271678X211006291] [Reference Citation Analysis]
20 Kalantari K, Rosner MH. Recent advances in the pharmacological management of sepsis-associated acute kidney injury. Expert Rev Clin Pharmacol 2021;14:1401-11. [PMID: 34493146 DOI: 10.1080/17512433.2021.1978287] [Reference Citation Analysis]
21 Poljsak B, Kovač V, Milisav I. Healthy Lifestyle Recommendations: Do the Beneficial Effects Originate from NAD+ Amount at the Cellular Level? Oxid Med Cell Longev 2020;2020:8819627. [PMID: 33414897 DOI: 10.1155/2020/8819627] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wimalawansa SJ, Dissanayake CB. CaPO4-Mediated CKD of Crystallo-Tubular-Nephropathy [CKD-CTN]—A Crystal and Nanotube-Induced Geo-Environmental Disease. Front Water 2022;4:816643. [DOI: 10.3389/frwa.2022.816643] [Reference Citation Analysis]
23 Takahashi R, Kanda T, Komatsu M, Itoh T, Minakuchi H, Urai H, Kuroita T, Shigaki S, Tsukamoto T, Higuchi N, Ikeda M, Yamanaka R, Yoshimura N, Ono T, Yukioka H, Hasegawa K, Tokuyama H, Wakino S, Itoh H. The significance of NAD + metabolites and nicotinamide N-methyltransferase in chronic kidney disease. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-10476-6] [Reference Citation Analysis]
24 Pan Z, Feng Y, Wang Z, Lei Z, Han Q, Zhang J. MERS-CoV nsp1 impairs the cellular metabolic processes by selectively downregulating mRNAs in a novel granules. Virulence 2022;13:355-69. [DOI: 10.1080/21505594.2022.2032928] [Reference Citation Analysis]
25 Li Y, Hepokoski M, Gu W, Simonson T, Singh P. Targeting Mitochondria and Metabolism in Acute Kidney Injury. J Clin Med 2021;10:3991. [PMID: 34501442 DOI: 10.3390/jcm10173991] [Reference Citation Analysis]
26 Simic P, Vela Parada XF, Parikh SM, Dellinger R, Guarente LP, Rhee EP. Nicotinamide riboside with pterostilbene (NRPT) increases NAD+ in patients with acute kidney injury (AKI): a randomized, double-blind, placebo-controlled, stepwise safety study of escalating doses of NRPT in patients with AKI. BMC Nephrol 2020;21:342. [PMID: 32791973 DOI: 10.1186/s12882-020-02006-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
27 Chini CCS, Zeidler JD, Kashyap S, Warner G, Chini EN. Evolving concepts in NAD+ metabolism. Cell Metab 2021;33:1076-87. [PMID: 33930322 DOI: 10.1016/j.cmet.2021.04.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Hussain M, Krishnamurthy S, Patel J, Kim E, Baptiste BA, Croteau DL, Bohr VA. Skin Abnormalities in Disorders with DNA Repair Defects, Premature Aging, and Mitochondrial Dysfunction. J Invest Dermatol 2021;141:968-75. [PMID: 33353663 DOI: 10.1016/j.jid.2020.10.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
29 Li L, Xu W, Zhang L. KLF15 Regulates Oxidative Stress Response in Cardiomyocytes through NAD. Metabolites 2021;11:620. [PMID: 34564436 DOI: 10.3390/metabo11090620] [Reference Citation Analysis]
30 Wang Y, Wu CJ, Du Y, Liu YQ, Cai JR, Wu XQ, Hu SQ. SIRT2 tyrosine nitration by peroxynitrite in response to renal ischemia/reperfusion injury. Free Radic Res 2022;:1-15. [PMID: 34979841 DOI: 10.1080/10715762.2021.2024529] [Reference Citation Analysis]
31 Dwyer KM, Kishore BK, Robson SC. Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 2020;16:509-24. [PMID: 32641760 DOI: 10.1038/s41581-020-0304-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
32 Ruiz-Ortega M, Lamas S, Ortiz A. Antifibrotic Agents for the Management of CKD: A Review. Am J Kidney Dis 2022:S0272-6386(21)01051-9. [PMID: 34999158 DOI: 10.1053/j.ajkd.2021.11.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Abdellatif M, Sedej S, Kroemer G. NAD+ Metabolism in Cardiac Health, Aging, and Disease. Circulation 2021;144:1795-817. [PMID: 34843394 DOI: 10.1161/CIRCULATIONAHA.121.056589] [Reference Citation Analysis]
34 Han Z, Ma K, Tao H, Liu H, Zhang J, Sai X, Li Y, Chi M, Nian Q, Song L, Liu C. A Deep Insight Into Regulatory T Cell Metabolism in Renal Disease: Facts and Perspectives. Front Immunol 2022;13:826732. [PMID: 35251009 DOI: 10.3389/fimmu.2022.826732] [Reference Citation Analysis]
35 Sharma I, Liao Y, Zheng X, Kanwar YS. Modulation of gentamicin-induced acute kidney injury by myo-inositol oxygenase via the ROS/ALOX-12/12-HETE/GPR31 signaling pathway. JCI Insight 2022;7:e155487. [PMID: 35315361 DOI: 10.1172/jci.insight.155487] [Reference Citation Analysis]
36 Davidson JA, Frank BS, Urban TT, Twite M, Jaggers J, Khailova L, Klawitter J. Serum metabolic profile of postoperative acute kidney injury following infant cardiac surgery with cardiopulmonary bypass. Pediatr Nephrol 2021. [PMID: 33954809 DOI: 10.1007/s00467-021-05095-8] [Reference Citation Analysis]
37 Raines NH, Cheung MD, Wilson LS, Edberg JC, Erdmann NB, Schmaier AA, Berryhill TF, Manickas-Hill Z, Li JZ, Yu XG, Agarwal A, Barnes S, Parikh SM. NAD+ biosynthetic impairment and urinary metabolomic alterations observed in hospitalized adults with COVID-19-related acute kidney injury. Kidney Int Rep 2021. [PMID: 34541422 DOI: 10.1016/j.ekir.2021.09.001] [Reference Citation Analysis]
38 Torosyan R, Huang S, Bommi PV, Tiwari R, An SY, Schonfeld M, Rajendran G, Kavanaugh MA, Gibbs B, Truax AD, Bohney S, Calcutt MW, Kerr EW, Leonardi R, Gao P, Chandel NS, Kapitsinou PP. Hypoxic preconditioning protects against ischemic kidney injury through the IDO1/kynurenine pathway. Cell Rep 2021;36:109547. [PMID: 34407414 DOI: 10.1016/j.celrep.2021.109547] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Huang T, Gao Y, Cao Y, Wang Q, Dong Z. Downregulation of mmu_circ_0000943 ameliorates renal ischemia reperfusion-triggered inflammation and oxidative stress via regulating mmu-miR-377-3p/Egr2 axis. International Immunopharmacology 2022;106:108614. [DOI: 10.1016/j.intimp.2022.108614] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Manrique-Caballero CL, Kellum JA, Gómez H, De Franco F, Giacchè N, Pellicciari R. Innovations and Emerging Therapies to Combat Renal Cell Damage: NAD+ As a Drug Target. Antioxid Redox Signal 2021;:1-18. [PMID: 33499758 DOI: 10.1089/ars.2020.8066] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
41 Barisione C, Verzola D, Garibaldi S, Ferrari PF, Garibotto G, Ameri P, Pane B, Spinella G, Pratesi G, Palombo D. Renal Ischemia/Reperfusion Early Induces Myostatin and PCSK9 Expression in Rat Kidneys and HK-2 Cells. Int J Mol Sci 2021;22:9884. [PMID: 34576046 DOI: 10.3390/ijms22189884] [Reference Citation Analysis]
42 Xu J, Kitada M, Koya D. NAD+ Homeostasis in Diabetic Kidney Disease. Front Med (Lausanne) 2021;8:703076. [PMID: 34368195 DOI: 10.3389/fmed.2021.703076] [Reference Citation Analysis]
43 Duan A, Wang H, Zhu Y, Wang Q, Zhang J, Hou Q, Xing Y, Shi J, Hou J, Qin Z, Chen Z, Liu Z, Yang J. Chromatin architecture reveals cell type-specific target genes for kidney disease risk variants. BMC Biol 2021;19:38. [PMID: 33627123 DOI: 10.1186/s12915-021-00977-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Chaiyarit S, Thongboonkerd V. Mitochondrial Dysfunction and Kidney Stone Disease. Front Physiol 2020;11:566506. [PMID: 33192563 DOI: 10.3389/fphys.2020.566506] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
45 Lin PH, Duann P. Dyslipidemia in Kidney Disorders: Perspectives on Mitochondria Homeostasis and Therapeutic Opportunities. Front Physiol 2020;11:1050. [PMID: 33013450 DOI: 10.3389/fphys.2020.01050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol 2021;17:299-318. [PMID: 33235391 DOI: 10.1038/s41581-020-00369-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
47 Rodriguez-Iturbe B, Johnson RJ, Lanaspa MA, Nakagawa T, García-Arroyo FE, Sanchez-Lozada LG. SIRTUIN DEFICIENCY AND THE ADVERSE EFFECTS OF FRUCTOSE AND URIC ACID SYNTHESIS. Am J Physiol Regul Integr Comp Physiol 2022. [PMID: 35271385 DOI: 10.1152/ajpregu.00238.2021] [Reference Citation Analysis]
48 Zhou XY, Zheng HY, Han L, Wang Y, Zhang L, Shu XM, Zhang ML, Liu GN, Ding LS. Copy Number Variations Analysis Identifies QPRT as a Candidate Gene Associated With Susceptibility for Solitary Functioning Kidney. Front Genet 2021;12:575830. [PMID: 34079576 DOI: 10.3389/fgene.2021.575830] [Reference Citation Analysis]
49 Zapata-Pérez R, Tammaro A, Schomakers BV, Scantlebery AML, Denis S, Elfrink HL, Giroud-Gerbetant J, Cantó C, López-Leonardo C, McIntyre RL, van Weeghel M, Sánchez-Ferrer Á, Houtkooper RH. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB J 2021;35:e21456. [PMID: 33724555 DOI: 10.1096/fj.202001826R] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
50 Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. Advances in fluorescence microscopy techniques to study kidney function. Nat Rev Nephrol 2021;17:128-44. [PMID: 32948857 DOI: 10.1038/s41581-020-00337-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
51 Kargaran PK, Mosqueira D, Kozicz T. Mitochondrial Medicine: Genetic Underpinnings and Disease Modeling Using Induced Pluripotent Stem Cell Technology. Front Cardiovasc Med 2020;7:604581. [PMID: 33585579 DOI: 10.3389/fcvm.2020.604581] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Ummarino S, Hausman C, Gaggi G, Rinaldi L, Bassal MA, Zhang Y, Seelam AJ, Kobayashi IS, Borchiellini M, Ebralidze AK, Ghinassi B, Trinh BQ, Kobayashi SS, Di Ruscio A. NAD Modulates DNA Methylation and Cell Differentiation. Cells 2021;10:2986. [PMID: 34831209 DOI: 10.3390/cells10112986] [Reference Citation Analysis]
53 Curran CS, Kopp JB. Aryl Hydrocarbon Receptor Mechanisms Affecting Chronic Kidney Disease. Front Pharmacol 2022;13:782199. [DOI: 10.3389/fphar.2022.782199] [Reference Citation Analysis]
54 Jung D, Jung JB, Kang S, Li K, Hwang I, Jeong JH, Kim HS, Lee J. Toxico-metabolomics study of a deep eutectic solvent comprising choline chloride and urea suggests in vivo toxicity involving oxidative stress and ammonia stress. Green Chem 2021;23:1300-11. [DOI: 10.1039/d0gc03927f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
55 Wang Y, Cai J, Tang C, Dong Z. Mitophagy in Acute Kidney Injury and Kidney Repair. Cells 2020;9:E338. [PMID: 32024113 DOI: 10.3390/cells9020338] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
56 Groth B, Venkatakrishnan P, Lin SJ. NAD+ Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021;8:686412. [PMID: 34095234 DOI: 10.3389/fmolb.2021.686412] [Reference Citation Analysis]
57 Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 2022;:155194. [PMID: 35346693 DOI: 10.1016/j.metabol.2022.155194] [Reference Citation Analysis]
58 Kasak P, Hrobárik P, Osička J, Soláriková D, Horváth B, Tkac J, Sadasivuni KK, AlMaadeed MA, Mikláš R. Nicotinamide-based supergelator self-assembling via asymmetric hydrogen bonding NH⋯OC and H⋯Br- pattern for reusable, moldable and self-healable nontoxic fuel gels. J Colloid Interface Sci 2021;603:182-90. [PMID: 34186397 DOI: 10.1016/j.jcis.2021.06.071] [Reference Citation Analysis]
59 Jonscher KR, Chowanadisai W, Rucker RB. Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021;11:1441. [PMID: 34680074 DOI: 10.3390/biom11101441] [Reference Citation Analysis]
60 Morales JA, Tise CG, Narang A, Grimm PC, Enns GM, Lee CU. Profound neonatal lactic acidosis and renal tubulopathy in a patient with glycogen storage disease type IXɑ2 secondary to a de novo pathogenic variant in PHKA2. Mol Genet Metab Rep 2021;27:100765. [PMID: 34277355 DOI: 10.1016/j.ymgmr.2021.100765] [Reference Citation Analysis]
61 Zhao Y, Zhang J, Zheng Y, Zhang Y, Zhang XJ, Wang H, Du Y, Guan J, Wang X, Fu J. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation 2021;18:207. [PMID: 34530866 DOI: 10.1186/s12974-021-02250-8] [Reference Citation Analysis]
62 Kim JY, Bai Y, Jayne LA, Abdulkader F, Gandhi M, Perreau T, Parikh SV, Gardner DS, Davidson AJ, Sander V, Song MA, Bajwa A, Pabla NS. SOX9 promotes stress-responsive transcription of VGF nerve growth factor inducible gene in renal tubular epithelial cells. J Biol Chem 2020;295:16328-41. [PMID: 32887795 DOI: 10.1074/jbc.RA120.015110] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Morevati M, Egstrand S, Nordholm A, Mace ML, Andersen CB, Salmani R, Olgaard K, Lewin E. Effect of NAD+ boosting on kidney ischemia-reperfusion injury. PLoS One 2021;16:e0252554. [PMID: 34061900 DOI: 10.1371/journal.pone.0252554] [Reference Citation Analysis]
64 Clark AJ, Parikh SM. Mitochondrial Metabolism in Acute Kidney Injury. Semin Nephrol 2020;40:101-13. [PMID: 32303274 DOI: 10.1016/j.semnephrol.2020.01.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
65 Martínez-Morcillo FJ, Cantón-Sandoval J, Martínez-Menchón T, Corbalán-Vélez R, Mesa-Del-Castillo P, Pérez-Oliva AB, García-Moreno D, Mulero V. Non-canonical roles of NAMPT and PARP in inflammation. Dev Comp Immunol 2021;115:103881. [PMID: 33038343 DOI: 10.1016/j.dci.2020.103881] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Piedrafita A, Balayssac S, Mayeur N, Gazut S, Grossac J, Buleon M, Alves M, Klein J, Minville V, Marcheix B, Schanstra JP, Faguer S. The tryptophan pathway and nicotinamide supplementation in ischaemic acute kidney injury. Clin Kidney J 2021;14:2490-6. [PMID: 34950461 DOI: 10.1093/ckj/sfab050] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Fontecha-Barriuso M, Lopez-Diaz AM, Carriazo S, Ortiz A, Sanz AB. Nicotinamide and acute kidney injury. Clin Kidney J 2021;14:2453-62. [PMID: 34950458 DOI: 10.1093/ckj/sfab173] [Reference Citation Analysis]
68 Lin W, Wu X, Wen J, Fei Y, Wu J, Li X, Zhang Q, Dong Y, Xu T, Fan Y, Wang N. NAicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury. Nutrition 2021;91-92:111376. [PMID: 34274652 DOI: 10.1016/j.nut.2021.111376] [Reference Citation Analysis]
69 Pîrvu AS, Andrei AM, Stănciulescu EC, Baniță IM, Pisoschi CG, Jurja S, Ciuluvica R. NAD+ metabolism and retinal degeneration (Review). Exp Ther Med 2021;22:670. [PMID: 33986835 DOI: 10.3892/etm.2021.10102] [Reference Citation Analysis]
70 Liu X, Luo D, Huang S, Liu S, Zhang B, Wang F, Lu J, Chen J, Li S. Impaired Nicotinamide Adenine Dinucleotide Biosynthesis in the Kidney of Chronic Kidney Disease. Front Physiol 2021;12:723690. [PMID: 34603081 DOI: 10.3389/fphys.2021.723690] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Fafián-Labora JA, O'Loghlen A. Classical and Nonclassical Intercellular Communication in Senescence and Ageing. Trends Cell Biol 2020;30:628-39. [PMID: 32505550 DOI: 10.1016/j.tcb.2020.05.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]