BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Münz C. Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol 2019;17:691-700. [PMID: 31477887 DOI: 10.1038/s41579-019-0249-7] [Cited by in Crossref: 84] [Cited by in F6Publishing: 83] [Article Influence: 28.0] [Reference Citation Analysis]
Number Citing Articles
1 Hu J, Li Y, Li H, Shi F, Xie L, Zhao L, Tang M, Luo X, Jia W, Fan J, Zhou J, Gao Q, Qiu S, Wu W, Zhang X, Liao W, Bode AM, Cao Y. Targeting Epstein-Barr virus oncoprotein LMP1-mediated high oxidative stress suppresses EBV lytic reactivation and sensitizes tumors to radiation therapy. Theranostics 2020;10:11921-37. [DOI: 10.7150/thno.46006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
2 Bauer M, Jasinski-Bergner S, Mandelboim O, Wickenhauser C, Seliger B. Epstein-Barr Virus-Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers (Basel) 2021;13:5189. [PMID: 34680337 DOI: 10.3390/cancers13205189] [Reference Citation Analysis]
3 Tse E, Kwong YL. Recent Advances in the Diagnosis and Treatment of Natural Killer Cell Malignancies. Cancers (Basel) 2022;14:597. [PMID: 35158865 DOI: 10.3390/cancers14030597] [Reference Citation Analysis]
4 Manara F, Jay A, Odongo GA, Mure F, Maroui MA, Diederichs A, Sirand C, Cuenin C, Granai M, Mundo L, Hernandez-Vargas H, Lazzi S, Khoueiry R, Gruffat H, Herceg Z, Accardi R. Epigenetic Alteration of the Cancer-Related Gene TGFBI in B Cells Infected with Epstein-Barr Virus and Exposed to Aflatoxin B1: Potential Role in Burkitt Lymphoma Development. Cancers (Basel) 2022;14:1284. [PMID: 35267594 DOI: 10.3390/cancers14051284] [Reference Citation Analysis]
5 Diggins NL, Skalsky RL, Hancock MH. Regulation of Latency and Reactivation by Human Cytomegalovirus miRNAs. Pathogens 2021;10:200. [PMID: 33668486 DOI: 10.3390/pathogens10020200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kimura H, Okuno Y, Sato Y, Watanabe T, Murata T. Deletion of Viral microRNAs in the Oncogenesis of Epstein-Barr Virus-Associated Lymphoma. Front Microbiol 2021;12:667968. [PMID: 34305835 DOI: 10.3389/fmicb.2021.667968] [Reference Citation Analysis]
7 Chung YL, Wu ML. Clonal dynamics of tumor-infiltrating T-cell receptor beta-chain repertoires in the peripheral blood in response to concurrent chemoradiotherapy for Epstein-Barr virus-associated nasopharyngeal carcinoma. Oncoimmunology 2021;10:1968172. [PMID: 34513316 DOI: 10.1080/2162402X.2021.1968172] [Reference Citation Analysis]
8 Trompet E, Temblador A, Gillemot S, Topalis D, Snoeck R, Andrei G. An MHV-68 Mutator Phenotype Mutant Virus, Confirmed by CRISPR/Cas9-Mediated Gene Editing of the Viral DNA Polymerase Gene, Shows Reduced Viral Fitness. Viruses 2021;13:985. [PMID: 34073189 DOI: 10.3390/v13060985] [Reference Citation Analysis]
9 Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021;10:1424. [PMID: 34200500 DOI: 10.3390/cells10061424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021;11:605258. [PMID: 33842383 DOI: 10.3389/fcimb.2021.605258] [Reference Citation Analysis]
11 Wang H, Liu J, Zhang Y, Sun L, Zhao M, Luo B. Eukaryotic initiating factor eIF4E is targeted by EBV-encoded miR-BART11-3p and regulates cell cycle and apoptosis in EBV-associated gastric carcinoma. Virus Genes 2021;57:358-68. [PMID: 34146250 DOI: 10.1007/s11262-021-01854-9] [Reference Citation Analysis]
12 Fujiwara S, Nakamura H. Chronic Active Epstein-Barr Virus Infection: Is It Immunodeficiency, Malignancy, or Both? Cancers (Basel) 2020;12:E3202. [PMID: 33143184 DOI: 10.3390/cancers12113202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
13 Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol 2020;11:587380. [PMID: 33488588 DOI: 10.3389/fimmu.2020.587380] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
14 Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS 2021;25:358-71. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Hwang YY, Au-Yeung R, Leung RYY, Tse E, Kwong YL. Clonal heterogeneity of polymorphic B-cell lymphoproliferative disease, EBV-positive, iatrogenic/immune senescence: implications on pathogenesis and treatment. Hematology 2022;27:684-90. [PMID: 35666668 DOI: 10.1080/16078454.2022.2081299] [Reference Citation Analysis]
16 Li H, Li Y, Hu J, Liu S, Luo X, Tang M, Bode AM, Dong Z, Liu X, Liao W, Cao Y. (-)-Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK signal axes. Oncol Res 2021. [PMID: 33629943 DOI: 10.3727/096504021X16135618512563] [Reference Citation Analysis]
17 Nehme Z, Pasquereau S, Haidar Ahmad S, Coaquette A, Molimard C, Monnien F, Algros MP, Adotevi O, Diab Assaf M, Feugeas JP, Herbein G. Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene 2021;40:3030-46. [PMID: 33767437 DOI: 10.1038/s41388-021-01715-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Šudomová M, Berchová-Bímová K, Marzocco S, Liskova A, Kubatka P, Hassan STS. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses 2021;13:1014. [PMID: 34071559 DOI: 10.3390/v13061014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Sawada L, Vallinoto ACR, Brasil-Costa I. Regulation of the Immune Checkpoint Indoleamine 2,3-Dioxygenase Expression by Epstein-Barr Virus. Biomolecules 2021;11:1792. [PMID: 34944437 DOI: 10.3390/biom11121792] [Reference Citation Analysis]
20 Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, Zeng MS. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep 2021;22:e50128. [PMID: 33605073 DOI: 10.15252/embr.202050128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ungerleider N, Bullard W, Kara M, Wang X, Roberts C, Renne R, Tibbetts S, Flemington EK. EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathog 2021;17:e1009217. [PMID: 33956915 DOI: 10.1371/journal.ppat.1009217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020;77:4315-24. [PMID: 32367191 DOI: 10.1007/s00018-020-03538-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
23 Tang WR, Hsu CW, Lee CC, Huang WL, Lin CY, Hsu YT, Chang C, Tsai MT, Hu YN, Hsu CH, Chen PL, Chow NH, Roan JN. A Case Report of Posttransplant Lymphoproliferative Disorder After AstraZeneca Coronavirus Disease 2019 Vaccine in a Heart Transplant Recipient. Transplant Proc 2021:S0041-1345(21)00682-5. [PMID: 34702598 DOI: 10.1016/j.transproceed.2021.09.006] [Reference Citation Analysis]
24 Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021;1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Marongiu L, Allgayer H. Viruses in colorectal cancer. Mol Oncol 2021. [PMID: 34514694 DOI: 10.1002/1878-0261.13100] [Reference Citation Analysis]
26 Münz C. Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules 2022;12:38. [DOI: 10.3390/biom12010038] [Reference Citation Analysis]
27 Sun C, Chen XC, Kang YF, Zeng MS. The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development. Front Immunol 2021;12:677027. [PMID: 34168649 DOI: 10.3389/fimmu.2021.677027] [Reference Citation Analysis]
28 Münz C. Modification of EBV-Associated Pathologies and Immune Control by Coinfections. Front Oncol 2021;11:756480. [PMID: 34778072 DOI: 10.3389/fonc.2021.756480] [Reference Citation Analysis]
29 Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2021. [PMID: 34536980 DOI: 10.1111/febs.16206] [Reference Citation Analysis]
30 Mundo L, Del Porro L, Granai M, Siciliano MC, Mancini V, Santi R, Marcar L, Vrzalikova K, Vergoni F, Di Stefano G, Schiavoni G, Segreto G, Onyango N, Nyagol JA, Amato T, Bellan C, Anagnostopoulos I, Falini B, Leoncini L, Tiacci E, Lazzi S. Frequent traces of EBV infection in Hodgkin and non-Hodgkin lymphomas classified as EBV-negative by routine methods: expanding the landscape of EBV-related lymphomas. Mod Pathol 2020;33:2407-21. [PMID: 32483241 DOI: 10.1038/s41379-020-0575-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
31 Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022;119:e2123248119. [PMID: 35486690 DOI: 10.1073/pnas.2123248119] [Reference Citation Analysis]
32 Paganelli R. Resurrecting Epstein–Barr Virus. Pathogens 2022;11:772. [DOI: 10.3390/pathogens11070772] [Reference Citation Analysis]
33 Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022;127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Reference Citation Analysis]
34 Li Z, Baccianti F, Delecluse S, Tsai MH, Shumilov A, Cheng X, Ma S, Hoffmann I, Poirey R, Delecluse HJ. The Epstein-Barr virus noncoding RNA EBER2 transactivates the UCHL1 deubiquitinase to accelerate cell growth. Proc Natl Acad Sci U S A 2021;118:e2115508118. [PMID: 34686609 DOI: 10.1073/pnas.2115508118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Fachko DN, Chen Y, Skalsky RL. Epstein-Barr virus miR-BHRF1-3 targets the BZLF1 3'UTR and regulates the lytic cycle. J Virol 2021;:JVI0149521. [PMID: 34878852 DOI: 10.1128/JVI.01495-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Frappier L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res 2021;12:200218. [PMID: 34052467 DOI: 10.1016/j.tvr.2021.200218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Nečasová I, Stojaspal M, Motyčáková E, Brom T, Janovič T, Hofr C. Transcriptional regulators of human oncoviruses: structural and functional implications for anticancer therapy. NAR Cancer 2022;4:zcac005. [PMID: 35252867 DOI: 10.1093/narcan/zcac005] [Reference Citation Analysis]
38 Forconi CS, Mulama DH, Saikumar Lakshmi P, Foley J, Otieno JA, Kurtis JD, Berg LJ, Ong'echa JM, Münz C, Moormann AM. Interplay between IL-10, IFN-γ, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma. Cancers (Basel) 2021;13:5375. [PMID: 34771539 DOI: 10.3390/cancers13215375] [Reference Citation Analysis]
39 Ezema CA, Ezeorba TPC, Aguchem RN, Okagu IU. Therapeutic benefits of Salvia species: A focus on cancer and viral infection. Heliyon 2022;8:e08763. [DOI: 10.1016/j.heliyon.2022.e08763] [Reference Citation Analysis]
40 Münz C. Redirecting T Cells against Epstein-Barr Virus Infection and Associated Oncogenesis. Cells 2020;9:E1400. [PMID: 32512847 DOI: 10.3390/cells9061400] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
41 Ahmed W, Hassan Z, Abdelmowla YAA, Philip PS, Shmygol A, Khan G. Epstein-Barr virus noncoding small RNA (EBER1) induces cell proliferation by up-regulating cellular mitochondrial activity and calcium influx. Virus Res 2021;305:198550. [PMID: 34454973 DOI: 10.1016/j.virusres.2021.198550] [Reference Citation Analysis]
42 Wang Y, Ungerleider N, Hoffman BA, Kara M, Farrell PJ, Flemington EK, Lee N, Tibbetts SA. A Polymorphism in the Epstein-Barr Virus EBER2 Noncoding RNA Drives In Vivo Expansion of Latently Infected B Cells. mBio 2022;13:e0083622. [PMID: 35642944 DOI: 10.1128/mbio.00836-22] [Reference Citation Analysis]
43 Stripecke R, Münz C, Schuringa JJ, Bissig KD, Soper B, Meeham T, Yao LC, Di Santo JP, Brehm M, Rodriguez E, Wege AK, Bonnet D, Guionaud S, Howard KE, Kitchen S, Klein F, Saeb-Parsy K, Sam J, Sharma AD, Trumpp A, Trusolino L, Bult C, Shultz L. Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Mol Med 2020;12:e8662. [PMID: 32578942 DOI: 10.15252/emmm.201708662] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
44 Granai M, Facchetti M, Mancini V, Goedhals J, Sherriff A, Mundo L, Bellan C, Amato T, Sorrentino E, Ungari M, Raphael M, Leoncini L, Facchetti F, Lazzi S. Epstein-Barr virus reactivation influences clonal evolution in human herpesvirus-8-related lymphoproliferative disorders. Histopathology 2021. [PMID: 34431125 DOI: 10.1111/his.14551] [Reference Citation Analysis]
45 Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021;12:668461. [PMID: 34163446 DOI: 10.3389/fmicb.2021.668461] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Beer S, Wange LE, Zhang X, Kuklik-Roos C, Enard W, Hammerschmidt W, Scialdone A, Kempkes B. EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving S-phase progression of Epstein-Barr virus-infected B cells. Proc Natl Acad Sci U S A 2022;119:e2200512119. [PMID: 35857872 DOI: 10.1073/pnas.2200512119] [Reference Citation Analysis]
47 Bernaudat F, Gustems M, Günther J, Oliva MF, Buschle A, Göbel C, Pagniez P, Lupo J, Signor L, Müller CW, Morand P, Sattler M, Hammerschmidt W, Petosa C. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/BZLF1. Nucleic Acids Res 2021:gkab1183. [PMID: 34893887 DOI: 10.1093/nar/gkab1183] [Reference Citation Analysis]
48 Masucci MG. Herpesvirus ubiquitin deconjugases. Semin Cell Dev Biol 2021:S1084-9521(21)00274-3. [PMID: 34776333 DOI: 10.1016/j.semcdb.2021.10.011] [Reference Citation Analysis]
49 Houen G, Trier NH, Frederiksen JL. Epstein-Barr Virus and Multiple Sclerosis. Front Immunol 2020;11:587078. [PMID: 33391262 DOI: 10.3389/fimmu.2020.587078] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
50 Caduff N, McHugh D, Rieble L, Forconi CS, Ong'echa JM, Oluoch PO, Raykova A, Murer A, Böni M, Zuppiger L, Schulz TF, Blackbourn DJ, Chijioke O, Moormann AM, Münz C. KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection. Cell Rep 2021;35:109056. [PMID: 33951431 DOI: 10.1016/j.celrep.2021.109056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
51 Tse E, Au-Yeung R, Chau D, Hwang YY, Loong F, Kwong YL. Epstein-Barr virus-positive diffuse large B-cell lymphoma after frontline brentuximab vedotin treatment of classical Hodgkin lymphoma. Ann Hematol 2021. [PMID: 34757467 DOI: 10.1007/s00277-021-04709-3] [Reference Citation Analysis]
52 Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021;9:1290. [PMID: 34835222 DOI: 10.3390/vaccines9111290] [Reference Citation Analysis]
53 Kimura H, de Leval L, Cai Q, Kim WS. EBV-associated NK and T-cell lymphoid neoplasms. Curr Opin Oncol 2022. [PMID: 35900729 DOI: 10.1097/CCO.0000000000000889] [Reference Citation Analysis]
54 Fierti AO, Yakass MB, Okertchiri EA, Adadey SM, Quaye O. The Role of Epstein-Barr Virus in Modulating Key Tumor Suppressor Genes in Associated Malignancies: Epigenetics, Transcriptional, and Post-Translational Modifications. Biomolecules 2022;12:127. [DOI: 10.3390/biom12010127] [Reference Citation Analysis]
55 Deng Y, Chatterjee B, Zens K, Zdimerova H, Müller A, Schuhmachers P, Ligeon LA, Bongiovanni A, Capaul R, Zbinden A, Holler A, Stauss H, Hammerschmidt W, Münz C. CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 2021;137:3225-36. [PMID: 33827115 DOI: 10.1182/blood.2020009482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Yang J, Liu Z, Zeng B, Hu G, Gan R. Epstein-Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett 2020;495:191-9. [PMID: 32979463 DOI: 10.1016/j.canlet.2020.09.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Li J, Zhang Y, Luo B. Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers 2022;14:3552. [DOI: 10.3390/cancers14143552] [Reference Citation Analysis]
58 Oleynikova NA, Danilova NV, Grimuta MO, Malkov PG. Epstein-Barr Virus in the Development of Colorectal Cancer (Review). Sovrem Tekhnologii Med 2021;13:82-91. [PMID: 34603767 DOI: 10.17691/stm2021.13.4.09] [Reference Citation Analysis]
59 Miyagi S, Watanabe T, Hara Y, Arata M, Uddin MK, Mantoku K, Sago K, Yanagi Y, Suzuki T, Masud HMAA, Kawada JI, Nakamura S, Miyake Y, Sato Y, Murata T, Kimura H. A STING inhibitor suppresses EBV-induced B cell transformation and lymphomagenesis. Cancer Sci 2021. [PMID: 34609775 DOI: 10.1111/cas.15152] [Reference Citation Analysis]
60 Indari O, Jakhmola S, Pathak DK, Tanwar M, Kandpal M, Mishra A, Kumar R, Jha HC. Comparative Account of Biomolecular Changes Post Epstein Barr Virus Infection of the Neuronal and Glial Cells Using Raman Microspectroscopy. ACS Chem Neurosci 2022;13:1627-37. [PMID: 35561419 DOI: 10.1021/acschemneuro.2c00081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Jan Fada B, Reward E, Gu H. The Role of ND10 Nuclear Bodies in Herpesvirus Infection: A Frenemy for the Virus? Viruses 2021;13:239. [PMID: 33546431 DOI: 10.3390/v13020239] [Reference Citation Analysis]
62 Quaglia M, Merlotti G, De Andrea M, Borgogna C, Cantaluppi V. Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses 2021;13:277. [PMID: 33670195 DOI: 10.3390/v13020277] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
63 Bhaduri-McIntosh S, McIntosh MT. Inflammasome, the Constitutive Heterochromatin Machinery, and Replication of an Oncogenic Herpesvirus. Viruses 2021;13:846. [PMID: 34066537 DOI: 10.3390/v13050846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Qin N, Zhang Y, Xu L, Liu W, Luo B. Maintenance of Epstein-Barr virus latency through interaction of LMP2A with CXCR4. Arch Virol 2022. [PMID: 35752684 DOI: 10.1007/s00705-022-05511-w] [Reference Citation Analysis]
65 Lee SH, Choi SJ, Choi W, Cho S, Cho M, Kim DS, Kang BW, Kim JG, Lee YM, Cho H, Kang H. Cisplatin Resistance in Epstein-Barr-Virus-Associated Gastric Carcinoma Acquired through ATM Methylation. Cancers (Basel) 2021;13:4252. [PMID: 34503060 DOI: 10.3390/cancers13174252] [Reference Citation Analysis]
66 Läderach F, Münz C. Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms 2021;9:2191. [PMID: 34835317 DOI: 10.3390/microorganisms9112191] [Reference Citation Analysis]
67 Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2020;11:575255. [PMID: 33613459 DOI: 10.3389/fmicb.2020.575255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Wang L, Howell MEA, Sparks-Wallace A, Zhao J, Hensley CR, Nicksic CA, Horne SR, Mohr KB, Moorman JP, Yao ZQ, Ning S. The Ubiquitin Sensor and Adaptor Protein p62 Mediates Signal Transduction of a Viral Oncogenic Pathway. mBio 2021;12:e0109721. [PMID: 34488443 DOI: 10.1128/mBio.01097-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Lupo J, Germi R, Lancar R, Algarte-Genin M, Hendel-Chavez H, Taoufik Y, Mounier N, Partisani M, Bonnet F, Meyohas MC, Marchou B, Filippova A, Prevot S, Costagliola D, Morand P, Besson C. Prospective evaluation of blood Epstein-Barr virus DNA load and antibody profile in HIV-related non-Hodgkin lymphomas. AIDS 2021;35:861-8. [PMID: 33749224 DOI: 10.1097/QAD.0000000000002839] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Deng Y, Münz C. Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein-Barr Virus. Cancers (Basel) 2021;13:2275. [PMID: 34068598 DOI: 10.3390/cancers13092275] [Reference Citation Analysis]
71 Athanasiou E, Gargalionis AN, Boufidou F, Tsakris A. The Association of Human Herpesviruses with Malignant Brain Tumor Pathology and Therapy: Two Sides of a Coin. Int J Mol Sci 2021;22:2250. [PMID: 33668202 DOI: 10.3390/ijms22052250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Zhang C, Tan Q, Li S, Shen L, Zhang J, Liu Y, Yang W, Lu Z. Induction of EBV latent membrane protein-2A (LMP2A)-specific T cells and construction of individualized TCR-engineered T cells for EBV-associated malignancies. J Immunother Cancer 2021;9:e002516. [PMID: 34210819 DOI: 10.1136/jitc-2021-002516] [Reference Citation Analysis]
73 Chabay P. Advances in the Pathogenesis of EBV-Associated Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021;13:2717. [PMID: 34072731 DOI: 10.3390/cancers13112717] [Reference Citation Analysis]
74 Dochnal SA, Francois AK, Cliffe AR. De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021;13:1470. [PMID: 34452335 DOI: 10.3390/v13081470] [Reference Citation Analysis]
75 Zhang X, Schuhmachers P, Mourão A, Giansanti P, Murer A, Thumann S, Kuklik-Roos C, Beer S, Hauck SM, Hammerschmidt W, Küppers R, Kuster B, Raab M, Strebhardt K, Sattler M, Münz C, Kempkes B. PLK1-dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBV-infected mice. EMBO Rep 2021;22:e53007. [PMID: 34605140 DOI: 10.15252/embr.202153007] [Reference Citation Analysis]
76 Wang L, Ning S. New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021;13:5451. [PMID: 34771613 DOI: 10.3390/cancers13215451] [Reference Citation Analysis]
77 Burton EM, Voyer J, Gewurz BE. Epstein-Barr virus latency programs dynamically sensitize B cells to ferroptosis. Proc Natl Acad Sci U S A 2022;119:e2118300119. [PMID: 35275790 DOI: 10.1073/pnas.2118300119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Mihelson N, McGavern DB. Viral Control of Glioblastoma. Viruses 2021;13:1264. [PMID: 34209584 DOI: 10.3390/v13071264] [Reference Citation Analysis]
79 Farrell JA, Yetsko K, Whitmore L, Whilde J, Eastman CB, Ramia DR, Thomas R, Linser P, Creer S, Burkhalter B, Schnitzler C, Duffy DJ. Environmental DNA monitoring of oncogenic viral shedding and genomic profiling of sea turtle fibropapillomatosis reveals unusual viral dynamics. Commun Biol 2021;4:565. [PMID: 33980988 DOI: 10.1038/s42003-021-02085-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
80 Lee J, Stone J, Desai P, Kosowicz JG, Liu JO, Ambinder RF. Arsenicals, the Integrated Stress Response, and Epstein-Barr Virus Lytic Gene Expression. Viruses 2021;13:812. [PMID: 33946406 DOI: 10.3390/v13050812] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 Chen CC, Chang KC, Medeiros LJ, Lee JY. Hydroa Vacciniforme and Hydroa Vacciniforme-Like Lymphoproliferative Disorder: A Spectrum of Disease Phenotypes Associated with Ultraviolet Irradiation and Chronic Epstein-Barr Virus Infection. Int J Mol Sci 2020;21:E9314. [PMID: 33297336 DOI: 10.3390/ijms21239314] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Münz C. The Role of Dendritic Cells in Immune Control and Vaccination against -Herpesviruses. Viruses 2019;11:E1125. [PMID: 31817510 DOI: 10.3390/v11121125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
83 Li J, Nagy N, Liu J, Gupta S, Frisan T, Hennig T, Cameron DP, Baranello L, Masucci MG. The Epstein-Barr virus deubiquitinating enzyme BPLF1 regulates the activity of topoisomerase II during productive infection. PLoS Pathog 2021;17:e1009954. [PMID: 34543352 DOI: 10.1371/journal.ppat.1009954] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Liu N, Shi F, Yang L, Liao W, Cao Y. Oncogenic viral infection and amino acid metabolism in cancer progression: Molecular insights and clinical implications. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022;1877:188724. [DOI: 10.1016/j.bbcan.2022.188724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Münz C. Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Front Microbiol 2021;12:657387. [PMID: 34234755 DOI: 10.3389/fmicb.2021.657387] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
86 Schuhmachers P, Münz C. Modification of EBV Associated Lymphomagenesis and Its Immune Control by Co-Infections and Genetics in Humanized Mice. Front Immunol 2021;12:640918. [PMID: 33833760 DOI: 10.3389/fimmu.2021.640918] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 van Gent M, Reich A, Velu SE, Gack MU. Nonsense-mediated decay controls the reactivation of the oncogenic herpesviruses EBV and KSHV. PLoS Biol 2021;19:e3001097. [PMID: 33596193 DOI: 10.1371/journal.pbio.3001097] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020;12:E1479. [PMID: 32517128 DOI: 10.3390/cancers12061479] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
89 Manet E, Gruffat H. [Epstein-Barr virus: A key player in the development of multiple sclerosis]. Med Sci (Paris) 2022;38:422-4. [PMID: 35608462 DOI: 10.1051/medsci/2022051] [Reference Citation Analysis]
90 Dai DL, Li X, Wang L, Xie C, Jin Y, Zeng MS, Zuo Z, Xia TL. Identification of an N6-methyladenosine-mediated positive feedback loop that promotes Epstein-Barr virus infection. J Biol Chem 2021;296:100547. [PMID: 33741341 DOI: 10.1016/j.jbc.2021.100547] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
91 Reinhart NM, Akinyemi IA, Frey TR, Xu H, Agudelo C, Brathwaite J, Burton EM, Burgula S, McIntosh MT, Bhaduri-McIntosh S. The danger molecule HMGB1 cooperates with the NLRP3 inflammasome to sustain expression of the EBV lytic switch protein in Burkitt lymphoma cells. Virology 2022;566:136-42. [PMID: 34922257 DOI: 10.1016/j.virol.2021.12.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021;6:15. [PMID: 33436584 DOI: 10.1038/s41392-020-00376-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
93 Slabik C, Kalbarczyk M, Danisch S, Zeidler R, Klawonn F, Volk V, Krönke N, Feuerhake F, Ferreira de Figueiredo C, Blasczyk R, Olbrich H, Theobald SJ, Schneider A, Ganser A, von Kaisenberg C, Lienenklaus S, Bleich A, Hammerschmidt W, Stripecke R. CAR-T Cells Targeting Epstein-Barr Virus gp350 Validated in a Humanized Mouse Model of EBV Infection and Lymphoproliferative Disease. Mol Ther Oncolytics 2020;18:504-24. [PMID: 32953984 DOI: 10.1016/j.omto.2020.08.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
94 Münz C. Natural Killer Cell Responses during Human γ-Herpesvirus Infections. Vaccines (Basel) 2021;9:655. [PMID: 34203904 DOI: 10.3390/vaccines9060655] [Reference Citation Analysis]
95 Zhang Y, Jiang C, Trudeau SJ, Narita Y, Zhao B, Teng M, Guo R, Gewurz BE. Histone Loaders CAF1 and HIRA Restrict Epstein-Barr Virus B-Cell Lytic Reactivation. mBio 2020;11:e01063-20. [PMID: 33109754 DOI: 10.1128/mBio.01063-20] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
96 Yiu SPT, Guo R, Zerbe C, Weekes MP, Gewurz BE. Epstein-Barr virus BNRF1 destabilizes SMC5/6 cohesin complexes to evade its restriction of replication compartments. Cell Rep 2022;38:110411. [PMID: 35263599 DOI: 10.1016/j.celrep.2022.110411] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Chen LW, Wang SS, Hung CH, Hung YH, Lin CL, Chang PJ. The Epstein-Barr Virus Lytic Protein BMLF1 Induces Upregulation of GRP78 Expression through ATF6 Activation. Int J Mol Sci 2021;22:4024. [PMID: 33919712 DOI: 10.3390/ijms22084024] [Reference Citation Analysis]
98 Deng XM, Zhao LZ, Liang XY, Li D, Yu L, Zhang FC, Zhang H, Liu ZY, Xu P. In vitro Studies and Clinical Observations Imply a Synergistic Effect Between Epstein-Barr Virus and Dengue Virus Infection. Front Microbiol 2021;12:691008. [PMID: 34220783 DOI: 10.3389/fmicb.2021.691008] [Reference Citation Analysis]
99 Liang JH, Wang C, Yiu SPT, Zhao B, Guo R, Gewurz BE. Epstein-Barr Virus Induced Cytidine Metabolism Roles in Transformed B-Cell Growth and Survival. mBio 2021;12:e0153021. [PMID: 34281398 DOI: 10.1128/mBio.01530-21] [Reference Citation Analysis]
100 Pei Y, Wong JH, Jha HC, Tian T, Wei Z, Robertson ES. Epstein-Barr Virus Facilitates Expression of KLF14 by Regulating the Cooperative Binding of the E2F-Rb-HDAC Complex in Latent Infection. J Virol 2020;94:e01209-20. [PMID: 32847849 DOI: 10.1128/JVI.01209-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Jean-Pierre V, Lupo J, Buisson M, Morand P, Germi R. Main Targets of Interest for the Development of a Prophylactic or Therapeutic Epstein-Barr Virus Vaccine. Front Microbiol 2021;12:701611. [PMID: 34239514 DOI: 10.3389/fmicb.2021.701611] [Reference Citation Analysis]
102 Liu Y, Hu Z, Zhang Y, Wang C. Long non-coding RNAs in Epstein-Barr virus-related cancer. Cancer Cell Int 2021;21:278. [PMID: 34034760 DOI: 10.1186/s12935-021-01986-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Wang H, Zhou L, Yang Y, Luo B. Screening and identification of key genes in EBV-associated gastric carcinoma based on bioinformatics analysis. Pathol Res Pract 2021;222:153439. [PMID: 34020134 DOI: 10.1016/j.prp.2021.153439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
104 Münz C. Probing Reconstituted Human Immune Systems in Mice With Oncogenic γ-Herpesvirus Infections. Front Immunol 2020;11:581419. [PMID: 33013936 DOI: 10.3389/fimmu.2020.581419] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Fiil BK, Gyrd-Hansen M. The Met1-linked ubiquitin machinery in inflammation and infection. Cell Death Differ 2021;28:557-69. [PMID: 33473179 DOI: 10.1038/s41418-020-00702-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
106 Rosemarie Q, Sugden B. Epstein-Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms 2020;8:E1824. [PMID: 33228078 DOI: 10.3390/microorganisms8111824] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
107 Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol 2022. [PMID: 35931816 DOI: 10.1038/s41579-022-00770-5] [Reference Citation Analysis]
108 Murata T, Okuno Y, Sato Y, Watanabe T, Kimura H. Oncogenesis of CAEBV revealed: Intragenic deletions in the viral genome and leaky expression of lytic genes. Rev Med Virol 2020;30:e2095. [PMID: 31845495 DOI: 10.1002/rmv.2095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
109 Fournier B, Latour S. Immunity to EBV as revealed by immunedeficiencies. Curr Opin Immunol 2021;72:107-15. [PMID: 33989894 DOI: 10.1016/j.coi.2021.04.003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
110 Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 2021;18:261-79. [PMID: 33469195 DOI: 10.1038/s41571-020-00459-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
111 Lomartire S, Gonçalves AMM. Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses-A Review. Mar Drugs 2022;20:385. [PMID: 35736188 DOI: 10.3390/md20060385] [Reference Citation Analysis]
112 Peng X, Zhou Y, Tao Y, Liu S. Nasopharyngeal Carcinoma: The Role of the EGFR in Epstein-Barr Virus Infection. Pathogens 2021;10:1113. [PMID: 34578147 DOI: 10.3390/pathogens10091113] [Reference Citation Analysis]
113 Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, Kimura H. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021;13:2344. [PMID: 34960613 DOI: 10.3390/v13122344] [Reference Citation Analysis]
114 Chen K, Wang M, Zhang R, Li J. Detection of Epstein-Barr virus encoded RNA in fixed cells and tissues using CRISPR/Cas-mediated RCasFISH. Anal Biochem 2021;625:114211. [PMID: 33915117 DOI: 10.1016/j.ab.2021.114211] [Reference Citation Analysis]
115 [DOI: 10.1101/2020.02.04.932632] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
116 Münz C. Cytotoxicity in Epstein Barr virus specific immune control. Curr Opin Virol 2021;46:1-8. [PMID: 32771660 DOI: 10.1016/j.coviro.2020.07.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
117 Münz C. Regulation of the Macroautophagic Machinery, Cellular Differentiation, and Immune Responses by Human Oncogenic γ-Herpesviruses. Viruses 2021;13:859. [PMID: 34066671 DOI: 10.3390/v13050859] [Reference Citation Analysis]
118 Münz C. Immune Control and Vaccination against the Epstein-Barr Virus in Humanized Mice. Vaccines (Basel) 2019;7:E217. [PMID: 31861045 DOI: 10.3390/vaccines7040217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]