BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021;20:101-24. [PMID: 33277608 DOI: 10.1038/s41573-020-0090-8] [Cited by in Crossref: 182] [Cited by in F6Publishing: 844] [Article Influence: 91.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi S, Li H, Zheng X, Lv L, Liao S, Lu P, Liu M, Zhao H, Mei Z. Visualization system based on hierarchical targeting for diagnosis and treatment of hepatocellular carcinoma. Materials Today Bio 2022;16:100398. [DOI: 10.1016/j.mtbio.2022.100398] [Reference Citation Analysis]
2 Nguyen NH, Truong-thi N, Nguyen DTD, Ching YC, Huynh NT, Nguyen DH. Non-ionic surfactants As co-templates to control the mesopore diameter of hollow mesoporous silica nanoparticles for drug delivery applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;655:130218. [DOI: 10.1016/j.colsurfa.2022.130218] [Reference Citation Analysis]
3 Long X, Yan J, Zhang Z, Chang J, He B, Sun Y, Liang Y. Autophagy-targeted nanoparticles for effective cancer treatment: advances and outlook. NPG Asia Mater 2022;14. [DOI: 10.1038/s41427-022-00422-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Asad S, Jacobsen A, Teleki A. Inorganic nanoparticles for oral drug delivery: opportunities, barriers, and future perspectives. Current Opinion in Chemical Engineering 2022;38:100869. [DOI: 10.1016/j.coche.2022.100869] [Reference Citation Analysis]
5 Qian H, Ye Z, Pi L, Ao J. Roles and current applications of S-nitrosoglutathione in anti-infective biomaterials. Mater Today Bio 2022;16:100419. [PMID: 36105674 DOI: 10.1016/j.mtbio.2022.100419] [Reference Citation Analysis]
6 Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022;29:1959-70. [PMID: 35762636 DOI: 10.1080/10717544.2022.2089296] [Reference Citation Analysis]
7 Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022;626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Reference Citation Analysis]
8 Maleki R, Alamdari A. Tuning the surface chemistry of 2D MXenes for optimizing the micellization of bio-targeted carriers. Physica E: Low-dimensional Systems and Nanostructures 2022;144:115461. [DOI: 10.1016/j.physe.2022.115461] [Reference Citation Analysis]
9 Chai J, Ma Y, Guo T, He Y, Wang G, Si F, Geng J, Qi X, Chang G, Ren Z, Yu R, Song L, Li D. Assembled Fe3O4 nanoparticles on Zn Al LDH nanosheets as a biocompatible drug delivery vehicle for pH-responsive drug release and enhanced anticancer activity. Applied Clay Science 2022;228:106630. [DOI: 10.1016/j.clay.2022.106630] [Reference Citation Analysis]
10 Patel P, Handa M, Jain K, Shukla R. Recent pharmaceutical engineered approaches as prophylaxis and management of frostbite. Journal of Drug Delivery Science and Technology 2022;76:103838. [DOI: 10.1016/j.jddst.2022.103838] [Reference Citation Analysis]
11 Yu N, Ding M, Wang F, Zhou J, Shi X, Cai R, Li J. Near-infrared photoactivatable semiconducting polymer nanocomplexes with bispecific metabolism interventions for enhanced cancer immunotherapy. Nano Today 2022;46:101600. [DOI: 10.1016/j.nantod.2022.101600] [Reference Citation Analysis]
12 Chen X, Gao S, Wang X, Guo M, Cui Y, Chen Z, Liu Y, Wang Y. Advances in the biological mechanism and application of manganese-based nanoformulations for enhanced immunotherapy. Nano Today 2022;46:101583. [DOI: 10.1016/j.nantod.2022.101583] [Reference Citation Analysis]
13 Du X, Yang X, Zhang Y, Gao S, Liu S, Ji J, Zhai G. Transdermal delivery system based on heparin-modified graphene oxide for deep transportation, tumor microenvironment regulation, and immune activation. Nano Today 2022;46:101565. [DOI: 10.1016/j.nantod.2022.101565] [Reference Citation Analysis]
14 Li R, Chen Z, Li J, Dai Z, Yu Y. Nano-drug delivery systems for T cell-based immunotherapy. Nano Today 2022;46:101621. [DOI: 10.1016/j.nantod.2022.101621] [Reference Citation Analysis]
15 Zhang Q, Li S, Yu Y, Zhu Y, Tong R. A Mini-Review of Diagnostic and Therapeutic Nano-Tools for Pancreatitis. Int J Nanomedicine 2022;17:4367-81. [PMID: 36160469 DOI: 10.2147/IJN.S385590] [Reference Citation Analysis]
16 Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. Nanoscale 2022. [PMID: 36168840 DOI: 10.1039/d2nr03611h] [Reference Citation Analysis]
17 Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022;:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Reference Citation Analysis]
18 John Newton Amaldoss M, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: promising combination strategies. Drug Discov Today 2022;:103386. [PMID: 36182068 DOI: 10.1016/j.drudis.2022.103386] [Reference Citation Analysis]
19 Skelton R, Roach A, Prudhomme LE, Cen Feng JYC, Gaikwad P, Williams RM. Formulation of Lipid-Free Polymeric Mesoscale Nanoparticles Encapsulating mRNA. Pharm Res 2022. [PMID: 36163410 DOI: 10.1007/s11095-022-03398-5] [Reference Citation Analysis]
20 Julia Nadjeschda Schmidt T, Berarducci B, Konstantinidou S, Raffa V. CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discov Today 2022;:103375. [PMID: 36174966 DOI: 10.1016/j.drudis.2022.103375] [Reference Citation Analysis]
21 Dey S, Sen P, Patel A, Prusty BM, Ghosh SS, Manna D. A photo-responsive fluorescent amphiphile for target-specific and image-guided drug delivery applications. Org Biomol Chem 2022. [PMID: 36156635 DOI: 10.1039/d2ob01332k] [Reference Citation Analysis]
22 Géczi Z, Róth I, Kőhidai Z, Kőhidai L, Mukaddam K, Hermann P, Végh D, Zelles T. The use of Trojan-horse drug delivery system in managing periodontitis. Int Dent J 2022:S0020-6539(22)00195-2. [PMID: 36175203 DOI: 10.1016/j.identj.2022.08.003] [Reference Citation Analysis]
23 Mukherjee P, Park SH, Pathak N, Patino CA, Bao G, Espinosa HD. Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS Nano 2022. [PMID: 36154011 DOI: 10.1021/acsnano.2c05494] [Reference Citation Analysis]
24 Lyu X, Imai S, Yamano T, Hanayama R. Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-β Conjugated Exosomes. Pharm Res 2022. [PMID: 36163411 DOI: 10.1007/s11095-022-03400-0] [Reference Citation Analysis]
25 Thiruchenthooran V, Świtalska M, Bonilla L, Espina M, García ML, Wietrzyk J, Sánchez-lópez E, Gliszczyńska A. Novel Strategies against Cancer: Dexibuprofen-Loaded Nanostructured Lipid Carriers. IJMS 2022;23:11310. [DOI: 10.3390/ijms231911310] [Reference Citation Analysis]
26 Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022;17:4227-59. [PMID: 36134205 DOI: 10.2147/IJN.S377149] [Reference Citation Analysis]
27 Carrese B, Sanità G, Lamberti A. Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers 2022;14:4654. [DOI: 10.3390/cancers14194654] [Reference Citation Analysis]
28 Shih C, Tang X, Kuo CW, Chueh D, Chen P. Design principles of bioinspired interfaces for biomedical applications in therapeutics and imaging. Front Chem 2022;10:990171. [DOI: 10.3389/fchem.2022.990171] [Reference Citation Analysis]
29 Ikeda Y, Tajika Y, Nagasaki Y. Design of self-assembling anti-epileptic drug for long-acting drug delivery in vivo. Biomater Sci 2022. [PMID: 36148804 DOI: 10.1039/d2bm01064j] [Reference Citation Analysis]
30 Hale MM, Medina SH. Biomaterials-Enabled Antithrombotics: Recent Advances and Emerging Strategies. Mol Pharm 2022. [PMID: 36149250 DOI: 10.1021/acs.molpharmaceut.2c00626] [Reference Citation Analysis]
31 Mir A, Vartak RV, Patel K, Yellon SM, Reznik SE. Vaginal Nanoformulations for the Management of Preterm Birth. Pharmaceutics 2022;14:2019. [DOI: 10.3390/pharmaceutics14102019] [Reference Citation Analysis]
32 Yoo J, Kim K, Kim S, Park HH, Shin H, Joo J. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery. Nanoscale 2022. [PMID: 36134732 DOI: 10.1039/d2nr02995b] [Reference Citation Analysis]
33 Wang Q, Wang Z, Sun X, Jiang Q, Sun B, He Z, Zhang S, Luo C, Sun J. Lymph node-targeting nanovaccines for cancer immunotherapy. J Control Release 2022;351:102-22. [PMID: 36115556 DOI: 10.1016/j.jconrel.2022.09.015] [Reference Citation Analysis]
34 Kaser SJ, Christoff-Tempesta T, Uliassi LD, Cho Y, Ortony JH. Domain-Specific Phase Transitions in a Supramolecular Nanostructure. J Am Chem Soc 2022. [PMID: 36125359 DOI: 10.1021/jacs.2c05908] [Reference Citation Analysis]
35 Padre SM, Kiruthika S, Mundinamani S, Ravikirana, Surabhi S, Jeong J, Eshwarappa KM, Murari MS, Shetty V, Ballal M, S. C. G. Mono- and Bimetallic Nanoparticles for Catalytic Degradation of Hazardous Organic Dyes and Antibacterial Applications. ACS Omega. [DOI: 10.1021/acsomega.2c03784] [Reference Citation Analysis]
36 Perumal S, Atchudan R, Lee YR. Synthesis of Water-Dispersed Sulfobetaine Methacrylate-Iron Oxide Nanoparticle-Coated Graphene Composite by Free Radical Polymerization. Polymers (Basel) 2022;14:3885. [PMID: 36146032 DOI: 10.3390/polym14183885] [Reference Citation Analysis]
37 Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022;17:3933-66. [PMID: 36105620 DOI: 10.2147/IJN.S375229] [Reference Citation Analysis]
38 Nguyen NH, Tran DL, Truong‐thi N, Nguyen CK, Tran CT, Nguyen DH. Simply and effectively control the shell thickness of hollow mesoporous silica nanoparticles by polyethylene glycol for drug delivery applications. J of Applied Polymer Sci. [DOI: 10.1002/app.53126] [Reference Citation Analysis]
39 Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated delivery of Cas9 ribonucleoprotein complexes for tissue-specific gene therapy of liver diseases. Sci Adv 2022;8:eabp9435. [DOI: 10.1126/sciadv.abp9435] [Reference Citation Analysis]
40 Scariot DB, Staneviciute A, Zhu J, Li X, Scott EA, Engman DM. Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? Front Cell Infect Microbiol 2022;12:1000972. [DOI: 10.3389/fcimb.2022.1000972] [Reference Citation Analysis]
41 Li L, Jiang X, Gao J. Characterization and Biomedical Application Opportunities of the Nanoparticle's Protein Corona. Adv Materials Inter. [DOI: 10.1002/admi.202201442] [Reference Citation Analysis]
42 Wang N, Li J, Wang J, Nie D, Jiang X, Zhuo Y, Yu M. Shape-directed drug release and transport of erythrocyte-like nanodisks augment chemotherapy. J Control Release 2022;350:886-97. [PMID: 36087799 DOI: 10.1016/j.jconrel.2022.09.005] [Reference Citation Analysis]
43 Yue T, Xiong S, Zheng D, Wang Y, Long P, Yang J, Danzeng D, Gao H, Wen X, Li X, Hou J. Multifunctional biomaterial platforms for blocking the fibrosis process and promoting cellular restoring effects in myocardial fibrosis therapy. Front Bioeng Biotechnol 2022;10:988683. [DOI: 10.3389/fbioe.2022.988683] [Reference Citation Analysis]
44 Yang Y, Xu B, Murray J, Haverstick J, Chen X, Tripp RA, Zhao Y. Rapid and quantitative detection of respiratory viruses using surface-enhanced Raman spectroscopy and machine learning. Biosens Bioelectron 2022;217:114721. [PMID: 36152394 DOI: 10.1016/j.bios.2022.114721] [Reference Citation Analysis]
45 Osouli-bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022;14:1940. [DOI: 10.3390/pharmaceutics14091940] [Reference Citation Analysis]
46 Bain D, Mimansa, Devi A, Maity S, Shanavas A, Patra A. Penicillamine-Capped Red-Emitting Gold Nanoclusters for Therapeutic Application. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03605] [Reference Citation Analysis]
47 Guo H, Liu Y, Wu N, Sun L, Yang W. Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202538] [Reference Citation Analysis]
48 Kendrick JS, Webber C. One small step in time, one giant leap for DMPK kind - A CRO perspective of the evolving core discipline of drug development. Xenobiotica 2022;:1-49. [PMID: 36097976 DOI: 10.1080/00498254.2022.2124389] [Reference Citation Analysis]
49 Shen M, Chen C, Guo Q, Wang Q, Liao J, Wang L, Yu J, Xue M, Duan Y, Zhang J. Systemic Delivery of mPEG‐Masked Trispecific T‐Cell Nanoengagers in Synergy with STING Agonists Overcomes Immunotherapy Resistance in TNBC and Generates a Vaccination Effect. Advanced Science. [DOI: 10.1002/advs.202203523] [Reference Citation Analysis]
50 Terracciano M, Fontana F, Falanga AP, D'errico S, Torrieri G, Greco F, Tramontano C, Rea I, Piccialli G, De Stefano L, Oliviero G, Santos HA, Borbone N. Development of Surface Chemical Strategies for Synthesizing Redox‐Responsive Diatomite Nanoparticles as a Green Platform for On‐Demand Intracellular Release of an Antisense Peptide Nucleic Acid Anticancer Agent. Small. [DOI: 10.1002/smll.202204732] [Reference Citation Analysis]
51 Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal. [DOI: 10.1007/s11244-022-01697-0] [Reference Citation Analysis]
52 Shu L, Huang Z, Huang Y, Wu C, Pan X. Upon a potential approach to regulate the targeting region of inhalable liposomes. Journal of Bioactive and Compatible Polymers. [DOI: 10.1177/08839115221121862] [Reference Citation Analysis]
53 Teixeira A, Sárria MP, Pinto I, Espiña B, Gomes AC, Dias ACP. Protection against Paraquat-Induced Oxidative Stress by Curcuma longa Extract-Loaded Polymeric Nanoparticles in Zebrafish Embryos. Polymers (Basel) 2022;14:3773. [PMID: 36145919 DOI: 10.3390/polym14183773] [Reference Citation Analysis]
54 Gao L, Xu D, Wan H, Zhang X, Dai X, Yan LT. Understanding Interfacial Nanoparticle Organization through Simulation and Theory: A Review. Langmuir 2022. [PMID: 36070512 DOI: 10.1021/acs.langmuir.2c01192] [Reference Citation Analysis]
55 Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022;350:716-33. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Reference Citation Analysis]
56 Tu Y, Xiao X, Dong Y, Li J, Liu Y, Zong Q, Yuan Y. Cinnamaldehyde-based poly(thioacetal): A ROS-awakened self-amplifying degradable polymer for enhanced cancer immunotherapy. Biomaterials 2022;289:121795. [PMID: 36108580 DOI: 10.1016/j.biomaterials.2022.121795] [Reference Citation Analysis]
57 Chen Z, Chen X, Huang J, Wang J, Wang Z. Harnessing Protein Corona for Biomimetic Nanomedicine Design. Biomimetics 2022;7:126. [DOI: 10.3390/biomimetics7030126] [Reference Citation Analysis]
58 Mateo EM, Jiménez M. Silver Nanoparticle-Based Therapy: Can It Be Useful to Combat Multi-Drug Resistant Bacteria? Antibiotics 2022;11:1205. [DOI: 10.3390/antibiotics11091205] [Reference Citation Analysis]
59 Nie D, Guo T, Yue M, Li W, Zong X, Zhu Y, Huang J, Lin M. Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors. Biomolecules 2022;12:1239. [DOI: 10.3390/biom12091239] [Reference Citation Analysis]
60 Thakur R, Arora V. Comprehensive review on polymeric and metal nanoparticles: possible therapeutic avenues. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2105331] [Reference Citation Analysis]
61 Hetherington I, Totary-Jain H. Anti-atherosclerotic therapies: Milestones, challenges, and emerging innovations. Mol Ther 2022:S1525-0016(22)00553-6. [PMID: 36065464 DOI: 10.1016/j.ymthe.2022.08.024] [Reference Citation Analysis]
62 Leal AF, Cifuentes J, Torres CE, Suárez D, Quezada V, Gómez SC, Cruz JC, Reyes LH, Espejo-Mojica AJ, Alméciga-Díaz CJ. Delivery and assessment of a CRISPR/nCas9-based genome editing system on in vitro models of mucopolysaccharidoses IVA assisted by magnetite-based nanoparticles. Sci Rep 2022;12:15045. [PMID: 36057729 DOI: 10.1038/s41598-022-19407-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Banga AR, Odiase P, Rachakonda K, Garg AP, Adunyah SE, Rachakonda G. Application of C-Terminal Clostridium Perfringens Enterotoxin in Treatment of Brain Metastasis from Breast Cancer. Cancers (Basel) 2022;14:4309. [PMID: 36077843 DOI: 10.3390/cancers14174309] [Reference Citation Analysis]
64 Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022;:e109288. [PMID: 36052513 DOI: 10.15252/embj.2021109288] [Reference Citation Analysis]
65 Chen Y, Yang Y, Zeng X, Feng JL, Oakes K, Zhang X, Cui S. Microfluidic chip interfacing microdialysis and mass spectrometry for in vivo monitoring of nanomedicine pharmacokinetics in real time. Journal of Chromatography A 2022. [DOI: 10.1016/j.chroma.2022.463520] [Reference Citation Analysis]
66 Komsthöft T, Bovone G, Bernhard S, Tibbitt MW. Polymer functionalization of inorganic nanoparticles for biomedical applications. Current Opinion in Chemical Engineering 2022;37:100849. [DOI: 10.1016/j.coche.2022.100849] [Reference Citation Analysis]
67 Yu H, Qian Z. Editorial of Special Column on A New Era of Nanobiomaterial-based Drug Delivery. Acta Pharmaceutica Sinica B 2022;12:3453-5. [DOI: 10.1016/j.apsb.2022.08.002] [Reference Citation Analysis]
68 Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (2020) 2022;3:e155. [PMID: 35845351 DOI: 10.1002/mco2.155] [Reference Citation Analysis]
69 Deng H, Li Xu, Ju J, Mo X, Ge G, Zhu X. Multifunctional nanoprobes for macrophage imaging. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121824] [Reference Citation Analysis]
70 Haque ST, Banaszak Holl MM, Chowdhury EH. Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers. Front Mater Sci 2022;16. [DOI: 10.1007/s11706-022-0604-x] [Reference Citation Analysis]
71 Jin X, Guan H, Wang R, Huang L, Shao C. The most crucial factor on the thermal conductivity of metal-water nanofluids: Match degree of the phonon density of state. Powder Technology 2022. [DOI: 10.1016/j.powtec.2022.117969] [Reference Citation Analysis]
72 Rout SK, Priya V, Setia A, Mehata AK, Mohan S, Albratty M, Najmi A, Meraya AM, Makeen HA, Tambuwala MM, Muthu MS. Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomedicine & Pharmacotherapy 2022;153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Reference Citation Analysis]
73 Torrik A, Zaerin S, Zarif M. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. Journal of Molecular Liquids 2022;362:119789. [DOI: 10.1016/j.molliq.2022.119789] [Reference Citation Analysis]
74 Tian W, Wang H, Zhu Y, Wang Q, Song M, Cao Y, Xiao J. Intervention effects of delivery vehicles on the therapeutic efficacy of 6-gingerol on colitis. Journal of Controlled Release 2022;349:51-66. [DOI: 10.1016/j.jconrel.2022.06.058] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Dou J, Mi Y, Daneshmand S, Heidari Majd M. The effect of magnetic nanoparticles containing hyaluronic acid and methotrexate on the expression of genes involved in apoptosis and metastasis in A549 lung cancer cell lines. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.104307] [Reference Citation Analysis]
76 Salman A, Kantor A, Mcclements ME, Marfany G, Trigueros S, Maclaren RE. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics 2022;14:1842. [DOI: 10.3390/pharmaceutics14091842] [Reference Citation Analysis]
77 Mori D, Jaroli T, Dudhat K, Vaishnav D, Parmar R, Kotadiya N, Bhalodiya M, Pashavan C. Preparation and characterization of slow dissolving linezolid salts for direct pulmonary delivery. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103741] [Reference Citation Analysis]
78 Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022;20:395. [PMID: 36045386 DOI: 10.1186/s12951-022-01605-4] [Reference Citation Analysis]
79 Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol 2022;10:911281. [DOI: 10.3389/fbioe.2022.911281] [Reference Citation Analysis]
80 Fleury JB, Baulin VA, Le Guével X. Protein-coated nanoparticles exhibit Lévy flights on a suspended lipid bilayer. Nanoscale 2022. [PMID: 36043913 DOI: 10.1039/d2nr01339h] [Reference Citation Analysis]
81 Bazeed AY, Day CM, Garg S. Pancreatic Cancer: Challenges and Opportunities in Locoregional Therapies. Cancers 2022;14:4257. [DOI: 10.3390/cancers14174257] [Reference Citation Analysis]
82 Sadeghi S, Vallerinteavide Mavelli G, Vaidya SS, Drum CL. Gastrointestinal Tract Stabilized Protein Delivery Using Disulfide Thermostable Exoshell System. IJMS 2022;23:9856. [DOI: 10.3390/ijms23179856] [Reference Citation Analysis]
83 Yang J, Xu Y, Fu Z, Chen J, Fan W, Xin W. Progress in research and development of temozolomide brain-targeted preparations: a review. J Drug Target 2022;:1-30. [PMID: 36039767 DOI: 10.1080/1061186X.2022.2119243] [Reference Citation Analysis]
84 Wang L, Dou J, Jiang W, Wang Q, Liu Y, Liu H, Wang Y. Enhanced Intracellular Transcytosis of Nanoparticles by Degrading Extracellular Matrix for Deep Tissue Radiotherapy of Pancreatic Adenocarcinoma. Nano Lett 2022. [PMID: 36036792 DOI: 10.1021/acs.nanolett.2c01005] [Reference Citation Analysis]
85 Noubissi Nzeteu GA, Gibbs BF, Kotnik N, Troja A, Bockhorn M, Meyer NH. Nanoparticle-based immunotherapy of pancreatic cancer. Front Mol Biosci 2022;9:948898. [DOI: 10.3389/fmolb.2022.948898] [Reference Citation Analysis]
86 Wan D, Liu Y, Guo X, Zhang J, Pan J. Intelligent Drug Delivery by Peptide-Based Dual-Function Micelles. IJMS 2022;23:9698. [DOI: 10.3390/ijms23179698] [Reference Citation Analysis]
87 Fujii S, Sakurai K. Zwitterionic Amino Acid Polymer-Grafted Core-Crosslinked Particle toward Tumor Delivery. Biomacromolecules 2022. [PMID: 36018790 DOI: 10.1021/acs.biomac.2c00803] [Reference Citation Analysis]
88 Kluzek M, Oppenheimer-Shaanan Y, Dadosh T, Morandi MI, Avinoam O, Raanan C, Goldsmith M, Goldberg R, Klein J. Designer Liposomic Nanocarriers Are Effective Biofilm Eradicators. ACS Nano 2022. [PMID: 36018573 DOI: 10.1021/acsnano.2c04232] [Reference Citation Analysis]
89 Kumar S, Karmacharya M, Cho Y. Bridging the Gap between Nonliving Matter and Cellular Life. Small. [DOI: 10.1002/smll.202202962] [Reference Citation Analysis]
90 Šimić M, Auer D, Neuper C, Šimić N, Prossliner G, Prassl R, Hill C, Hohenester U. Real-Time Nanoparticle Characterization Through Optofluidic Force Induction. Phys Rev Applied 2022;18. [DOI: 10.1103/physrevapplied.18.024056] [Reference Citation Analysis]
91 Zhang D, Liu L, Wang J, Zhang H, Zhang Z, Xing G, Wang X, Liu M. Drug-loaded PEG-PLGA nanoparticles for cancer treatment. Front Pharmacol 2022;13:990505. [DOI: 10.3389/fphar.2022.990505] [Reference Citation Analysis]
92 Sivasubramanian M, Lin L, Wang Y, Yang C, Lo L. Industrialization’s eye view on theranostic nanomedicine. Front Chem 2022;10:918715. [DOI: 10.3389/fchem.2022.918715] [Reference Citation Analysis]
93 Ko C, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01582-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Sharma P, Kumar A, Agarwal T, Dey AD, Moghaddam FD, Rahimmanesh I, Ghovvati M, Yousefiasl S, Borzacchiello A, Mohammadi A, Yella VR, Moradi O, Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int J Biol Macromol 2022;220:920-33. [PMID: 35987365 DOI: 10.1016/j.ijbiomac.2022.08.099] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Ngambenjawong C, Chan LW, Fleming HE, Bhatia SN. Conditional Antimicrobial Peptide Therapeutics. ACS Nano 2022. [PMID: 35980829 DOI: 10.1021/acsnano.2c04162] [Reference Citation Analysis]
96 Wang Q, Ma R, Liu P, Cheng G, Yang Q, Chen X, Wu Z, Yuan D, Chen T. Efficient Sustained-Release Nanoparticle Delivery System Protects Nigral Neurons in a Toxin Model of Parkinson’s Disease. Pharmaceutics 2022;14:1731. [DOI: 10.3390/pharmaceutics14081731] [Reference Citation Analysis]
97 Li W, Gonzalez KM, Chung J, Kim M, Lu J. Surface-modified nanotherapeutics targeting atherosclerosis. Biomater Sci 2022. [PMID: 35980230 DOI: 10.1039/d2bm00660j] [Reference Citation Analysis]
98 Timmers M, Weterings J, van Geijn M, Bell R, Lenting PE, Rijcken CJF, Vermonden T, Hennink WE, Liskamp RMJ. A New Class of Tunable Acid-Sensitive Linkers for Native Drug Release Based on the Trityl Protecting Group. Bioconjug Chem 2022. [PMID: 35979909 DOI: 10.1021/acs.bioconjchem.2c00310] [Reference Citation Analysis]
99 Ishimoto A, Sasako H, Omori M, Higashi K, Ueda K, Koyama K, Moribe K. Drug-Loaded Nanocarriers Composed of Cholesteryl Oleate Crystal Cores and Multiple-Nanosheet Shells of γ-Cyclodextrin Inclusion Complex Crystals. Langmuir 2022. [PMID: 35976036 DOI: 10.1021/acs.langmuir.2c01199] [Reference Citation Analysis]
100 Kang B, Shin M, Han S, Oh I, Kim E, Park J, Son HY, Kang T, Jung J, Huh Y, Haam S, Lim E. Magnetic Nanochain-Based Smart Drug Delivery System with Remote Tunable Drug Release by a Magnetic Field. BioChip J. [DOI: 10.1007/s13206-022-00072-1] [Reference Citation Analysis]
101 Liu A, Yang G, Liu Y, Liu T. Research progress in membrane fusion-based hybrid exosomes for drug delivery systems. Front Bioeng Biotechnol 2022;10:939441. [DOI: 10.3389/fbioe.2022.939441] [Reference Citation Analysis]
102 Kelley CP, Haerle MC, Wang ET. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells. Cell Rep 2022;40:111226. [PMID: 35977479 DOI: 10.1016/j.celrep.2022.111226] [Reference Citation Analysis]
103 Fu Z, Wang X, Lu X, Yang Y, Zhao L, Zhou L, Wang K, Fu H. Mannose-decorated ginsenoside Rb1 albumin nanoparticles for targeted anti-inflammatory therapy. Front Bioeng Biotechnol 2022;10:962380. [DOI: 10.3389/fbioe.2022.962380] [Reference Citation Analysis]
104 Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022;14:1697. [DOI: 10.3390/pharmaceutics14081697] [Reference Citation Analysis]
106 Wang H, Lin S, Wang S, Jiang Z, Ding T, Wei X, Lu Y, Yang F, Zhan C. Folic Acid Enables Targeting Delivery of Lipodiscs by Circumventing IgM-Mediated Opsonization. Nano Lett 2022. [PMID: 35943299 DOI: 10.1021/acs.nanolett.2c01509] [Reference Citation Analysis]
107 Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules 2022. [PMID: 35943243 DOI: 10.1021/acs.biomac.2c00730] [Reference Citation Analysis]
108 Gong F, Wang Z, Mo R, Wang Y, Su J, Li X, Omonova CTQ, Khamis AM, Zhang Q, Dong M, Su Z. Nano-sponge-like liposomes remove cholesterol crystals for antiatherosclerosis. J Control Release 2022;349:940-53. [PMID: 35870569 DOI: 10.1016/j.jconrel.2022.07.021] [Reference Citation Analysis]
109 Cacciamali A, Pascucci L, Villa R, Dotti S. Engineered nanoparticles toxicity on adipose tissue derived mesenchymal stem cells: A preliminary investigation. Res Vet Sci 2022;152:134-49. [PMID: 35969916 DOI: 10.1016/j.rvsc.2022.08.002] [Reference Citation Analysis]
110 Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022;13:967505. [DOI: 10.3389/fimmu.2022.967505] [Reference Citation Analysis]
111 Bhatia SN, Chen X, Dobrovolskaia MA, Lammers T. Cancer nanomedicine. Nat Rev Cancer 2022. [PMID: 35941223 DOI: 10.1038/s41568-022-00496-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Giannopoulos GI. Fullerene Derivatives for Drug Delivery against COVID-19: A Molecular Dynamics Investigation of Dendro[60]fullerene as Nanocarrier of Molnupiravir. Nanomaterials (Basel) 2022;12:2711. [PMID: 35957142 DOI: 10.3390/nano12152711] [Reference Citation Analysis]
113 Tao Y, Lan X, Zhang Y, Xiao Y, Wang J, Chen H, Liu L, Liang XJ, Guo W. Navigations of the targeting pathway of nanomedicines towards tumor. Expert Opin Drug Deliv 2022. [PMID: 35929954 DOI: 10.1080/17425247.2022.2110064] [Reference Citation Analysis]
114 Shin H, Jeong S, Lee Y, Jeon C, Kwon G, Kim S, Lee D. H2O2-Activatable Antioxidant Polymeric Prodrug Nanoparticles for the Prevention of Renal Ischemia/Reperfusion Injury. Biomacromolecules 2022. [PMID: 35929737 DOI: 10.1021/acs.biomac.2c00669] [Reference Citation Analysis]
115 Thobakgale L, Ombinda-Lemboumba S, Mthunzi-Kufa P. Chemical Sensor Nanotechnology in Pharmaceutical Drug Research. Nanomaterials (Basel) 2022;12:2688. [PMID: 35957119 DOI: 10.3390/nano12152688] [Reference Citation Analysis]
116 Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials 2022;12:2672. [DOI: 10.3390/nano12152672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Uskoković V, Pejčić A, Koliqi R, Anđelković Z. Polymeric Nanotechnologies for the Treatment of Periodontitis: A Chronological Review. Int J Pharm 2022;:122065. [PMID: 35932930 DOI: 10.1016/j.ijpharm.2022.122065] [Reference Citation Analysis]
118 Almasi F, Mohammadipanah F. Neurological manifestations of SARS-CoV-2 infections: Toward quantum dots based management approaches. J Drug Target 2022;:1-30. [PMID: 35921123 DOI: 10.1080/1061186X.2022.2110252] [Reference Citation Analysis]
119 Davodabadi F, Sarhadi M, Arabpour J, Sargazi S, Rahdar A, Díez-Pascual AM. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J Control Release 2022;349:844-75. [PMID: 35908621 DOI: 10.1016/j.jconrel.2022.07.036] [Reference Citation Analysis]
120 Mahmoud AM, Nowell CJ, Feeney O, van 't Hag L, Davis TP, Kempe K. Hydrophobicity Regulates the Cellular Interaction of Cyanine5-Labeled Poly(3-hydroxypropionate)-Based Comb Polymers. Biomacromolecules 2022. [PMID: 35921528 DOI: 10.1021/acs.biomac.2c00303] [Reference Citation Analysis]
121 Jia W, Zhang T, Huang H, Feng H, Wang S, Guo Z, Luo Z, Ji X, Cheng X, Zhao R. Colorectal cancer vaccines: The current scenario and future prospects. Front Immunol 2022;13:942235. [DOI: 10.3389/fimmu.2022.942235] [Reference Citation Analysis]
122 Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022;20:354. [PMID: 35918694 DOI: 10.1186/s12951-022-01570-y] [Reference Citation Analysis]
123 Lee SY, Kim SY, Ku SH, Park EJ, Jang D, Kim ST, Kim S. Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics 2022;14:1618. [DOI: 10.3390/pharmaceutics14081618] [Reference Citation Analysis]
124 Lee Y, Kim M, Kang JY, Jung Y. Protein Cages Engineered for Interaction-Driven Selective Encapsulation of Biomolecules. ACS Appl Mater Interfaces 2022. [PMID: 35916207 DOI: 10.1021/acsami.2c06924] [Reference Citation Analysis]
125 Bigaj-józefowska MJ, Grześkowiak BF. Polymeric nanoparticles wrapped in biological membranes for targeted anticancer treatment. European Polymer Journal 2022;176:111427. [DOI: 10.1016/j.eurpolymj.2022.111427] [Reference Citation Analysis]
126 Liu S, Li L, Zhang X, Meng Q. Nanotherapies from an oncologist doctor's view. Smart Materials in Medicine 2022. [DOI: 10.1016/j.smaim.2022.07.005] [Reference Citation Analysis]
127 Domínguez-arca V, Sabín J, García-río L, Bastos M, Taboada P, Barbosa S, Prieto G. On the structure and stability of novel cationic DPPC liposomes doped with gemini surfactants. Journal of Molecular Liquids 2022. [DOI: 10.1016/j.molliq.2022.120230] [Reference Citation Analysis]
128 Panigrahi G, Medhi H, Wasnik K, Patra S, Gupta P, Pareek D, Maity S, Mandey M, Paik P. Hollow mesoporous SiO2–ZnO nanocapsules and effective in vitro delivery of anticancer drugs against different cancers with low doses of drugs. Materials Chemistry and Physics 2022;287:126287. [DOI: 10.1016/j.matchemphys.2022.126287] [Reference Citation Analysis]
129 Zhou X, Wang R, Sun W, Bonnet S. Gene therapy of brain cancer by drug delivery nanocapsules. Matter 2022;5:2502-4. [DOI: 10.1016/j.matt.2022.06.038] [Reference Citation Analysis]
130 Vambhurkar G, Amulya E, Sikder A, Shah S, Famta P, Khatri DK, Singh SB, Srivastava S. Nanomedicine based Potentially Transformative Strategies for Colon Targeting of Peptides: State-of-the-art. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112816] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Alhaj-suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114482] [Reference Citation Analysis]
132 Singuru MMR, Liao Y, Lin GM, Chen W, Lin Y, To CT, Liao W, Hsu C, Chuang M. Engineered multivalent DNA capsules for multiplexed detection of genotoxicants via versatile controlled release mechanisms. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114608] [Reference Citation Analysis]
133 Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.08.006] [Reference Citation Analysis]
134 Wilson B, Geetha KM. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol 2022;74:103553. [PMID: 35783677 DOI: 10.1016/j.jddst.2022.103553] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
135 Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, Yang Y, Lei Q, Huang H, Yu Y, Fang Y, Tang Q, Jiang N, Miao H, Liu F, Zhao X, Li N. Nanoparticle-based medicines in clinical cancer therapy. Nano Today 2022;45:101512. [DOI: 10.1016/j.nantod.2022.101512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
136 Choi B, Choi H, Kim H, Choi A, Kwon S, Mouli SK, Lewandowski RJ, Kim D. Z-domain protein nano-bio interfaced MRI visible anti-program death ligand-1 nanoconjugates for enhanced local immune checkpoint inhibitor immunotherapy. Nano Today 2022;45:101552. [DOI: 10.1016/j.nantod.2022.101552] [Reference Citation Analysis]
137 Liu C, Li M, Sun J, Li P, Bai Y, Zhang J, Qian Y, Shi M, He J, Huo H, Pang J, Fan L, Tian W. Cation‐π Interaction‐Mediated Tumour Drug Delivery for Deep Intratumoral Penetration and Treatment. Adv Funct Materials. [DOI: 10.1002/adfm.202205043] [Reference Citation Analysis]
138 Craparo EF, Cabibbo M, Scialabba C, Giammona G, Cavallaro G. Inhalable Formulation Based on Lipid-Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast. Biomacromolecules 2022. [PMID: 35899612 DOI: 10.1021/acs.biomac.2c00576] [Reference Citation Analysis]
139 Nipun VB, Amin KA. Recent Advances in Protein Kinase CK2, a Potential Therapeutic Target in Cancer. Russ J Bioorg Chem. [DOI: 10.1134/s1068162022050144] [Reference Citation Analysis]
140 Maity S, Tomar MS, Wasnik K, Patra S, Modak MD, Gupta PS, Pareek D, Singh M, Paik P. Azadirachta indica Seed Derived Carbon Nanocapsules: Cell Imaging, Depolarization of Mitochondrial Membrane Potential, and Dose-Dependent Control Death of Breast Cancer. ACS Biomater Sci Eng 2022. [PMID: 35892286 DOI: 10.1021/acsbiomaterials.2c00463] [Reference Citation Analysis]
141 Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022:S0168-3659(22)00446-1. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Reference Citation Analysis]
142 Wong W, Lai CN, Cheng W, Tung L, Chang RC, Leung FK. Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. J Compos Sci 2022;6:218. [DOI: 10.3390/jcs6080218] [Reference Citation Analysis]
143 Wang Y, Wang YF, Li X, Wang Y, Huang Q, Ma X, Liang XJ. Nanoparticle-Driven Controllable Mitochondrial Regulation through Lysosome-Mitochondria Interactome. ACS Nano 2022. [PMID: 35876466 DOI: 10.1021/acsnano.2c04078] [Reference Citation Analysis]
144 Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers 2022;14:3561. [DOI: 10.3390/cancers14153561] [Reference Citation Analysis]
145 Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022;:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Reference Citation Analysis]
146 Boehnke N, Straehla JP, Safford HC, Kocak M, Rees MG, Ronan M, Rosenberg D, Adelmann CH, Chivukula RR, Nabar N, Berger AG, Lamson NG, Cheah JH, Li H, Roth JA, Koehler AN, Hammond PT. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 2022;377:eabm5551. [PMID: 35862544 DOI: 10.1126/science.abm5551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents. Cell 2022;185:2806-27. [PMID: 35798006 DOI: 10.1016/j.cell.2022.03.045] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
148 Xu J, Chu T, Yu T, Li N, Wang C, Li C, Zhang Y, Meng H, Nie G. Design of Diselenide-Bridged Hyaluronic Acid Nano-antioxidant for Efficient ROS Scavenging to Relieve Colitis. ACS Nano 2022. [PMID: 35861614 DOI: 10.1021/acsnano.2c05558] [Reference Citation Analysis]
149 Yuan Q, Su K, Li S, Long X, Liu L, Yang M, Yuan X, Sun J, Hu J, Li Q, Zhao Y, Yuan Z. Pulmonary Delivery of Extracellular Vesicle-Encapsulated Dinaciclib as an Effective Lung Cancer Therapy. Cancers 2022;14:3550. [DOI: 10.3390/cancers14143550] [Reference Citation Analysis]
150 Roig-soriano X, Souto EB, Elmsmari F, Garcia ML, Espina M, Duran-sindreu F, Sánchez-lópez E, González Sánchez JA. Nanoparticles in Endodontics Disinfection: State of the Art. Pharmaceutics 2022;14:1519. [DOI: 10.3390/pharmaceutics14071519] [Reference Citation Analysis]
151 Tang Y, Varyambath A, Ding Y, Chen B, Huang X, Zhang Y, Yu DG, Kim I, Song W. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022. [PMID: 35861101 DOI: 10.1039/d2bm00719c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
152 Wuhao W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2022;:1-27. [PMID: 35857432 DOI: 10.1080/1061186X.2022.2104299] [Reference Citation Analysis]
153 Deng YQ, Wang ZX, Liu X, Wang YY, Chen Q, Li ZL, Zheng BS, Ye Q, Gong JS, Zhu GQ, Cao TS, Situ WY, Qin CF, Xie H, Zhang WY. Ångstrom-scale silver particles potently combat SARS-CoV-2 infection by suppressing the ACE2 expression and inflammatory responses. J Mater Chem B 2022;10:5454-64. [PMID: 35786741 DOI: 10.1039/d2tb00336h] [Reference Citation Analysis]
154 Thakur A, Sharma A, Alajangi HK, Jaiswal PK, Lim YB, Singh G, Barnwal RP. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022;218:135-56. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Reference Citation Analysis]
155 Wang R, Ponsard B, Wolterbeek H, Denkova A. Core-shell structured gold nanoparticles as carrier for 166Dy/166Ho in vivo generator. EJNMMI Radiopharm Chem 2022;7:16. [PMID: 35852733 DOI: 10.1186/s41181-022-00170-3] [Reference Citation Analysis]
156 Flores de los Rios PA, Casañas Pimentel RG, San Martín Martínez E. Nanodrugs against cancer: biological considerations in its redesign. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2097680] [Reference Citation Analysis]
157 Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. Nat Rev Mater. [DOI: 10.1038/s41578-022-00458-5] [Reference Citation Analysis]
158 Zhang W, Callmann CE, Meckes B, Mirkin CA. Tumor-Associated Enzyme-Activatable Spherical Nucleic Acids. ACS Nano 2022. [PMID: 35849553 DOI: 10.1021/acsnano.2c03323] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Rehman Y, Qutaish H, Kim JH, Huang X, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. Nanomaterials 2022;12:2462. [DOI: 10.3390/nano12142462] [Reference Citation Analysis]
160 Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies 2022;11:49. [DOI: 10.3390/antib11030049] [Reference Citation Analysis]
161 Serwer P. A Perspective on Studies of Phage DNA Packaging Dynamics. Int J Mol Sci 2022;23:7854. [PMID: 35887200 DOI: 10.3390/ijms23147854] [Reference Citation Analysis]
162 Zhang W, Zhang Z, Lou S, Chang Z, Wen B, Zhang T. Hyaluronic Acid–Stabilized Fe3O4 Nanoparticles for Promoting In Vivo Magnetic Resonance Imaging of Tumors. Front Pharmacol 2022;13:918819. [DOI: 10.3389/fphar.2022.918819] [Reference Citation Analysis]
163 Tang X, Chen T, Chen H, Yu S, Cao S, Liu C, Ma Y, Sun F, Pan Q, Zhu X. Sperm-like nanocarriers for ultrafast delivery of antisense DNA. Nanoscale 2022. [PMID: 35838371 DOI: 10.1039/d2nr02050e] [Reference Citation Analysis]
164 Abdullah SNS, Subramaniam KA, Muhamad Zamani ZH, Sarchio SNE, Md Yasin F, Shamsi S. Biocompatibility Study of Curcumin-Loaded Pluronic F127 Nanoformulation (NanoCUR) against the Embryonic Development of Zebrafish (Danio rerio). Molecules 2022;27:4493. [DOI: 10.3390/molecules27144493] [Reference Citation Analysis]
165 Tu Z, Zhu Y, Xiao Y, Chen J, Shannon S, Zhang F, Li Z, Zhou J, Hu H, Ho T, Gao W, Shao D, Leong KW. Scavenging Tumor‐Derived Small Extracellular Vesicles by Functionalized 2D Materials to Inhibit Tumor Regrowth and Metastasis Following Radiotherapy. Adv Funct Materials. [DOI: 10.1002/adfm.202205663] [Reference Citation Analysis]
166 Gambardella C, Pinsino A. Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review. Toxics 2022;10:393. [DOI: 10.3390/toxics10070393] [Reference Citation Analysis]
167 Quintana JM, Arboleda D, Hu H, Scott E, Luthria G, Pai S, Parangi S, Weissleder R, Miller MA. Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release. Bioconjug Chem 2022. [PMID: 35833631 DOI: 10.1021/acs.bioconjchem.2c00174] [Reference Citation Analysis]
168 Li L, Li S, Fan Z, Huang G, Tang J, Nie L. Current Strategies of Photoacoustic Imaging Assisted Cancer Theragnostics toward Clinical Studies. ACS Photonics. [DOI: 10.1021/acsphotonics.2c00440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
169 von Mentzer U, Selldén T, Råberg L, Erensoy G, Hultgård-Ekwall AK, Stubelius A. Synovial fluid profile dictates nanoparticle uptake into cartilage - Implications of the protein corona for Novel arthritis treatments. Osteoarthritis Cartilage 2022:S1063-4584(22)00792-0. [PMID: 35840018 DOI: 10.1016/j.joca.2022.07.002] [Reference Citation Analysis]
170 Tang Q, Yang S, He G, Zheng H, Zhang S, Liu J, Wei S, Fan Q, Peng X, Li X, Zhang D, Yang L, Li H. Tumor-derived exosomes in the cancer immune microenvironment and cancer immunotherapy. Cancer Lett 2022;:215823. [PMID: 35835409 DOI: 10.1016/j.canlet.2022.215823] [Reference Citation Analysis]
171 Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022;7:231. [PMID: 35817770 DOI: 10.1038/s41392-022-01082-z] [Reference Citation Analysis]
172 Campora S, Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnology Reviews 2022;11:2595-631. [DOI: 10.1515/ntrev-2022-0148] [Reference Citation Analysis]
173 Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022;23:7597. [PMID: 35886945 DOI: 10.3390/ijms23147597] [Reference Citation Analysis]
174 Rodríguez-Castejón J, Gómez-Aguado I, Beraza-Millor M, Solinís MÁ, Del Pozo-Rodríguez A, Rodríguez-Gascón A. Galactomannan-Decorated Lipidic Nanocarrier for Gene Supplementation Therapy in Fabry Disease. Nanomaterials (Basel) 2022;12:2339. [PMID: 35889565 DOI: 10.3390/nano12142339] [Reference Citation Analysis]
175 Wang C, Zhang J, Li B, Zuo J, Li Y, Sun Y, Wang F, Liu K, Li J. High-Efficiency Treatment for Osteoarthritis via Self-Assembled Dual-Functionalized Nanobiologics. ACS Biomater Sci Eng 2022. [PMID: 35801691 DOI: 10.1021/acsbiomaterials.2c00332] [Reference Citation Analysis]
176 Chou WC, Cheng YH, Riviere JE, Monteiro-Riviere NA, Kreyling WG, Lin Z. Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats. Part Fibre Toxicol 2022;19:47. [PMID: 35804418 DOI: 10.1186/s12989-022-00489-4] [Reference Citation Analysis]
177 Toso S, Imran M, Mugnaioli E, Moliterni A, Caliandro R, Schrenker NJ, Pianetti A, Zito J, Zaccaria F, Wu Y, Gemmi M, Giannini C, Brovelli S, Infante I, Bals S, Manna L. Halide perovskites as disposable epitaxial templates for the phase-selective synthesis of lead sulfochloride nanocrystals. Nat Commun 2022;13:3976. [PMID: 35803933 DOI: 10.1038/s41467-022-31699-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
178 Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 2022;349:184-205. [PMID: 35798093 DOI: 10.1016/j.jconrel.2022.06.061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
179 Kaeokhamloed N, Legeay S, Roger E. FRET as the tool for in vivo nanomedicine tracking. J Control Release 2022;349:156-73. [PMID: 35779657 DOI: 10.1016/j.jconrel.2022.06.048] [Reference Citation Analysis]
180 Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022;349:143-55. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Higashisaka K. Health Effects and Safety Assurance of Nanoparticles in Vulnerable Generations. Biol Pharm Bull 2022;45:806-12. [PMID: 35786586 DOI: 10.1248/bpb.b22-00277] [Reference Citation Analysis]
182 Izza N, Watanabe N, Okamoto Y, Wibisono Y, Umakoshi H. Characterization of entrapment behavior of polyphenols in nanostructured lipid carriers and its effect on their antioxidative activity. J Biosci Bioeng 2022:S1389-1723(22)00162-1. [PMID: 35810136 DOI: 10.1016/j.jbiosc.2022.06.009] [Reference Citation Analysis]
183 Yim G, Cho S, Park JT, Jang H. Synthesis of binary metal–metal oxide core‐shell nanoparticles via surfactant‐free intercation redox reactions. Bulletin Korean Chem Soc. [DOI: 10.1002/bkcs.12587] [Reference Citation Analysis]
184 González-vega JG, García-ramos JC, Chavez-santoscoy RA, Castillo-quiñones JE, Arellano-garcia ME, Toledano-magaña Y. Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. Nanomaterials 2022;12:2316. [DOI: 10.3390/nano12132316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
185 Cahn D, Duncan GA. High-Density Branched PEGylation for Nanoparticle Drug Delivery. Cel Mol Bioeng . [DOI: 10.1007/s12195-022-00727-x] [Reference Citation Analysis]
186 Bhattacharya S, M KR, Priyadarshani J, Ganguly R, Chakraborty S. Targeting Magnetic Nanoparticles in Physiologically Mimicking Tissue Microenvironment. ACS Appl Mater Interfaces 2022. [PMID: 35786842 DOI: 10.1021/acsami.2c07246] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Vera-nuñez LDC, Cornejo-ruiz JO, Arenas-chávez CA, de Hollanda LM, Alvarez-risco A, Del-aguila-arcentales S, Davies NM, Yáñez JA, Vera-gonzales C. Green Synthesis of a Novel Silver Nanoparticle Conjugated with Thelypteris glandulosolanosa (Raqui-Raqui): Preliminary Characterization and Anticancer Activity. Processes 2022;10:1308. [DOI: 10.3390/pr10071308] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
188 Butowska K, Han X, Gong N, El-mayta R, Haley RM, Xue L, Zhong W, Guo W, Wang K, Mitchell MJ. Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.011] [Reference Citation Analysis]
189 Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. Engineered Nanoscale Lipid-Based Formulation as Potential Enhancer of Gefitinib Lymphatic Delivery: Cytotoxicity and Apoptotic Studies Against the A549 Cell Line. AAPS PharmSciTech 2022;23:183. [PMID: 35773422 DOI: 10.1208/s12249-022-02332-7] [Reference Citation Analysis]
190 Mohammed Y, Holmes A, Kwok PCL, Kumeria T, Namjoshi S, Imran M, Matteucci L, Ali M, Tai W, Benson HAE, Roberts MS. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev 2022;186:114293. [PMID: 35483435 DOI: 10.1016/j.addr.2022.114293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
191 Haroon H, Hunter A, Farhangrazi Z, Moghimi S. A brief history of long circulating nanoparticles. Advanced Drug Delivery Reviews 2022. [DOI: 10.1016/j.addr.2022.114396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
192 Xiao G, Zhang Z, Chen Q, Wu T, Shi W, Gan L, Liu X, Huang Y, Lv M, Zhao Y, Wu P, Zhong L, He J. Platelets for cancer treatment and drug delivery. Clin Transl Oncol 2022;24:1231-7. [PMID: 35218523 DOI: 10.1007/s12094-021-02771-x] [Reference Citation Analysis]
193 Torabi M, Yaghoobi F, Shervedani RK, Kefayat A, Ghahremani F, Harsini PR. Mn(II) & Gd(III) Deferrioxamine Complex Contrast Agents & Temozolomide Cancer Prodrug Immobilized on Folic Acid Targeted Graphene/Polyacrylic Acid Nanocarrier: MRI Efficiency, Drug Stability & Interactions with Cancer Cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.129797] [Reference Citation Analysis]
194 Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater 2022;146:10-22. [PMID: 35523414 DOI: 10.1016/j.actbio.2022.04.046] [Reference Citation Analysis]
195 Li X, Bhullar AS, Binzel DW, Guo P. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development. Adv Drug Deliv Rev 2022;186:114316. [PMID: 35526663 DOI: 10.1016/j.addr.2022.114316] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
196 Wang X, Fan Y, Yan J, Yang M. Engineering polyphenol-based polymeric nanoparticles for drug delivery and bioimaging. Chemical Engineering Journal 2022;439:135661. [DOI: 10.1016/j.cej.2022.135661] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
197 Chen P, Huang P, Chen J, Shi Q, Zhu Y, Chen Y, Liu L, Zhang X. A self-delivery chimeric peptide for high efficient cell membrane-targeting low-temperature photothermal/photodynamic combinational therapy and metastasis suppression of tumor. Biomaterials 2022;286:121593. [DOI: 10.1016/j.biomaterials.2022.121593] [Reference Citation Analysis]
198 Skotland T, Iversen TG, Llorente A, Sandvig K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Adv Drug Deliv Rev 2022;186:114326. [PMID: 35588953 DOI: 10.1016/j.addr.2022.114326] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
199 Papadimitriou L, Theodorou A, Papageorgiou M, Voutyritsa E, Papagiannaki A, Velonia K, Ranella A. pH responsive biohybrid BSA-poly(DPA) nanoparticles for interlysosomal drug delivery. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103591] [Reference Citation Analysis]
200 Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.003] [Reference Citation Analysis]
201 Lee J, Kim D, Byun J, Wu Y, Park J, Oh YK. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev 2022;186:114325. [PMID: 35550392 DOI: 10.1016/j.addr.2022.114325] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Değirmenci NS, Uslu M, Kırbaş OK, Şahin F, Önay Uçar E. Lapatinib loaded exosomes as a drug delivery system in breast cancer. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103584] [Reference Citation Analysis]
203 Xie X, Jiang K, Li B, Hou S, Tang H, Shao B, Ping Y, Zhang Q. A small-molecule self-assembled nanodrug for combination therapy of photothermal-differentiation-chemotherapy of breast cancer stem cells. Biomaterials 2022;286:121598. [DOI: 10.1016/j.biomaterials.2022.121598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
204 Drakopoulou E, Anagnou NP, Pappa KI. Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story. Cancers 2022;14:3238. [DOI: 10.3390/cancers14133238] [Reference Citation Analysis]
205 Zhang S, Pan S, Lai S, Situ H, Liu J, Dai W, Liang S, Zhou L, Lu Q, Ke P, Zhang F, Chen H, Li J. Novel Plasma Proteomic Biomarkers for Early Identification of Induction Chemotherapy Beneficiaries in Locoregionally Advanced Nasopharyngeal Carcinoma. Front Oncol 2022;12:889516. [DOI: 10.3389/fonc.2022.889516] [Reference Citation Analysis]
206 Lu Z, Singh G, Lesani P, Zreiqat H. Promise and Perspective of Nanomaterials in Antisenescence Tissue Engineering Applications. ACS Biomater Sci Eng 2022. [PMID: 35771746 DOI: 10.1021/acsbiomaterials.1c01298] [Reference Citation Analysis]
207 Tang TT, Wang B, Lv LL, Dong Z, Liu BC. Extracellular vesicles for renal therapeutics: State of the art and future perspective. J Control Release 2022:S0168-3659(22)00391-1. [PMID: 35779658 DOI: 10.1016/j.jconrel.2022.06.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
208 Huo Y, Liu Y, Xia M, Du H, Lin Z, Li B, Liu H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers 2022;14:2648. [DOI: 10.3390/polym14132648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
209 Bui L, Edwards S, Hall E, Alderfer L, Round K, Owen M, Sainaghi P, Zhang S, Nallathamby PD, Haneline LS, Hanjaya-Putra D. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun Biol 2022;5:635. [PMID: 35768543 DOI: 10.1038/s42003-022-03578-4] [Reference Citation Analysis]
210 Franklin T, Streever DL, Yang R. Versatile and Rapid Synthesis of Polymer Nanodomes via Template- and Solvent-free Condensed Droplet Polymerization. Chem Mater . [DOI: 10.1021/acs.chemmater.2c00964] [Reference Citation Analysis]
211 Zhang Z, Yu Y, Zhu G, Zeng L, Xu S, Cheng H, Ouyang Z, Chen J, Pathak JL, Wu L, Yu L. The Emerging Role of Plant-Derived Exosomes-Like Nanoparticles in Immune Regulation and Periodontitis Treatment. Front Immunol 2022;13:896745. [PMID: 35757759 DOI: 10.3389/fimmu.2022.896745] [Reference Citation Analysis]
212 Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022;188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
213 Cheng Z, Que H, Chen L, Sun Q, Wei X. Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022;14:1372. [DOI: 10.3390/pharmaceutics14071372] [Reference Citation Analysis]
214 Caponio GR, Lippolis T, Tutino V, Gigante I, De Nunzio V, Milella RA, Gasparro M, Notarnicola M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants 2022;11:1274. [DOI: 10.3390/antiox11071274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
215 Dhas N, Pastagia M, Sharma A, Khera A, Kudarha R, Kulkarni S, Soman S, Mutalik S, Barnwal RP, Singh G, Patel M. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022;348:798-824. [PMID: 35752250 DOI: 10.1016/j.jconrel.2022.06.033] [Reference Citation Analysis]
216 Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
217 Sharifzadeh E, Maleki M. An e nergy‐based approach to study the aggregation/agglomeration phenomenon in polymer nanocomposites: Dispersion force against i nter‐particle cohesion. Polymer Composites. [DOI: 10.1002/pc.26804] [Reference Citation Analysis]
218 Le Z, He Z, Liu H, Ke J, Liu L, Liu Z, Chen Y. Orally administrable polyphenol-based nanoparticles achieve anti-inflammation and antitumor treatment of colon diseases. Biomater Sci 2022. [PMID: 35726761 DOI: 10.1039/d2bm00540a] [Reference Citation Analysis]
219 Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 2022. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
220 Khilji IA, Mohd Safee SNB, Pathak S, Chilakamarry CR, Abdul Sani ASB, Reddy VJ. Facile Manufacture of Oxide-Free Cu Particles Coated with Oleic Acid by Electrical Discharge Machining. Micromachines (Basel) 2022;13:969. [PMID: 35744583 DOI: 10.3390/mi13060969] [Reference Citation Analysis]
221 Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
222 Wang Z, Yan Y, Li C, Yu Y, Cheng S, Chen S, Zhu X, Sun L, Tao W, Liu J, Wang F. Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS Nano 2022. [PMID: 35709532 DOI: 10.1021/acsnano.2c00327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
223 Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022;14:1283. [PMID: 35745855 DOI: 10.3390/pharmaceutics14061283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
224 Mansur AAP, Paiva MRB, Cotta OAL, Silva LM, Carvalho IC, Capanema NSV, Carvalho SM, Costa ÉA, Martin NR, Ecco R, Santos BS, Fialho SL, Lobato ZIP, Mansur HS. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. Int J Biol Macromol 2022;210:530-44. [PMID: 35513094 DOI: 10.1016/j.ijbiomac.2022.04.207] [Reference Citation Analysis]
225 Szewczyk OK, Roszczenko P, Czarnomysy R, Bielawska A, Bielawski K. An Overview of the Importance of Transition-Metal Nanoparticles in Cancer Research. Int J Mol Sci 2022;23:6688. [PMID: 35743130 DOI: 10.3390/ijms23126688] [Reference Citation Analysis]
226 Dai J, Wang J, Yang X, Xu Z, Ruan G. Examining the Cellular Transport Pathway of Fusogenic Quantum Dots Conjugated With Tat Peptide. Front Bioeng Biotechnol 2022;10:831379. [PMID: 35694230 DOI: 10.3389/fbioe.2022.831379] [Reference Citation Analysis]
227 Li SR, Huo FY, Wang HQ, Wang J, Xu C, Liu B, Bu LL. Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. J Nanobiotechnology 2022;20:277. [PMID: 35701847 DOI: 10.1186/s12951-022-01489-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
228 Kumar A, Selim A, Gowri V, Ahmad A, Vyawahare A, Nadeem A, Siddiqui N, Raza SS, Jayamurugan G, Khan R. Cellulose-Conjugated Copper-Oxide Nanoparticles for the Treatment of Ethanol-Induced Gastric Ulcers in Wistar Rats. ACS Biomater Sci Eng 2022;8:2636-43. [PMID: 35513890 DOI: 10.1021/acsbiomaterials.2c00090] [Reference Citation Analysis]
229 Chiu JZS, Castillo AM, Tucker IG, Radunskaya AE, McDowell A. Modeling the interaction of polymeric nanoparticles functionalized with cell penetrating peptides at the nano-bio interface. Colloids Surf B Biointerfaces 2022;217:112626. [PMID: 35724599 DOI: 10.1016/j.colsurfb.2022.112626] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
230 Jeon K, Asuncion JA, Corbett AL, Yuan T, Patel M, Andoy NMO, Kreis CT, Voznyy O, Sullan RMA. Buffer Components Incorporate into the Framework of Polyserotonin Nanoparticles and Films during Synthesis. Nanomaterials (Basel) 2022;12:2027. [PMID: 35745365 DOI: 10.3390/nano12122027] [Reference Citation Analysis]
231 Medina-Montano C, Cacicedo ML, Svensson M, Limeres MJ, Zeyn Y, Chaves-Giraldo JE, Röhrig N, Grabbe S, Gehring S, Bros M. Enrichment Methods for Murine Liver Non-Parenchymal Cells Differentially Affect Their Immunophenotype and Responsiveness towards Stimulation. Int J Mol Sci 2022;23:6543. [PMID: 35742987 DOI: 10.3390/ijms23126543] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
232 Liu N, Olson EN. CRISPR Modeling and Correction of Cardiovascular Disease. Circ Res 2022;130:1827-50. [PMID: 35679361 DOI: 10.1161/CIRCRESAHA.122.320496] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
233 Meng Y, Zhu J, Ding J, Zhou W. Polyserotonin as a versatile coating with pH-responsive degradation for anti-tumor therapy. Chem Commun (Camb) 2022;58:6713-6. [PMID: 35593916 DOI: 10.1039/d2cc00083k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 Davis A, Morris KV, Shevchenko G. Hypoxia-directed tumor targeting of CRISPR-Cas9 and HSV-TK suicide gene therapy using lipid nanoparticles. Mol Ther Methods Clin Dev 2022;25:158-69. [PMID: 35402634 DOI: 10.1016/j.omtm.2022.03.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
235 Shehabeldine AM, Salem SS, Ali OM, Abd-Elsalam KA, Elkady FM, Hashem AH. Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel) 2022;8:612. [PMID: 35736095 DOI: 10.3390/jof8060612] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
236 Xiang Z, Han M, Zhang H. Nanomaterials based flexible devices for monitoring and treatment of cardiovascular diseases (CVDs). Nano Res . [DOI: 10.1007/s12274-022-4551-8] [Reference Citation Analysis]
237 Virmani M, Deshpande NU, Pathan S, Jayakannan M. Self-Reporting Polysaccharide Polymersome for Doxorubicin and Cisplatin Delivery to Live Cancer Cells. ACS Polym Au 2022;2:181-93. [DOI: 10.1021/acspolymersau.1c00042] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
238 Chen QB, Shen MH, Ren XH, Zhu S, Shang JT, Liu W, Zhang ZW, Dong ZJ, Gu HZ, Zhang XZ, Yuan Q, Zou T. Tumor-triggered targeting ammonium bicarbonate liposomes for tumor multimodal therapy. J Mater Chem B 2022. [PMID: 35666635 DOI: 10.1039/d2tb00409g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
239 Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Mol Pharm 2022;19:1669-86. [PMID: 35594500 DOI: 10.1021/acs.molpharmaceut.1c00916] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
240 Devrnja N, Milutinović M, Savić J. When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. Sustainability 2022;14:6847. [DOI: 10.3390/su14116847] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 Singh P, Waghambare P, Khan T, Omri A. Colorectal cancer management: Strategies in drug delivery. Expert Opin Drug Deliv 2022. [PMID: 35656670 DOI: 10.1080/17425247.2022.2084531] [Reference Citation Analysis]
242 Mousa AH, Mohammad SA. Potential role of chitosan, PLGA and iron oxide nanoparticles in Parkinson’s disease therapy. Egypt J Neurol Psychiatry Neurosurg 2022;58. [DOI: 10.1186/s41983-022-00503-8] [Reference Citation Analysis]
243 Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
244 Pinto M, Silva V, Barreiro S, Silva R, Remião F, Borges F, Fernandes C. Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Res Rev 2022;79:101658. [PMID: 35660114 DOI: 10.1016/j.arr.2022.101658] [Reference Citation Analysis]
245 Laggerbauer B, Engelhardt S. MicroRNAs as therapeutic targets in cardiovascular disease. J Clin Invest 2022;132:e159179. [PMID: 35642640 DOI: 10.1172/JCI159179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
246 Mi X, Guo X, Du H, Han M, Liu H, Luo Y, Wang D, Xiang R, Yue S, Zhang Y, Tan X. Combined legumain- and integrin-targeted nanobubbles for molecular ultrasound imaging of breast cancer. Nanomedicine 2022;42:102533. [PMID: 35150904 DOI: 10.1016/j.nano.2022.102533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
247 Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022. [PMID: 35642539 DOI: 10.1039/d1cs00659b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
248 Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chemistry Reviews 2022;460:214486. [DOI: 10.1016/j.ccr.2022.214486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
249 Liu Y, Ma X, Zhu Y, Lv X, Wang P, Feng L. pH-responsive nanomedicine co-encapsulated with Erlotinib and chlorin e6 can enable effective treatment of triple negative breast cancer via reprogramming tumor vasculature. Chemical Engineering Journal 2022;437:135305. [DOI: 10.1016/j.cej.2022.135305] [Reference Citation Analysis]
250 Ma X, Chen X, Yi Z, Deng Z, Su W, Chen G, Ma L, Ran Y, Tong Q, Li X. Size Changeable Nanomedicines Assembled by Noncovalent Interactions of Responsive Small Molecules for Enhancing Tumor Therapy. ACS Appl Mater Interfaces 2022. [PMID: 35647653 DOI: 10.1021/acsami.2c04698] [Reference Citation Analysis]
251 Stahl M, Holzinger J, Bülow S, Goepferich AM. Enzyme-triggered antigen release enhances cross-presentation by dendritic cells. Nanomedicine 2022;42:102545. [PMID: 35283290 DOI: 10.1016/j.nano.2022.102545] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
252 Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. Journal of the Neurological Sciences 2022. [DOI: 10.1016/j.jns.2022.120316] [Reference Citation Analysis]
253 Ruella Oliveira S, Tuttis K, Rita Thomazela Machado A, Cristina de Souza Rocha C, Maria Greggi Antunes L, Barbosa F. Cell-to-cell heterogeneous association of prostate cancer with gold nanoparticles elucidated by single-cell inductively coupled plasma mass spectrometry. Microchemical Journal 2022;177:107275. [DOI: 10.1016/j.microc.2022.107275] [Reference Citation Analysis]
254 Chi H, Zhu G, Yin Y, Diao H, Liu Z, Sun S, Guo Z, Xu W, Xu J, Cui C, Xing X, Ma K. Dual-Responsive multifunctional “core-shell” magnetic nanoparticles promoting Fenton reaction for tumor ferroptosis therapy. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121898] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
255 Nagaraj B, Musthafa SA, Muhammad S, Munuswamy-ramanujam G, Chung WJ, Alodaini HA, Hatamleh AA, Al-dosary MA, Ranganathan V. Anti-microbial and anti-cancer activity of gold nanoparticles phytofabricated using clerodin enriched clerodendrum ethanolic leaf extract. Journal of King Saud University - Science 2022;34:101989. [DOI: 10.1016/j.jksus.2022.101989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
256 Saji VS. Supramolecular organic nanotubes for drug delivery. Materials Today Advances 2022;14:100239. [DOI: 10.1016/j.mtadv.2022.100239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
257 Zha S, Wong KL, All AH. Intranasal Delivery of Functionalized Polymeric Nanomaterials to the Brain. Adv Healthc Mater 2022;11:e2102610. [PMID: 35166052 DOI: 10.1002/adhm.202102610] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
258 Shan X, Luo L, Yu Z, You J. Recent advances in versatile inverse lyotropic liquid crystals. J Control Release 2022;348:1-21. [PMID: 35636617 DOI: 10.1016/j.jconrel.2022.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
259 Koga MM, Comberlato A, Rodríguez-Franco HJ, Bastings MMC. Strategic Insights into Engineering Parameters Affecting Cell Type-Specific Uptake of DNA-Based Nanomaterials. Biomacromolecules 2022. [PMID: 35641881 DOI: 10.1021/acs.biomac.2c00282] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
260 Chiang MC, Nicol CJB. GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic Biol Med 2022:S0891-5849(22)00219-2. [PMID: 35660451 DOI: 10.1016/j.freeradbiomed.2022.05.025] [Reference Citation Analysis]
261 Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing Therapeutic Exosomes: from Bench to Industry. Mol Cells 2022;45:284-90. [PMID: 35534190 DOI: 10.14348/molcells.2022.2033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
262 Larrea A, Arruebo M, Serra CA, Sebastián V. Trojan pH-Sensitive Polymer Particles Produced in a Continuous-Flow Capillary Microfluidic Device Using Water-in-Oil-in-Water Double-Emulsion Droplets. Micromachines 2022;13:878. [DOI: 10.3390/mi13060878] [Reference Citation Analysis]
263 Yang J, Li X, Tong Y, Yang Y, Zhao L, Zhou Q, Xu J, Dong L, Jiang Y. Targeting co-delivery of doxorubicin and gefitinib by biotinylated Au NCs for overcoming multidrug resistance in imaging-guided anticancer therapy. Colloids Surf B Biointerfaces 2022;217:112608. [PMID: 35679735 DOI: 10.1016/j.colsurfb.2022.112608] [Reference Citation Analysis]
264 Gao X, Xu J, Yao T, Liu X, Zhang H, Zhan C. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv Drug Deliv Rev 2022;187:114362. [PMID: 35654215 DOI: 10.1016/j.addr.2022.114362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
265 Pandey J, Dubey R, Kate A, Prasad B, Sinha A, Mishra MS. Nanomedicines: A Focus on Nanomaterials as Drug Delivery System with Current Trends and Future Advancement. Drug Res (Stuttg). [DOI: 10.1055/a-1824-4619] [Reference Citation Analysis]
266 Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Kundu MK, Dey A, Rahman MH, Antonescu A, Cavalu S. Multidrug Resistance in Cancer Cells: Focus on a Possible Strategy Plan to Address Colon Carcinoma Cells. Life 2022;12:811. [DOI: 10.3390/life12060811] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
267 Saheeda P, Thasneem YM, Sabira K, Dhaneesha M, Sulfikkarali NK, Jayaleksmi S. Multi-walled carbon nanotubes/polypyrrole nanocomposite, synthesized through an eco-friendly route, as a prospective drug delivery system. Polym Bull . [DOI: 10.1007/s00289-022-04290-3] [Reference Citation Analysis]
268 Moya-lopez C, Juan A, Donizeti M, Valcarcel J, Vazquez JA, Solano E, Chapron D, Bourson P, Bravo I, Alonso-moreno C, Clemente-casares P, Gracia-fernández C, Longo A, Salloum-abou-jaoude G, Ocaña A, Piñeiro MM, Hermida-merino C, Hermida-merino D. Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics 2022;14:1138. [DOI: 10.3390/pharmaceutics14061138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
269 Vasanthakumar A, Rejeeth C, Vivek R, Ponraj T, Jayaraman K, Anandasadagopan SK, Vinayaga Moorthi P. Design of Bio-Graphene-Based Multifunctional Nanocomposites Exhibits Intracellular Drug Delivery in Cervical Cancer Treatment. ACS Appl Bio Mater 2022. [PMID: 35620928 DOI: 10.1021/acsabm.2c00280] [Reference Citation Analysis]
270 Luo FQ, Xu W, Zhang JY, Liu R, Huang YC, Xiao C, Du JZ. An Injectable Nanocomposite Hydrogel Improves Tumor Penetration and Cancer Treatment Efficacy. Acta Biomater 2022:S1742-7061(22)00318-X. [PMID: 35644327 DOI: 10.1016/j.actbio.2022.05.042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
271 Browning AP, Ansari N, Drovandi C, Johnston APR, Simpson MJ, Jenner AL. Identifying cell-to-cell variability in internalization using flow cytometry. J R Soc Interface 2022;19:20220019. [PMID: 35611619 DOI: 10.1098/rsif.2022.0019] [Reference Citation Analysis]
272 Yang JI, Lee HL, Yun JJ, Kim J, So KH, Jeong YI, Kang DH. pH and Redox-Dual Sensitive Chitosan Nanoparticles Having Methyl Ester and Disulfide Linkages for Drug Targeting against Cholangiocarcinoma Cells. Materials (Basel) 2022;15:3795. [PMID: 35683095 DOI: 10.3390/ma15113795] [Reference Citation Analysis]
273 Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022;14:1132. [DOI: 10.3390/pharmaceutics14061132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
274 Modi S, Inwati GK, Gacem A, Saquib Abullais S, Prajapati R, Yadav VK, Syed R, Alqahtani MS, Yadav KK, Islam S, Ahn Y, Jeon B. Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics. Antibiotics 2022;11:708. [DOI: 10.3390/antibiotics11060708] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
275 Shahgolzari M, Fiering S. Emerging Potential of Plant Virus Nanoparticles (PVNPs) in Anticancer Immunotherapies. J Cancer Immunol (Wilmington) 2022;4:22-9. [PMID: 35600219 DOI: 10.33696/cancerimmunol.4.061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
276 Choi H, Kim M, Kim D, Yun H, Oh B, Kim S, Song I, Park H, Kim S, Park C, Choi C. Quantitative Biodistribution and Pharmacokinetics Study of GMP-Grade Exosomes Labeled with 89Zr Radioisotope in Mice and Rats. Pharmaceutics 2022;14:1118. [DOI: 10.3390/pharmaceutics14061118] [Reference Citation Analysis]
277 Alexandrov DV, Korabel N, Currell F, Fedotov S. Dynamics of intracellular clusters of nanoparticles. Cancer Nano 2022;13. [DOI: 10.1186/s12645-022-00118-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
278 Patel SK, Billingsley MM, Frazee C, Han X, Swingle KL, Qin J, Alameh MG, Wang K, Weissman D, Mitchell MJ. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. J Control Release 2022;347:521-32. [PMID: 35569584 DOI: 10.1016/j.jconrel.2022.05.020] [Reference Citation Analysis]
279 Jeitler R, Glader C, Tetyczka C, Zeiringer S, Absenger-novak M, Selmani A, Fröhlich E, Roblegg E. Investigation of Cellular Interactions of Lipid-Structured Nanoparticles With Oral Mucosal Epithelial Cells. Front Mol Biosci 2022;9:917921. [DOI: 10.3389/fmolb.2022.917921] [Reference Citation Analysis]
280 Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022;10:1206. [PMID: 35625943 DOI: 10.3390/biomedicines10051206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
281 Hoff SE, Di Silvio D, Ziolo RF, Moya SE, Heinz H. Patterning of Self-Assembled Monolayers of Amphiphilic Multisegment Ligands on Nanoparticles and Design Parameters for Protein Interactions. ACS Nano 2022. [PMID: 35603431 DOI: 10.1021/acsnano.1c08695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
282 Tarannum M, Vivero-Escoto JL. Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment. Adv Drug Deliv Rev 2022;187:114357. [PMID: 35605679 DOI: 10.1016/j.addr.2022.114357] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
283 Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022;7:166. [PMID: 35597779 DOI: 10.1038/s41392-022-01007-w] [Reference Citation Analysis]
284 Wang G, Li W, Shi G, Tian Y, Kong L, Ding N, Lei J, Jin Z, Tian J, Du Y. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur J Nucl Med Mol Imaging 2022. [PMID: 35590110 DOI: 10.1007/s00259-022-05834-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
285 Li Z, Sun W, Duan W, Jiang Y, Chen M, Lin G, Wang Q, Fan Z, Tong Y, Chen L, Li J, Cheng G, Wang C, Li C, Chen L. Guiding Epilepsy Surgery with an LRP1-Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS Appl Mater Interfaces 2022. [PMID: 35588160 DOI: 10.1021/acsami.2c02540] [Reference Citation Analysis]
286 Ahmed T, Liu FF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Reference Citation Analysis]
287 Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022;20:236. [PMID: 35590412 DOI: 10.1186/s12951-022-01451-4] [Reference Citation Analysis]
288 Nguyen T, Duong V. Solid Lipid Nanoparticles. Encyclopedia 2022;2:952-73. [DOI: 10.3390/encyclopedia2020063] [Reference Citation Analysis]
289 Anis T, ul Hassan SM, Khurshid A, Fakhar-e-alam M, Shahzad F, Ali A, Ahmad J, Hossain N. Hollow Multicomponent Capsules for Biomedical Applications: A Comprehensive Review. J Clust Sci. [DOI: 10.1007/s10876-022-02272-z] [Reference Citation Analysis]
290 Yang X, Wen X, Dai J, Chen Y, Ding W, Wang J, Gu X, Zhang X, Chen J, Sutliff RL, Emory SR, Ruan G. Probing the Intracellular Delivery of Nanoparticles into Hard-to-Transfect Cells. ACS Nano 2022. [PMID: 35579595 DOI: 10.1021/acsnano.1c07648] [Reference Citation Analysis]
291 Marchetti L, Porciani D, Mitola S, Giacomelli C. Editorial: Molecular Insights Into Ligand-Receptor Interactions on the Cell Surface. Front Mol Biosci 2022;9:921677. [DOI: 10.3389/fmolb.2022.921677] [Reference Citation Analysis]
292 Poonaki E, Nickel AC, Shafiee Ardestani M, Rademacher L, Kaul M, Apartsin E, Meuth SG, Gorji A, Janiak C, Kahlert UD. CD133-Functionalized Gold Nanoparticles as a Carrier Platform for Telaglenastat (CB-839) against Tumor Stem Cells. Int J Mol Sci 2022;23:5479. [PMID: 35628289 DOI: 10.3390/ijms23105479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
293 Hosseinkazemi H, Samani S, O’neill A, Soezi M, Moghoofei M, Azhdari MH, Aavani F, Nazbar A, Keshel SH, Doroudian M, Shi D. Applications of Iron Oxide Nanoparticles against Breast Cancer. Journal of Nanomaterials 2022;2022:1-12. [DOI: 10.1155/2022/6493458] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
294 Nguyen MP, Kim Y, Ryu D, Kim D. Targeted Chemotherapy Based on Amplifying the Reactive Oxygen Species of Doxorubicin-Loaded Polyaspartamide-Encapsulated Iron Oxide Nanoparticles. ACS Appl Nano Mater 2022;5:7619-31. [DOI: 10.1021/acsanm.2c01782] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
295 Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS Appl Mater Interfaces 2022. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
296 Dzulkharnien NSF, Rohani R. A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. Nanomaterials (Basel) 2022;12:1629. [PMID: 35630851 DOI: 10.3390/nano12101629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
297 Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
298 Zhang H, Zhang L, Cao Z, Cheong S, Boyer C, Wang Z, Yun SLJ, Amal R, Gu Z. Two-Dimensional Ultra-Thin Nanosheets with Extraordinarily High Drug Loading and Long Blood Circulation for Cancer Therapy. Small 2022;:e2200299. [PMID: 35521948 DOI: 10.1002/smll.202200299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
299 Ding F, Zhang S, Liu S, Feng J, Li J, Li Q, Ge Z, Zuo X, Fan C, Xia Q. Molecular Visualization of Early-Stage Acute Kidney Injury with a DNA Framework Nanodevice. Adv Sci (Weinh) 2022;:e2105947. [PMID: 35508712 DOI: 10.1002/advs.202105947] [Reference Citation Analysis]
300 Rebanda MM, Bettini S, Blasi L, Gaballo A, Ragusa A, Quarta A, Piccirillo C. Poly(l-lactide-co-caprolactone-co-glycolide)-Based Nanoparticles as Delivery Platform: Effect of the Surfactants on Characteristics and Delivery Efficiency. Nanomaterials (Basel) 2022;12:1550. [PMID: 35564258 DOI: 10.3390/nano12091550] [Reference Citation Analysis]
301 Xie D, Niu Y, Mu R, Campos de Souza S, Yin X, Dong L, Wang C. A Toll-like Receptor-Activating, Self-Adjuvant Glycan Nanocarrier. Front Chem 2022;10:864206. [DOI: 10.3389/fchem.2022.864206] [Reference Citation Analysis]
302 Fan Q, Zuo J, Tian H, Huang C, Nice EC, Shi Z, Kong Q. Nanoengineering a metal-organic framework for osteosarcoma chemo-immunotherapy by modulating indoleamine-2,3-dioxygenase and myeloid-derived suppressor cells. J Exp Clin Cancer Res 2022;41:162. [PMID: 35501823 DOI: 10.1186/s13046-022-02372-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
303 Kesavan A, Chandrasekhar Reddy U, Kurian J, Muraleedharan KM. Cancer cell uptake and distribution of oxanorbornane-based synthetic lipids and their prospects as novel drug delivery systems. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103439] [Reference Citation Analysis]
304 Ezra Manicum A, Sargazi S, Razzaq S, Kumar GV, Rahdar A, Er S, Ain QU, Bilal M, Aboudzadeh MA. Nano-immunotherapeutic strategies for targeted RNA delivery: Emphasizing the role of monocyte/macrophages as nanovehicles to treat glioblastoma multiforme. Journal of Drug Delivery Science and Technology 2022;71:103288. [DOI: 10.1016/j.jddst.2022.103288] [Reference Citation Analysis]
305 Zhu L, Yang Y, Yan Z, Zeng J, Weng F, Shi Y, Shen P, Liu L, Yang H. Controlled Release of TGF-β3 for Effective Local Endogenous Repair in IDD Using Rat Model. IJN 2022;Volume 17:2079-96. [DOI: 10.2147/ijn.s358396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
306 Akasov R, Khaydukov EV, Yamada M, Zvyagin AV, Leelahavanichkul A, Leanse LG, Dai T, Prow T. Nanoparticle enhanced blue light therapy. Adv Drug Deliv Rev 2022;184:114198. [PMID: 35301045 DOI: 10.1016/j.addr.2022.114198] [Reference Citation Analysis]
307 Li J, Lai Y, Li M, Chen X, Zhou M, Wang W, Li J, Cui W, Zhang G, Wang K, Liu L, Lin Y. Repair of infected bone defect with Clindamycin-Tetrahedral DNA nanostructure Complex-loaded 3D bioprinted hybrid scaffold. Chemical Engineering Journal 2022;435:134855. [DOI: 10.1016/j.cej.2022.134855] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 19.0] [Reference Citation Analysis]
308 Loo YS, Zahid NI, Madheswaran T, Mat Azmi ID. Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. Journal of Drug Delivery Science and Technology 2022;71:103300. [DOI: 10.1016/j.jddst.2022.103300] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
309 Zheng X, Pan D, Zhu G, Zhang L, Bhamra A, Chen R, Zhang H, Gong Q, Gu Z, Luo K. A Dendritic Polymer-Based Nanosystem Mediates Drug Penetration and Irreversible Endoplasmic Reticulum Stresses in Tumor via Neighboring Effect. Adv Mater 2022;34:e2201200. [PMID: 35289966 DOI: 10.1002/adma.202201200] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
310 Wu J, Zhang Y, Jiang K, Wang X, Blum NT, Zhang J, Jiang S, Lin J, Huang P. Enzyme-Engineered Conjugated Polymer Nanoplatform for Activatable Companion Diagnostics and Multistage Augmented Synergistic Therapy. Adv Mater 2022;34:e2200062. [PMID: 35243699 DOI: 10.1002/adma.202200062] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 15.0] [Reference Citation Analysis]
311 Ghaziof S, Shojaei S, Mehdikhani M, Khodaei M, Nodoushan MJ. Electro-conductive 3D printed polycaprolactone/gold nanoparticles nanocomposite scaffolds for myocardial tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials 2022. [DOI: 10.1016/j.jmbbm.2022.105271] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
312 Qu X, Wang M, Wang M, Tang H, Zhang S, Yang H, Yuan W, Wang Y, Yang J, Yue B. Multi-Mode Antibacterial Strategies Enabled by Gene-Transfection and Immunomodulatory Nanoparticles in 3D-Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. Adv Mater 2022;34:e2200096. [PMID: 35267223 DOI: 10.1002/adma.202200096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
313 Friedrich RP, Kappes M, Cicha I, Tietze R, Braun C, Schneider-stock R, Nagy R, Alexiou C, Janko C. Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles. IJN 2022;Volume 17:2139-63. [DOI: 10.2147/ijn.s355007] [Reference Citation Analysis]
314 Nguyen DD, Lai J. Synthesis, bioactive properties, and biomedical applications of intrinsically therapeutic nanoparticles for disease treatment. Chemical Engineering Journal 2022;435:134970. [DOI: 10.1016/j.cej.2022.134970] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
315 Matskou K, Kisaoglan B, Mavroidi B, Pelecanou M, Zoumpanioti M, Matis I, Xenakis A. Inducing the formation of a colloidal albumin carrier of curcumin. JCIS Open 2022. [DOI: 10.1016/j.jciso.2022.100051] [Reference Citation Analysis]
316 Meng Q, Wang X, Guo D, Shi C, Gu R, Ma J, Nieman G, Kollisch-Singule M, Luo J, Cooney RN. Nano-chemically Modified Tetracycline-3 (nCMT-3) Attenuates Acute Lung Injury via Blocking sTREM-1 Release and NLRP3 Inflammasome Activation. Shock 2022;57:749-58. [PMID: 35583915 DOI: 10.1097/SHK.0000000000001927] [Reference Citation Analysis]
317 Zhong W, Zhang X, Duan X, Liu H, Fang Y, Luo M, Fang Z, Miao C, Lin D, Wu J. Redox-responsive self-assembled polymeric nanoprodrug for delivery of gemcitabine in B-cell lymphoma therapy. Acta Biomater 2022;144:67-80. [PMID: 35331940 DOI: 10.1016/j.actbio.2022.03.035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
318 Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interface Sci 2022;303:102640. [PMID: 35358806 DOI: 10.1016/j.cis.2022.102640] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
319 Briones A, Martos G, Bedu M, Choteau T, Josephs RD, Wielgosz RI, Ryadnov MG. An SI-traceable reference material for virus-like particles. iScience 2022;25:104294. [DOI: 10.1016/j.isci.2022.104294] [Reference Citation Analysis]
320 Abbasi M, Sohail M, Minhas MU, Iqbal J, Mahmood A, Shaikh AJ. Folic acid-functionalized nanoparticles-laden biomaterials for the improved oral delivery of hydrophobic drug in colorectal cancer. Journal of Drug Delivery Science and Technology 2022;71:103287. [DOI: 10.1016/j.jddst.2022.103287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
321 Fu L, Kim HN, Sterling JD, Baker SM, Lord MS. The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022;184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
322 Liu Z, Zhou X, Li Q, Shen Y, Zhou T, Liu X. Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.05.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
323 Olshefsky A, Richardson C, Pun SH, King NP. Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjug Chem 2022. [PMID: 35487503 DOI: 10.1021/acs.bioconjchem.2c00030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
324 Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. Nat Rev Methods Primers 2022;2:24. [PMID: 35480987 DOI: 10.1038/s43586-022-00104-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
325 Persano F, Nobile C, Piccirillo C, Gigli G, Leporatti S. Monodisperse and Nanometric-Sized Calcium Carbonate Particles Synthesis Optimization. Nanomaterials 2022;12:1494. [DOI: 10.3390/nano12091494] [Reference Citation Analysis]
326 Gerke C, Zabala Gutierrez I, Méndez-González D, Cruz MCI, Mulero F, Jaque D, Rubio-Retama J. Clickable Albumin Nanoparticles for Pretargeted Drug Delivery toward PD-L1 Overexpressing Tumors in Combination Immunotherapy. Bioconjug Chem 2022. [PMID: 35482594 DOI: 10.1021/acs.bioconjchem.2c00087] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
327 Li Y, Xie M, Jones JB, Zhang Z, Wang Z, Dang T, Wang X, Lipowska M, Mao H. Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Sub-5 Ultrafine Iron Oxide Nanoparticles. Adv Healthc Mater 2022;:e2102816. [PMID: 35481625 DOI: 10.1002/adhm.202102816] [Reference Citation Analysis]
328 Benedetto A, Kelley EG. Absorption of the [bmim][Cl] Ionic Liquid in DMPC Lipid Bilayers across Their Gel, Ripple, and Fluid Phases. J Phys Chem B 2022. [PMID: 35472281 DOI: 10.1021/acs.jpcb.2c00710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
329 Kumar MNVR. Urolithin A Nanoparticle Therapy for Cisplatin-Induced Acute Kidney Injury. Nephron 2022;:1-3. [PMID: 35472845 DOI: 10.1159/000524509] [Reference Citation Analysis]
330 Hwang J, An EK, Kim SJ, Zhang W, Jin JO. Escherichia coli Mimetic Gold Nanorod-Mediated Photo- and Immunotherapy for Treating Cancer and Its Metastasis. ACS Nano 2022. [PMID: 35466668 DOI: 10.1021/acsnano.2c03379] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
331 Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022:S0168-3659(22)00228-0. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
332 George TA, Hsu C, Meeson A, Lundy DJ. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics 2022;14:930. [DOI: 10.3390/pharmaceutics14050930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
333 Musumeci T, Di Benedetto G, Carbone C, Bonaccorso A, Amato G, Lo Faro MJ, Burgaletto C, Puglisi G, Bernardini R, Cantarella G. Intranasal Administration of a TRAIL Neutralizing Monoclonal Antibody Adsorbed in PLGA Nanoparticles and NLC Nanosystems: An In Vivo Study on a Mouse Model of Alzheimer’s Disease. Biomedicines 2022;10:985. [DOI: 10.3390/biomedicines10050985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
334 Kang Z, Liu Q, Zhang Z, Zheng Y, Wang C, Pan Z, Li Q, Liu Y, Shi L. Arginine-Rich Polymers with Pore-Forming Capability Enable Efficient Intracellular Delivery via Direct Translocation Across Cell Membrane. Adv Healthc Mater 2022;:e2200371. [PMID: 35460333 DOI: 10.1002/adhm.202200371] [Reference Citation Analysis]
335 Alghamdi MA, Fallica AN, Virzì N, Kesharwani P, Pittalà V, Greish K. The Promise of Nanotechnology in Personalized Medicine. JPM 2022;12:673. [DOI: 10.3390/jpm12050673] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
336 Zou Y, Sun X, Yang Q, Zheng M, Shimoni O, Ruan W, Wang Y, Zhang D, Yin J, Huang X, Tao W, Park JB, Liang XJ, Leong KW, Shi B. Blood-brain barrier-penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Sci Adv 2022;8:eabm8011. [PMID: 35442747 DOI: 10.1126/sciadv.abm8011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
337 Imran M, Paudel KR, Jha SK, Hansbro PM, Dua K, Mohammed Y. Dressing of multifunctional nanoparticles with natural cell-derived membranes for the superior chemotherapy. Nanomedicine (Lond) 2022. [PMID: 35451313 DOI: 10.2217/nnm-2022-0051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
338 Dennahy IS, Han Z, Maccuaig WM, Chalfant HM, Condacse A, Hagood JM, Claros-sorto JC, Razaq W, Holter-chakrabarty J, Squires R, Edil BH, Jain A, Mcnally LR. Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022;14:917. [DOI: 10.3390/pharmaceutics14050917] [Reference Citation Analysis]
339 Wu F, Gardinier TC, Turker MZ, Chen F, Chen P, Venkatesan AM, Patel V, Adams GP, Bradbury MS, Wiesner UB, Germano G, Ma K. Molecular Engineering of Surface Functional Groups Enabling Clinical Translation of Nanoparticle–Drug Conjugates. Chem Mater . [DOI: 10.1021/acs.chemmater.1c04447] [Reference Citation Analysis]
340 Geng R, Wang Y, Fang J, Zhao Y, Li M, Kang SG, Huang K, Tong T. Ectopic odorant receptors responding to flavor compounds in skin health and disease: Current insights and future perspectives. Crit Rev Food Sci Nutr 2022;:1-17. [PMID: 35445618 DOI: 10.1080/10408398.2022.2064812] [Reference Citation Analysis]
341 Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
342 Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. Nanomaterials 2022;12:1414. [DOI: 10.3390/nano12091414] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
343 Zhdanov VP. Lipid nanoparticles with ionizable lipids: Statistical aspects. Phys Rev E 2022;105. [DOI: 10.1103/physreve.105.044405] [Reference Citation Analysis]
344 Khodja M, Bousrih I, El Kateb M, Beji M, Guittard F, Darmanin T. Formation of Nanotubular Structures with Petal Effect by Soft-Template Electropolymerization of Benzotrithiophene with Hydrophilic Carboxyl Group. J Bionic Eng 2022;19:1054-63. [DOI: 10.1007/s42235-022-00193-1] [Reference Citation Analysis]
345 Joseph A, Balakrishnan A, Shanmughan P, Maliakel B, Illathu Madhavamenon K. Micelle/Hydrogel Composite as a "Natural Self-Emulsifying Reversible Hybrid Hydrogel (N'SERH)" Enhances the Oral Bioavailability of Free (Unconjugated) Resveratrol. ACS Omega 2022;7:12835-45. [PMID: 35474815 DOI: 10.1021/acsomega.2c00116] [Reference Citation Analysis]
346 Finnegan JR, Davis TP, Kempe K. Heat-Induced Living Crystallization-Driven Self-Assembly: The Effect of Temperature and Polymer Composition on the Assembly and Disassembly of Poly(2-oxazoline) Nanorods. Macromolecules. [DOI: 10.1021/acs.macromol.2c00298] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
347 Idoudi S, Bedhiafi T, Hijji YM, Billa N. Curcumin and Derivatives in Nanoformulations with Therapeutic Potential on Colorectal Cancer. AAPS PharmSciTech 2022;23:115. [PMID: 35441267 DOI: 10.1208/s12249-022-02268-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
348 Qian X, Xu X, Wu Y, Wang J, Li J, Chen S, Wen J, Li Y, Zhang Z. Strategies of engineering nanomedicines for tumor retention. J Control Release 2022:S0168-3659(22)00200-0. [PMID: 35447297 DOI: 10.1016/j.jconrel.2022.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
349 Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y, Wu J. Recent Advances of Tumor Therapy Based on the CD47-SIRPα Axis. Mol Pharm 2022. [PMID: 35436123 DOI: 10.1021/acs.molpharmaceut.2c00073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
350 Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. Nanomaterials (Basel) 2022;12:1377. [PMID: 35458085 DOI: 10.3390/nano12081377] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
351 Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. Nanomaterials (Basel) 2022;12:1376. [PMID: 35458084 DOI: 10.3390/nano12081376] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
352 Åslund AKO, Vandebriel RJ, Caputo F, de Jong WH, Delmaar C, Hyldbakk A, Rustique E, Schmid R, Snipstad S, Texier I, Vernstad K, Borgos SEF. A comparative biodistribution study of polymeric and lipid-based nanoparticles. Drug Deliv and Transl Res . [DOI: 10.1007/s13346-022-01157-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
353 Ahmad F, Salem-bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, Wu H, Taha EI, Elbagory I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 2022;12:1333. [DOI: 10.3390/nano12081333] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
354 Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022;13:4239-69. [PMID: 35509461 DOI: 10.1039/d2sc01003h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
355 Morarasu S, Morarasu BC, Ghiarasim R, Coroaba A, Tiron C, Iliescu R, Dimofte G. Targeted Cancer Therapy via pH-Functionalized Nanoparticles: A Scoping Review of Methods and Outcomes. Gels 2022;8:232. [DOI: 10.3390/gels8040232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
356 Romanò F. Reconstructing the neutrally-buoyant particle flow near a singular corner. Acta Mech Sin 2022;38. [DOI: 10.1007/s10409-022-09025-x] [Reference Citation Analysis]
357 Liu Z, Zhou D, Liao L. pH/Redox/Lysozyme-Sensitive Hybrid Nanocarriers With Transformable Size for Multistage Drug Delivery. Front Bioeng Biotechnol 2022;10:882308. [DOI: 10.3389/fbioe.2022.882308] [Reference Citation Analysis]
358 Sotoma S. Polyglycerol/Polydopamine-Coated Nanoparticles for Biomedical Applications. Front Mater 2022;9:878455. [DOI: 10.3389/fmats.2022.878455] [Reference Citation Analysis]
359 Huang S, Hong X, Zhao M, Liu N, Liu H, Zhao J, Shao L, Xue W, Zhang H, Zhu P, Guo R. Nanocomposite hydrogels for biomedical applications. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10315] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
360 Saha T, Lukong KE. Breast Cancer Stem-Like Cells in Drug Resistance: A Review of Mechanisms and Novel Therapeutic Strategies to Overcome Drug Resistance. Front Oncol 2022;12:856974. [PMID: 35392236 DOI: 10.3389/fonc.2022.856974] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
361 Lin P, Xue Y, Mu X, Shao Y, Lu Q, Jin X, Yinwang E, Zhang Z, Zhou H, Teng W, Sun H, Chen W, Shi W, Shi C, Zhou X, Jiang X, Yu X, Ye Z. Tumor Customized 2D Supramolecular Nanodiscs for Ultralong Tumor Retention and Precise Photothermal Therapy of Highly Heterogeneous Cancers. Small 2022;:e2200179. [PMID: 35396783 DOI: 10.1002/smll.202200179] [Reference Citation Analysis]
362 Chen C, Zhou Y, Chen C, Zhu S, Yan X. Quantification of Available Ligand Density on the Surface of Targeted Liposomal Nanomedicines at the Single-Particle Level. ACS Nano 2022. [PMID: 35394292 DOI: 10.1021/acsnano.2c02084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
363 Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
364 Chen Q, Su L, He X, Li J, Cao Y, Wu Q, Qin J, He Z, Huang X, Yang H, Li J. Poly(beta-amino ester)-Based Nanoparticles Enable Nonviral Delivery of Base Editors for Targeted Tumor Gene Editing. Biomacromolecules 2022. [PMID: 35388688 DOI: 10.1021/acs.biomac.2c00137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
365 Divyashri G, Badhe RV, Sadanandan B, Vijayalakshmi V, Kumari M, Ashrit P, Bijukumar D, Mathew MT, Shetty K, Raghu AV. Applications of hydrogel‐based delivery systems in wound care and treatment: An up‐to‐date review. Polymers for Advanced Techs. [DOI: 10.1002/pat.5661] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
366 Wang S, Alenius H, El-nezami H, Karisola P. A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials 2022;12:1247. [DOI: 10.3390/nano12081247] [Reference Citation Analysis]
367 Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022;14:1847. [PMID: 35406619 DOI: 10.3390/cancers14071847] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
368 Hulme J. Application of Nanomaterials in the Prevention, Detection, and Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2022;14:805. [DOI: 10.3390/pharmaceutics14040805] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
369 Khalin I, Adarsh N, Schifferer M, Wehn A, Groschup B, Misgeld T, Klymchenko A, Plesnila N. Size-Selective Transfer of Lipid Nanoparticle-Based Drug Carriers Across the Blood Brain Barrier Via Vascular Occlusions Following Traumatic Brain Injury. Small 2022;:e2200302. [PMID: 35384294 DOI: 10.1002/smll.202200302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
370 Jayasinghe MK, Lee CY, Tran TTT, Tan R, Chew SM, Yeo BZJ, Loh WX, Pirisinu M, Le MTN. The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Front Digit Health 2022;4:838590. [PMID: 35373184 DOI: 10.3389/fdgth.2022.838590] [Reference Citation Analysis]
371 Lederer CW, Koniali L, Buerki-thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022;14:793. [DOI: 10.3390/pharmaceutics14040793] [Reference Citation Analysis]
372 Mai R, Deng B, Zhao H, Li L, Fang Y, Li S, Deng X, Chen J. Design, Synthesis, and Bioevaluation of Novel Enzyme-Triggerable Cell Penetrating Peptide-Based Dendrimers for Targeted Delivery of Camptothecin and Cancer Therapy. J Med Chem 2022. [PMID: 35380045 DOI: 10.1021/acs.jmedchem.2c00287] [Reference Citation Analysis]
373 Mohd Isa IL, Mokhtar SA, Abbah SA, Fauzi MB, Devitt A, Pandit A. Intervertebral Disc Degeneration: Biomaterials and Tissue Engineering Strategies toward Precision Medicine. Adv Healthc Mater 2022;:e2102530. [PMID: 35373924 DOI: 10.1002/adhm.202102530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
374 Hung S, Ke L, Lien T, Huang H, Sun D, Cheng C, Chang H. Nanodiamond-Induced Thrombocytopenia in Mice Involve P-Selectin-Dependent Nlrp3 Inflammasome-Mediated Platelet Aggregation, Pyroptosis and Apoptosis. Front Immunol 2022;13:806686. [DOI: 10.3389/fimmu.2022.806686] [Reference Citation Analysis]
375 Kazmi I, Al-abbasi FA, Imam SS, Afzal M, Nadeem MS, Altayb HN, Alshehri S. Formulation and Evaluation of Apigenin-Loaded Hybrid Nanoparticles. Pharmaceutics 2022;14:783. [DOI: 10.3390/pharmaceutics14040783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
376 Hauck M, Dittmann J, Zeller-plumhoff B, Madurawala R, Hellmold D, Kubelt C, Synowitz M, Held-feindt J, Adelung R, Wulfinghoff S, Schütt F. Fabrication and Modelling of a Reservoir-Based Drug Delivery System for Customizable Release. Pharmaceutics 2022;14:777. [DOI: 10.3390/pharmaceutics14040777] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
377 Huo S, Liao Z, Zhao P, Zhou Y, Göstl R, Herrmann A. Mechano-Nanoswitches for Ultrasound-Controlled Drug Activation. Adv Sci (Weinh) 2022;9:e2104696. [PMID: 35195372 DOI: 10.1002/advs.202104696] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
378 Alqosaibi AI. Nanocarriers for anticancer drugs: challenges and perspectives. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.103298] [Reference Citation Analysis]
379 Sabatelle RC, Liu R, Hung YP, Bressler E, Neal EJ, Martin A, Ekladious I, Grinstaff MW, Colson YL. Ultra-high drug loading improves nanoparticle efficacy against peritoneal mesothelioma. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121534] [Reference Citation Analysis]
380 Li J, Gao X, Wang Y, Xia T, Zhao Y, Meng H. Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter 2022;5:1162-91. [DOI: 10.1016/j.matt.2022.03.005] [Reference Citation Analysis]
381 Xiang J, Shen Y, Zhang Y, Liu X, Zhou Q, Zhou Z, Tang J, Shao S, Shen Y. Multipotent Poly(Tertiary Amine-Oxide) Micelles for Efficient Cancer Drug Delivery. Adv Sci (Weinh) 2022;9:e2200173. [PMID: 35187868 DOI: 10.1002/advs.202200173] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
382 Choi CE, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022;11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
383 Cláudia Paiva-santos A, Gama M, Peixoto D, Sousa-oliveira I, Ferreira-faria I, Zeinali M, Abbaspour-ravasjani S, Mascarenhas-melo F, Hamishehkar H, Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. International Journal of Pharmaceutics 2022;618:121656. [DOI: 10.1016/j.ijpharm.2022.121656] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
384 Wei Z, Yi Y, Luo Z, Gong X, Jiang Y, Hou D, Zhang L, Liu Z, Wang M, Wang J, Guo R, Yang J, Wang L, Wang H, Zhao Y. Selenopeptide Nanomedicine Activates Natural Killer Cells for Enhanced Tumor Chemoimmunotherapy. Adv Mater 2022;34:e2108167. [PMID: 35132688 DOI: 10.1002/adma.202108167] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
385 De R, Mahata MK, Kim KT. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Adv Sci (Weinh) 2022;9:e2105373. [PMID: 35112798 DOI: 10.1002/advs.202105373] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
386 Davis G, Kurse A, Agarwal A, Sheikh-hamad D, Kumar MNVR. Nano-encapsulation strategies to circumvent drug-induced kidney injury and targeted nanomedicines to treat kidney diseases. Current Opinion in Toxicology 2022. [DOI: 10.1016/j.cotox.2022.100346] [Reference Citation Analysis]
387 Katila N, Duwa R, Bhurtel S, Khanal S, Maharjan S, Jeong J, Lee S, Choi D, Yook S. Enhancement of blood–brain barrier penetration and the neuroprotective effect of resveratrol. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.04.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
388 Song M, Dong S, An X, Zhang W, Shen L, Li Y, Guo C, Liu C, Li X, Chen S. Erythrocyte-biomimetic nanosystems to improve antitumor effects of paclitaxel on epithelial cancers. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.060] [Reference Citation Analysis]
389 Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.04.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
390 Wang D, Wang S, Zhou Z, Bai D, Zhang Q, Ai X, Gao W, Zhang L. White Blood Cell Membrane-Coated Nanoparticles: Recent Development and Medical Applications. Adv Healthc Mater 2022;11:e2101349. [PMID: 34468090 DOI: 10.1002/adhm.202101349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
391 Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.04.011] [Reference Citation Analysis]
392 Morozova MA, Tumasov VN, Kazimova IV, Maksimova TV, Uspenskaya EV, Syroeshkin AV. Second-Order Scattering Quenching in Fluorescence Spectra of Natural Humates as a Tracer of Formation Stable Supramolecular System for the Delivery of Poorly Soluble Antiviral Drugs on the Example of Mangiferin and Favipiravir. Pharmaceutics 2022;14:767. [DOI: 10.3390/pharmaceutics14040767] [Reference Citation Analysis]
393 Burdușel A, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022;14:770. [DOI: 10.3390/pharmaceutics14040770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
394 Zou H, Li X, Zheng W, Zhou X. Biophysical characterization and in vitro imaging of carbonized MOFs. Biochem Biophys Res Commun 2022;608:116-21. [PMID: 35397423 DOI: 10.1016/j.bbrc.2022.03.095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
395 Kalinova R, Dimitrov I. Functional Polyion Complex Micelles for Potential Targeted Hydrophobic Drug Delivery. Molecules 2022;27:2178. [DOI: 10.3390/molecules27072178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
396 Shahiwala A. Addressing the gaps in drug-delivery research: from a broader academic perspective to clinical translation. Ther Deliv 2022. [PMID: 35341330 DOI: 10.4155/tde-2022-0009] [Reference Citation Analysis]
397 Romero-Arias JR, Luviano AS, Costas M, Hernandez-Machado A, Barrio RA. Dynamical shapes of droplets of cyclodextrin-surfactant solutions. Sci Rep 2022;12:5252. [PMID: 35347194 DOI: 10.1038/s41598-022-09267-w] [Reference Citation Analysis]
398 Meng F, Wang J, Yeo Y. Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy. J Control Release 2022;345:586-600. [PMID: 35351528 DOI: 10.1016/j.jconrel.2022.03.045] [Reference Citation Analysis]
399 Gonciar D, Mocan T, Agoston-coldea L. Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics 2022;14:711. [DOI: 10.3390/pharmaceutics14040711] [Reference Citation Analysis]
400 Jeong GJ, Castels H, Kang I, Aliya B, Jang YC. Nanomaterial for Skeletal Muscle Regeneration. Tissue Eng Regen Med 2022. [PMID: 35334091 DOI: 10.1007/s13770-022-00446-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
401 Das S, Bano S, Kapse P, Kundu GC. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Mol Cancer 2022;21:85. [PMID: 35337340 DOI: 10.1186/s12943-022-01552-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
402 Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. Materials (Basel) 2022;15:2388. [PMID: 35407720 DOI: 10.3390/ma15072388] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
403 Hsieh PH, Huang WY, Wang HC, Kuan CH, Shiue TY, Chen Y, Wang TW. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022;284:121469. [PMID: 35344799 DOI: 10.1016/j.biomaterials.2022.121469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
404 Woythe L, Madhikar P, Feiner-Gracia N, Storm C, Albertazzi L. A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density. ACS Nano 2022;16:3785-96. [PMID: 35274534 DOI: 10.1021/acsnano.1c08277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
405 Balaji S, Karthikeyan R, Kiran V, Yuvaraj B, Nagaraj S, Manivannan S, Narayan S. Platelet Lysate as a Promising Medium for Nanocarriers in the Management and Treatment of Ocular Diseases. Curr Ophthalmol Rep. [DOI: 10.1007/s40135-022-00285-5] [Reference Citation Analysis]
406 Abbas G, Maqbool S, Shahzad MK, Afzaal M, Daud MU, Fatima NG, Ghuffar A. Analysis of gold nanospheres, nano ellipsoids, nanorods, and effect of core-shell structures for hyperthermia treatment. RSC Adv 2022;12:9292-8. [PMID: 35424852 DOI: 10.1039/d2ra00618a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
407 Aktas N, Alpaslan D, Dudu TE. Polymeric Organo-Hydrogels: Novel Biomaterials for Medical, Pharmaceutical, and Drug Delivery Platforms. Front Mater 2022;9:845700. [DOI: 10.3389/fmats.2022.845700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
408 Weldick PJ, Wang A, Halbus AF, Paunov VN. Emerging nanotechnologies for targeting antimicrobial resistance. Nanoscale 2022;14:4018-41. [PMID: 35234774 DOI: 10.1039/d1nr08157h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
409 Harimoto T, Hahn J, Chen YY, Im J, Zhang J, Hou N, Li F, Coker C, Gray K, Harr N, Chowdhury S, Pu K, Nimura C, Arpaia N, Leong KW, Danino T. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol 2022. [PMID: 35301496 DOI: 10.1038/s41587-022-01244-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
410 Maretti E, Molinari S, Battini R, Rustichelli C, Truzzi E, Iannuccelli V, Leo E. Design, Characterization, and In Vitro Assays on Muscle Cells of Endocannabinoid-like Molecule Loaded Lipid Nanoparticles for a Therapeutic Anti-Inflammatory Approach to Sarcopenia. Pharmaceutics 2022;14:648. [DOI: 10.3390/pharmaceutics14030648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
411 N’diaye E, Orefice NS, Ghezzi C, Boumendjel A. Chemically Modified Extracellular Vesicles and Applications in Radiolabeling and Drug Delivery. Pharmaceutics 2022;14:653. [DOI: 10.3390/pharmaceutics14030653] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
412 Prossnitz AN, Pun SH. Modulating Boronic Ester Stability in Block Copolymer Micelles via the Neighbor Effect of Copolymerized Tertiary Amines for Controlled Release of Polyphenolic Drugs. ACS Macro Lett 2022;11:276-83. [PMID: 35575376 DOI: 10.1021/acsmacrolett.1c00751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
413 Zhou L, Kodidela S, Godse S, Thomas-gooch S, Kumar A, Raji B, Zhi K, Kochat H, Kumar S. Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals 2022;15:358. [DOI: 10.3390/ph15030358] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
414 Díez-Pascual AM, Rahdar A. LbL Nano-Assemblies: A Versatile Tool for Biomedical and Healthcare Applications. Nanomaterials (Basel) 2022;12:949. [PMID: 35335762 DOI: 10.3390/nano12060949] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
415 Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022;:e2102600. [PMID: 35285167 DOI: 10.1002/adhm.202102600] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
416 Paun RA, Dumut DC, Centorame A, Thuraisingam T, Hajduch M, Mistrik M, Dzubak P, De Sanctis JB, Radzioch D, Tabrizian M. One-Step Synthesis of Nanoliposomal Copper Diethyldithiocarbamate and Its Assessment for Cancer Therapy. Pharmaceutics 2022;14:640. [DOI: 10.3390/pharmaceutics14030640] [Reference Citation Analysis]
417 Kaltenbacher T, Löprich J, Maresch R, Weber J, Müller S, Oellinger R, Groß N, Griger J, de Andrade Krätzig N, Avramopoulos P, Ramanujam D, Brummer S, Widholz SA, Bärthel S, Falcomatà C, Pfaus A, Alnatsha A, Mayerle J, Schmidt-Supprian M, Reichert M, Schneider G, Ehmer U, Braun CJ, Saur D, Engelhardt S, Rad R. CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nat Protoc 2022. [PMID: 35288718 DOI: 10.1038/s41596-021-00677-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
418 Ibarra LE, Camorani S, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M, Cerchia L. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022;14:626. [DOI: 10.3390/pharmaceutics14030626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
419 Liu J, Liu Z, Pang Y, Zhou H. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01343-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
420 Shueng P, Yu L, Hou H, Chiu H, Lo C. Charge Conversion Polymer–Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery. IJMS 2022;23:3080. [DOI: 10.3390/ijms23063080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
421 Alangari A, Alqahtani MS, Mateen A, Kalam MA, Alshememry A, Ali R, Kazi M, Alghamdi KM, Syed R, R L. Iron Oxide Nanoparticles: Preparation, Characterization, and Assessment of Antimicrobial and Anticancer Activity. Adsorption Science & Technology 2022;2022:1-9. [DOI: 10.1155/2022/1562051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
422 Radhakrishnan D, Mohanan S, Choi G, Choy J, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. Science and Technology of Advanced Materials. [DOI: 10.1080/14686996.2022.2052181] [Reference Citation Analysis]
423 Comberlato A, Koga MM, Nüssing S, Parish IA, Bastings MMC. Spatially Controlled Activation of Toll-like Receptor 9 with DNA-Based Nanomaterials. Nano Lett 2022. [PMID: 35266392 DOI: 10.1021/acs.nanolett.2c00275] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
424 Mengarda AC, Iles B, F Longo JP, de Moraes J. Recent trends in praziquantel nanoformulations for helminthiasis treatment. Expert Opin Drug Deliv 2022. [PMID: 35264036 DOI: 10.1080/17425247.2022.2051477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
425 Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS Appl Mater Interfaces 2022;14:11078-91. [PMID: 35196008 DOI: 10.1021/acsami.1c21655] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
426 Kumar VB, Porat Z, Gedanken A. Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. Nanomaterials 2022;12:898. [DOI: 10.3390/nano12060898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
427 Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
428 Xie H, He Z, Liu Y, Zhao C, Guo B, Zhu C, Xu J. Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel. ACS Omega 2022;7:7638-47. [PMID: 35284760 DOI: 10.1021/acsomega.1c06198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
429 Hoang KNL, Wheeler KE, Murphy CJ. Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Anal Chem 2022. [PMID: 35258278 DOI: 10.1021/acs.analchem.1c05243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
430 Malburet C, Leclercq L, Cotte JF, Thiebaud J, Bazin E, Garinot M, Cottet H. Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Anal Chem 2022. [PMID: 35254048 DOI: 10.1021/acs.analchem.1c04778] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
431 Giorello A, Nicastro A, Berli CLA. Microfluidic Platforms for the Production of Nanoparticles at Flow Rates Larger Than One Liter Per Hour. Adv Materials Technologies. [DOI: 10.1002/admt.202101588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
432 Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers 2022;14:1010. [DOI: 10.3390/polym14051010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
433 Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials 2022;12:836. [DOI: 10.3390/nano12050836] [Reference Citation Analysis]
434 Pourmoghadasiyan B, Tavakkoli F, Beram FM, Badmasti F, Mirzaie A, Kazempour R, Rahimi S, Larijani SF, Hejabi F, Sedaghatnia K. Nanosized paclitaxel-loaded niosomes: formulation, in vitro cytotoxicity, and apoptosis gene expression in breast cancer cell lines. Mol Biol Rep 2022. [PMID: 35235156 DOI: 10.1007/s11033-022-07199-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
435 Anand M. Controlling local relaxation in small clusters of magnetic nanoparticles. Physica B: Condensed Matter 2022;628:413610. [DOI: 10.1016/j.physb.2021.413610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
436 Zheng H, Guo B, Qiu X, Xia Y, Qu Y, Cheng L, Meng F, Zhong Z. Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.02.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
437 Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-Vivo Induced CAR-T Cell for the Potential Breakthrough to Overcome the Barriers of Current CAR-T Cell Therapy. Front Oncol 2022;12:809754. [PMID: 35223491 DOI: 10.3389/fonc.2022.809754] [Reference Citation Analysis]
438 Ma W, Kang G, Sun L, Meng C, Liu Y, Zheng Z, Jiang M, Wang D, Pun SH, Yu C, Wei H. Multicyclic topology-enhanced anticancer drug delivery. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
439 Ozer I, Pitoc GA, Layzer JM, Moreno A, Olson LB, Layzer KD, Hucknall AM, Sullenger BA, Chilkoti A. PEG-Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. Adv Mater 2022;34:e2107852. [PMID: 34994037 DOI: 10.1002/adma.202107852] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
440 Araujo-Abad S, Saceda M, de Juan Romero C. Biomedical application of small extracellular vesicles in cancer treatment. Adv Drug Deliv Rev 2022;182:114117. [PMID: 35065142 DOI: 10.1016/j.addr.2022.114117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
441 Scherließ R, Bock S, Bungert N, Neustock A, Valentin L. Particle engineering in dry powders for inhalation. European Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ejps.2022.106158] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
442 Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
443 Hinge NS, Kathuria H, Pandey MM. Engineering of structural and functional properties of nanotherapeutics and nanodiagnostics for intranasal brain targeting in Alzheimer's. Applied Materials Today 2022;26:101303. [DOI: 10.1016/j.apmt.2021.101303] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
444 Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev 2022;182:114115. [PMID: 35077821 DOI: 10.1016/j.addr.2022.114115] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
445 Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnology Advances 2022. [DOI: 10.1016/j.biotechadv.2022.107930] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
446 Yang G, Kong H, Chen Y, Liu B, Zhu D, Guo L, Wei G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr Polym 2022;279:118947. [PMID: 34980360 DOI: 10.1016/j.carbpol.2021.118947] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
447 Espinar-Buitrago M, Muñoz-Fernández MA. New Approaches to Dendritic Cell-Based Therapeutic Vaccines Against HIV-1 Infection. Front Immunol 2021;12:719664. [PMID: 35058917 DOI: 10.3389/fimmu.2021.719664] [Reference Citation Analysis]
448 Suresh D, Suresh A, Kannan R. Engineering biomolecular systems: Controlling the self-assembly of gelatin to form ultra-small bioactive nanomaterials. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.02.035] [Reference Citation Analysis]
449 Zhan S, Jiang J, Zeng Z, Wang Y, Cui H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coordination Chemistry Reviews 2022;455:214381. [DOI: 10.1016/j.ccr.2021.214381] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
450 Li X, Jiang C, Wang Q, Yang S, Cao Y, Hao JN, Niu D, Chen Y, Han B, Jia X, Zhang P, Li Y. A "Valve-Closing" Starvation Strategy for Amplification of Tumor-Specific Chemotherapy. Adv Sci (Weinh) 2022;9:e2104671. [PMID: 35038243 DOI: 10.1002/advs.202104671] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
451 Gao X, Zhang J, He Z, Chang L, Jian Z, Liu L, Li Y, Hu C, Wei X. Targeting delivery of synergistic dual drugs with elastic PEG-modified multi-functional nanoparticles for hepatocellular carcinoma therapy. International Journal of Pharmaceutics 2022;616:121567. [DOI: 10.1016/j.ijpharm.2022.121567] [Reference Citation Analysis]
452 Tillman L, Tabish TA, Kamaly N, Moss P, El-briri A, Thiemermann C, Pranjol MZI, Yaqoob MM. Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. Biomaterials and Biosystems 2022. [DOI: 10.1016/j.bbiosy.2022.100047] [Reference Citation Analysis]
453 Lin Z, Chou W, Cheng Y, He C, Monteiro-riviere NA, Riviere JE. Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches. IJN 2022;Volume 17:1365-79. [DOI: 10.2147/ijn.s344208] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
454 Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Adv Sci (Weinh) 2022;9:e2104012. [PMID: 35077010 DOI: 10.1002/advs.202104012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
455 Wang S, Ma S, Li R, Qi X, Han K, Guo L, Li X. Probing the interaction between supercarrier RBC membrane and nanoparticles for optimal drug delivery. Journal of Molecular Biology 2022. [DOI: 10.1016/j.jmb.2022.167539] [Reference Citation Analysis]
456 You P, Mayier A, Zhou H, Yang A, Fan J, Ma S, Liu B, Jiang Y. Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy. Applied Materials Today 2022;26:101386. [DOI: 10.1016/j.apmt.2022.101386] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
457 Banthia P, Gambhir L, Sharma A, Daga D, Kapoor N, Chaudhary R, Sharma G. Nano to rescue: repository of nanocarriers for targeted drug delivery to curb breast cancer. 3 Biotech 2022;12:70. [PMID: 35223356 DOI: 10.1007/s13205-022-03121-6] [Reference Citation Analysis]
458 Wang BZ, Luo LJ, Vunjak-Novakovic G. RNA and Protein Delivery by Cell-Secreted and Bioengineered Extracellular Vesicles. Adv Healthc Mater 2022;11:e2101557. [PMID: 34706168 DOI: 10.1002/adhm.202101557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
459 Tu Z, Zhong Y, Hu H, Shao D, Haag R, Schirner M, Lee J, Sullenger B, Leong KW. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater 2022;:1-18. [PMID: 35251702 DOI: 10.1038/s41578-022-00426-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
460 Woźniak M, Płoska A, Siekierzycka A, Dobrucki LW, Kalinowski L, Dobrucki IT. Molecular Imaging and Nanotechnology-Emerging Tools in Diagnostics and Therapy. Int J Mol Sci 2022;23:2658. [PMID: 35269797 DOI: 10.3390/ijms23052658] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
461 Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022;14:505. [PMID: 35335881 DOI: 10.3390/pharmaceutics14030505] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
462 Todaro B, Moscardini A, Luin S. Pioglitazone-Loaded PLGA Nanoparticles: Towards the Most Reliable Synthesis Method. Int J Mol Sci 2022;23:2522. [PMID: 35269665 DOI: 10.3390/ijms23052522] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
463 Fraguas-sánchez AI, Lozza I, Torres-suárez AI. Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers 2022;14:1198. [DOI: 10.3390/cancers14051198] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
464 Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Daminova AG, Kudryavtseva VL, Yurova KA, Malashchenko VV, Todosenko NM, Popova V, Litvinov RI, Korotkova EI, Sukhorukov GB, Gow AJ, Weissman D, Atochina-vasserman EN, Khlusov IA. Human Mesenchymal Stem Cells as a Carrier for a Cell-Mediated Drug Delivery. Front Bioeng Biotechnol 2022;10:796111. [DOI: 10.3389/fbioe.2022.796111] [Reference Citation Analysis]
465 Das M, Brahma M, Shimray SA, Chipem FAS, Krishnamoorthy G. Nanoparticle and surfactant controlled switching between proton transfer and charge transfer reaction coordinates. Phys Chem Chem Phys 2022;24:4944-56. [PMID: 35138315 DOI: 10.1039/d1cp02165f] [Reference Citation Analysis]
466 Aliahmad P, Miyake-Stoner SJ, Geall AJ, Wang NS. Next generation self-replicating RNA vectors for vaccines and immunotherapies. Cancer Gene Ther 2022. [PMID: 35194198 DOI: 10.1038/s41417-022-00435-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
467 Macks C, Jeong D, Lee JS. Therapeutic efficacy of Rolipram delivered by PgP nanocarrier on secondary injury and motor function in a rat TBI model. Nanomedicine. [DOI: 10.2217/nnm-2021-0271] [Reference Citation Analysis]
468 Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022;41. [DOI: 10.1186/s13046-022-02272-x] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
469 Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS Appl Bio Mater 2022. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
470 Yim G, Kang S, Chae SY, Chung E, Song TK, Park JH, Yoon C, Min DH, Jang H. Precursor Heterogeneity Driven Mo-Te Nanoparticle Structural Diversification for Cancer Photo-Theranostics. ACS Appl Mater Interfaces 2022. [PMID: 35176852 DOI: 10.1021/acsami.1c20634] [Reference Citation Analysis]
471 Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
472 Xie Y, Papadopoulou P, de Wit B, d’Engelbronner JC, van Hage P, Kros A, Schaaf MJM. Two Types of Liposomal Formulations Improve the Therapeutic Ratio of Prednisolone Phosphate in a Zebrafish Model for Inflammation. Cells 2022;11:671. [DOI: 10.3390/cells11040671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
473 Lotter C, Alter CL, Bolten JS, Detampel P, Palivan CG, Einfalt T, Huwyler J. Incorporation of phosphatidylserine improves efficiency of lipid based gene delivery systems. Eur J Pharm Biopharm 2022:S0939-6411(22)00028-5. [PMID: 35181492 DOI: 10.1016/j.ejpb.2022.02.007] [Reference Citation Analysis]
474 Jaiswal P, Kumar Y, Shukla R, Nigam KDP, Panda D, Guha Biswas K. Covalently Immobilized Nickel Nanoparticles Reinforce Augmentation of Mass Transfer in Millichannels for Two-Phase Flow Systems. Ind Eng Chem Res . [DOI: 10.1021/acs.iecr.1c04419] [Reference Citation Analysis]
475 Fleming A, Cursi L, Behan JA, Yan Y, Xie Z, Adumeau L, Dawson KA. Designing Functional Bionanoconstructs for Effective In Vivo Targeting. Bioconjug Chem 2022. [PMID: 35167255 DOI: 10.1021/acs.bioconjchem.1c00546] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
476 Gonzalez Solveyra E, Thompson DH, Szleifer I. Proteins Adsorbing onto Surface-Modified Nanoparticles: Effect of Surface Curvature, pH, and the Interplay of Polymers and Proteins Acid-Base Equilibrium. Polymers (Basel) 2022;14:739. [PMID: 35215653 DOI: 10.3390/polym14040739] [Reference Citation Analysis]
477 Norling K, Sjöberg M, Bally M, Zhdanov VP, Parveen N, Höök F. Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance. Langmuir. [DOI: 10.1021/acs.langmuir.1c03096] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
478 Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
479 Yoshinaga N, Numata K. Rational Designs at the Forefront of Mitochondria-Targeted Gene Delivery: Recent Progress and Future Perspectives. ACS Biomater Sci Eng 2022;8:348-59. [PMID: 34979085 DOI: 10.1021/acsbiomaterials.1c01114] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
480 Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
481 Jiang X, Zhao H, Li W. Microneedle-Mediated Transdermal Delivery of Drug-Carrying Nanoparticles. Front Bioeng Biotechnol 2022;10:840395. [DOI: 10.3389/fbioe.2022.840395] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
482 Yu A, Dai X, Wang Z, Chen H, Guo B, Huang L. Recent Advances of Mesoporous Silica as a Platform for Cancer Immunotherapy. Biosensors (Basel) 2022;12:109. [PMID: 35200369 DOI: 10.3390/bios12020109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
483 Sang W, Zhang Z, Wang G, Xie L, Li J, Li W, Tian H, Dai Y. A Triple‐Kill Strategy for Tumor Eradication Reinforced by Metal‐Phenolic Network Nanopumps. Adv Funct Materials 2022;32:2113168. [DOI: 10.1002/adfm.202113168] [Reference Citation Analysis]
484 Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022. [PMID: 35145236 DOI: 10.1038/s41569-021-00669-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
485 Phua VJX, Yang C, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. Nanomaterials 2022;12:582. [DOI: 10.3390/nano12040582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
486 Singh K, Canakci M, Kanjilal P, Williams N, Shanthalingam S, Osborne BA, Thayumanavan S. Evaluation of Cellular Targeting by Fab' vs Full-Length Antibodies in Antibody-Nanoparticle Conjugates (ANCs) Using CD4 T-cells. Bioconjug Chem 2022. [PMID: 35139308 DOI: 10.1021/acs.bioconjchem.2c00024] [Reference Citation Analysis]
487 Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 2022:S1535-6108(22)00008-3. [PMID: 35148814 DOI: 10.1016/j.ccell.2022.01.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
488 van Leent MMT, Priem B, Schrijver DP, de Dreu A, Hofstraat SRJ, Zwolsman R, Beldman TJ, Netea MG, Mulder WJM. Regulating trained immunity with nanomedicine. Nat Rev Mater. [DOI: 10.1038/s41578-021-00413-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
489 Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur J Med Chem 2022;229:114066. [PMID: 34973508 DOI: 10.1016/j.ejmech.2021.114066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
490 Ding M, Zhang Y, Li J, Pu K. Bioenzyme-based nanomedicines for enhanced cancer therapy. Nano Converg 2022;9:7. [PMID: 35119544 DOI: 10.1186/s40580-022-00297-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
491 Juan A, del Mar Noblejas-lópez M, Arenas-moreira M, Alonso-moreno C, Ocaña A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front Cell Dev Biol 2022;9:805336. [DOI: 10.3389/fcell.2021.805336] [Reference Citation Analysis]
492 Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol 2022;10:788128. [DOI: 10.3389/fbioe.2022.788128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
493 Li L, Zhang Q, Chen B, Guo M, Yang Q, Zhang Y, Zhang M. Nano-Bio Interface-Guided Nanoparticle Protein Corona Antigen for Immunoassays and Immunoimaging in a Complex Matrix. ACS Appl Bio Mater 2022. [PMID: 35113530 DOI: 10.1021/acsabm.1c01231] [Reference Citation Analysis]
494 Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022. [PMID: 35107989 DOI: 10.1021/acs.chemrev.1c00750] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
495 Zhou Q, Zhao T, Liu M, Yin D, Liu M, Elzatahry AA, Zhang F, Zhao D, Li X. Highly stable hybrid single-micelle: a universal nanocarrier for hydrophobic bioimaging agents. Nano Res . [DOI: 10.1007/s12274-022-4083-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
496 Barrera G, Allia P, Tiberto P. Magnetic Nanoparticle Imaging: Insight on the Effects of Magnetic Interactions and Hysteresis of Tracers. ACS Appl Nano Mater 2022;5:2699-714. [DOI: 10.1021/acsanm.1c04368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
497 Kim H, Joo Y, Kook YM, Tran NL, Kim SH, Lee K, Oh SJ. On-Demand Local Immunomodulation via Epigenetic Control of Macrophages Using an Inflammation-Responsive Hydrogel for Accelerated Wound Healing. ACS Appl Mater Interfaces 2022;14:4931-45. [PMID: 34989546 DOI: 10.1021/acsami.1c20394] [Reference Citation Analysis]
498 Kaplan Ö, Gökşen Tosun N, İmamoğlu R, Türkekul İ, Gökçe İ, Özgür A. Biosynthesis and characterization of silver nanoparticles from Tricholoma ustale and Agaricus arvensis extracts and investigation of their antimicrobial, cytotoxic, and apoptotic potentials. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103178] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
499 Kurt E, Segura T. Nucleic Acid Delivery from Granular Hydrogels. Adv Healthc Mater 2022;11:e2101867. [PMID: 34742164 DOI: 10.1002/adhm.202101867] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
500 Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
501 Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
502 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
503 Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
504 Patel KD, Silva LB, Park Y, Shakouri T, Keskin-erdogan Z, Sawadkar P, Cho KJ, Knowles JC, Chau DY, Kim H. Recent advances in drug delivery systems for glaucoma treatment. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
505 Wei W, Zhang Y, Li R, Cao Y, Yan X, Ma Y, Zhang Y, Yang M, Zhang M. Oral Delivery of Pterostilbene by L-Arginine-Mediated “Nano-Bomb” Carrier for the Treatment of Ulcerative Colitis. IJN 2022;Volume 17:603-16. [DOI: 10.2147/ijn.s347506] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
506 Sharma P, Alakesh A, Jhunjhunwala S. The consequences of particle uptake on immune cells. Trends in Pharmacological Sciences 2022. [DOI: 10.1016/j.tips.2022.01.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
507 Yuan P, Yang F, Liew SS, Yan J, Dong X, Wang J, Du S, Mao X, Gao L, Yao SQ. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 2022;281:121376. [DOI: 10.1016/j.biomaterials.2022.121376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
508 Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022;181:114033. [PMID: 34808227 DOI: 10.1016/j.addr.2021.114033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
509 Ruchika, Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
510 Liu Y, Nadeem A, Sebastian S, Olsson MA, Wai SN, Styring E, Engellau J, Isaksson H, Tägil M, Lidgren L, Raina DB. Bone mineral: A trojan horse for bone cancers efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100227] [Reference Citation Analysis]
511 Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Adv Mater 2022;34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
512 Dai H, Fan Q, Fei Z, Ma Q, Yang Q, Chu J, Zhou X, Zhang Y, Dong Z, Xu F, Wang B, Sun R, Shen Y, Xie R, Li R, Wang C. Systemically administered silica nanoparticles result in diminished T cell response in lung. Nano Today 2022;42:101332. [DOI: 10.1016/j.nantod.2021.101332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
513 Ramachandran S, Satapathy SR, Dutta T. Delivery Strategies for mRNA Vaccines. Pharmaceut Med 2022. [PMID: 35094366 DOI: 10.1007/s40290-021-00417-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
514 Lin X, Wu J, Liu Y, Lin N, Hu J, Zhang B. Stimuli-Responsive Drug Delivery Systems for the Diagnosis and Therapy of Lung Cancer. Molecules 2022;27:948. [DOI: 10.3390/molecules27030948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
515 Mohammed SA, Shaaban EIA. Efficacious nanomedicine track toward combating COVID-19. Nanotechnology Reviews 2022;11:680-98. [DOI: 10.1515/ntrev-2022-0036] [Reference Citation Analysis]
516 Yang Z, Deng W, Zhang X, An Y, Liu Y, Yao H, Zhang Z. Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies. Front Oncol 2021;11:789330. [PMID: 35083147 DOI: 10.3389/fonc.2021.789330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
517 Kalinova R, Dimitrov I. Triblock Copolymer Micelles with Tunable Surface Charge as Drug Nanocarriers: Synthesis and Physico-Chemical Characterization. Nanomaterials (Basel) 2022;12:434. [PMID: 35159779 DOI: 10.3390/nano12030434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
518 Tang L, He S, Yin Y, Li J, Xiao Q, Wang R, Gao L, Wang W. Combining nanotechnology with the multifunctional roles of neutrophils against cancer and inflammatory disease. Nanoscale 2022. [PMID: 35079756 DOI: 10.1039/d1nr07725b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
519 Liu S, Lv M, Li H, Wang S, Feng C, Wang X, Hu W, Wang W. Optical Imaging of the Molecular Mobility of Single Polystyrene Nanospheres. J Am Chem Soc 2022;144:1267-73. [PMID: 35014804 DOI: 10.1021/jacs.1c10575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
520 Metelkina O, Huck B, O'Connor JS, Koch M, Manz A, Lehr CM, Titz A. Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes. J Mater Chem B 2022;10:537-48. [PMID: 34985094 DOI: 10.1039/d1tb02086b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
521 Sharma R, Dong Y, Hu Y, Ma VP, Salaita K. Gene Regulation Using Nanodiscs Modified with HIF-1-α Antisense Oligonucleotides. Bioconjug Chem 2022. [PMID: 35080855 DOI: 10.1021/acs.bioconjchem.1c00505] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
522 Hong YH, Narwane M, Liu LY, Huang YD, Chung CW, Chen YH, Liao BW, Chang YH, Wu CR, Huang HC, Hsu IJ, Cheng LY, Wu LY, Chueh YL, Chen Y, Lin CH, Lu TT. Enhanced Oral NO Delivery through Bioinorganic Engineering of Acid-Sensitive Prodrug into a Transformer-like DNIC@MOF Microrod. ACS Appl Mater Interfaces 2022;14:3849-63. [PMID: 35019259 DOI: 10.1021/acsami.1c21409] [Reference Citation Analysis]
523 Lan J, Li Y, Wen J, Chen Y, Yang J, Zhao L, Xia Y, Du H, Tao J, Li Y, Zhu J. Acitretin-Conjugated Dextran Nanoparticles Ameliorate Psoriasis-like Skin Disease at Low Dosages. Front Bioeng Biotechnol 2021;9:816757. [PMID: 35071218 DOI: 10.3389/fbioe.2021.816757] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
524 Nguyen TL, Kim J. Nanoparticle-Based Tolerogenic Vaccines for the Treatment of Autoimmune Diseases: A Review. ACS Appl Nano Mater 2022;5:6013-28. [DOI: 10.1021/acsanm.1c03726] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
525 Barton AE, Borchard G, Wacker MG, Pastorin G, Saleem IY, Chaudary S, Elbayoumi T, Zhao Z, Flühmann B. Need for Expansion of Pharmacy Education Globally for the Growing Field of Nanomedicine. Pharmacy 2022;10:17. [DOI: 10.3390/pharmacy10010017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
526 Ramos TI, Villacis-aguirre CA, López-aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker’s Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022;14:247. [DOI: 10.3390/pharmaceutics14020247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
527 Lin S, Mandavkar R, Kulkarni R, Burse S, Habib MA, Kim SH, Li M, Kunwar S, Lee J. MoS 2 Nanoflake and ZnO Quantum Dot Blended Active Layers on AuPd Nanoparticles for UV Photodetectors. ACS Appl Nano Mater 2022;5:3289-302. [DOI: 10.1021/acsanm.1c03748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
528 Moon B, Chang S. Exosome as a Delivery Vehicle for Cancer Therapy. Cells 2022;11:316. [DOI: 10.3390/cells11030316] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
529 Wiwatchaitawee K, Ebeid K, Quarterman JC, Naguib Y, Ali MY, Oliva C, Griguer C, Salem AK. Surface Modification of Nanoparticles Enhances Drug Delivery to the Brain and Improves Survival in a Glioblastoma Multiforme Murine Model. Bioconjug Chem 2022. [PMID: 35041398 DOI: 10.1021/acs.bioconjchem.1c00479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
530 St-Denis-Bissonnette F, Khoury R, Mediratta K, El-Sahli S, Wang L, Lavoie JR. Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers (Basel) 2022;14:451. [PMID: 35053616 DOI: 10.3390/cancers14020451] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
531 Rivera-Briso AL, Aparicio-Collado JL, Serra RSI, Serrano-Aroca Á. Graphene Oxide versus Carbon Nanofibers in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Films: Degradation in Simulated Intestinal Environments. Polymers (Basel) 2022;14:348. [PMID: 35054756 DOI: 10.3390/polym14020348] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
532 Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022;14:204. [DOI: 10.3390/pharmaceutics14010204] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
533 Angelini G, Mura G, Messina G. Therapeutic approaches to preserve the musculature in Duchenne Muscular Dystrophy: The importance of the secondary therapies. Exp Cell Res 2022;410:112968. [PMID: 34883113 DOI: 10.1016/j.yexcr.2021.112968] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
534 Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022;8:e08674. [PMID: 35028457 DOI: 10.1016/j.heliyon.2021.e08674] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
535 Maan Z, Masri NZ, Willerth SM. Smart Bioinks for the Printing of Human Tissue Models. Biomolecules 2022;12:141. [DOI: 10.3390/biom12010141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
536 Nair A, Mallya R, Suvarna V, Khan TA, Momin M, Omri A. Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils. Antibiotics 2022;11:108. [DOI: 10.3390/antibiotics11010108] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
537 Choi H, Yim H, Park C, Ahn S, Ahn Y, Lee A, Yang H, Choi C. Targeted Delivery of Exosomes Armed with Anti-Cancer Therapeutics. Membranes 2022;12:85. [DOI: 10.3390/membranes12010085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
538 Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
539 Lim CL, Raju CS, Mahboob T, Kayesth S, Gupta KK, Jain GK, Dhobi M, Nawaz M, Wilairatana P, de Lourdes Pereira M, Patra JK, Paul AK, Rahmatullah M, Nissapatorn V. Precision and Advanced Nano-Phytopharmaceuticals for Therapeutic Applications. Nanomaterials (Basel) 2022;12:238. [PMID: 35055257 DOI: 10.3390/nano12020238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
540 Gisselsson D. Next-Generation Biowarfare: Small in Scale, Sensational in Nature? Health Secur 2022. [PMID: 35021880 DOI: 10.1089/hs.2021.0165] [Reference Citation Analysis]
541 Jiao W, Zhang T, Peng M, Yi J, He Y, Fan H. Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors (Basel) 2022;12:38. [PMID: 35049666 DOI: 10.3390/bios12010038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
542 Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2021;12:787226. [PMID: 35002719 DOI: 10.3389/fphar.2021.787226] [Reference Citation Analysis]
543 Yanchatuña Aguayo OP, Mouheb L, Villota Revelo K, Vásquez-Ucho PA, Pawar PP, Rahman A, Jeffryes C, Terencio T, Dahoumane SA. Biogenic Sulfur-Based Chalcogenide Nanocrystals: Methods of Fabrication, Mechanistic Aspects, and Bio-Applications. Molecules 2022;27:458. [PMID: 35056773 DOI: 10.3390/molecules27020458] [Reference Citation Analysis]
544 Eliasen R, Lars Andresen T, Bruun Larsen J. Quantifying the heterogeneity of enzymatic dePEGyaltion of liposomal nanocarrier systems. Eur J Pharm Biopharm 2022:S0939-6411(21)00362-3. [PMID: 35021105 DOI: 10.1016/j.ejpb.2021.12.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
545 Sukkar F, Shafaa M, El-Nagdy M, Darwish W. Polymeric Nanocarriers for Effective Synergistic Action of Sorafenib Tosylate and Gold-sensitized Gamma Radiation Against HepG2 Cells. Int J Nanomedicine 2021;16:8309-21. [PMID: 34992367 DOI: 10.2147/IJN.S331909] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
546 Ouassil N, Pinals RL, Del Bonis-O'Donnell JT, Wang JW, Landry MP. Supervised learning model predicts protein adsorption to carbon nanotubes. Sci Adv 2022;8:eabm0898. [PMID: 34995109 DOI: 10.1126/sciadv.abm0898] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
547 Vemana HP, Dukhande VV. Recent advances in the application of nanomedicine for the treatment of diabetes. Nanomedicine (Lond) 2022;17:65-9. [PMID: 34983192 DOI: 10.2217/nnm-2021-0338] [Reference Citation Analysis]
548 Liu M, Wang L, Lo Y, Shiu SC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022;11:159. [DOI: 10.3390/cells11010159] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
549 Xu WJ, Cai JX, Li YJ, Wu JY, Xiang D. Recent progress of macrophage vesicle-based drug delivery systems. Drug Deliv Transl Res 2022. [PMID: 34984664 DOI: 10.1007/s13346-021-01110-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
550 Morsli S, Doherty GJ, Muñoz-Espín D. Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech Ageing Dev 2022;202:111618. [PMID: 34990647 DOI: 10.1016/j.mad.2021.111618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
551 Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
552 Archontakis E, Woythe L, van Hoof B, Albertazzi L. Mapping the relationship between total and functional antibodies conjugated to nanoparticles with spectrally-resolved direct stochastic optical reconstruction microscopy (SR-dSTORM). Nanoscale Adv . [DOI: 10.1039/d2na00435f] [Reference Citation Analysis]
553 Loloi J, Babar M, Davies KP, Suadicani SO. Nanotechnology as a tool to advance research and treatment of non-oncologic urogenital diseases. Therapeutic Advances in Urology 2022;14:175628722211090. [DOI: 10.1177/17562872221109023] [Reference Citation Analysis]
554 Wang X, Xiao X, Feng Y, Li J, Zhang Y. A photoresponsive antibody–siRNA conjugate for activatable immunogene therapy of cancer. Chem Sci . [DOI: 10.1039/d2sc01672a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
555 Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022;13:20417314221083414. [PMID: 35340424 DOI: 10.1177/20417314221083414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
556 Diéguez-santana K, Rasulev B, González-díaz H. Towards rational nanomaterial design by predicting drug–nanoparticle system interaction vs. bacterial metabolic networks. Environ Sci : Nano 2022;9:1391-413. [DOI: 10.1039/d1en00967b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
557 Aldeghi M, Coley CW. A graph representation of molecular ensembles for polymer property prediction. Chem Sci . [DOI: 10.1039/d2sc02839e] [Reference Citation Analysis]
558 Martins FH, Pilati V, Paula F, Gomes R, Perzynski R, Depeyrot J. Lattice Strain of Zn-Mn Mixed Ferrite Nanocrystals in a Core-Shell Morpho-Chemical Structure. Mat Res 2022;25:e20210596. [DOI: 10.1590/1980-5373-mr-2021-0596] [Reference Citation Analysis]
559 Djermane R, Nieto C, Vargas JC, Vega M, Martín del Valle EM. Insight into the influence of the polymerization time of polydopamine nanoparticles on their size, surface properties and nanomedical applications. Polym Chem 2022;13:235-44. [DOI: 10.1039/d1py01473k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
560 Vellingiri S, Rejeeth C, Varukattu NB, Sharma A, Kumar RS, Almansour AI, Arumugam N, Afewerki S, Kannan S. In vivo delivery of nuclear targeted drugs for lung cancer using novel synthesis and functionalization of iron oxide nanocrystals. New J Chem . [DOI: 10.1039/d1nj05867c] [Reference Citation Analysis]
561 Kretzer C, Shkodra B, Klemm P, Jordan PM, Schröder D, Cinar G, Vollrath A, Schubert S, Nischang I, Hoeppener S, Stumpf S, Banoglu E, Gladigau F, Bilancia R, Rossi A, Eggeling C, Neugebauer U, Schubert US, Werz O. Ethoxy acetalated dextran-based nanocarriers accomplish efficient inhibition of leukotriene formation by a novel FLAP antagonist in human leukocytes and blood. Cell Mol Life Sci 2021. [PMID: 34971430 DOI: 10.1007/s00018-021-04039-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
562 Pavez Loriè E, Baatout S, Choukér A, Buchheim JI, Baselet B, Dello Russo C, Wotring V, Monici M, Morbidelli L, Gagliardi D, Stingl JC, Surdo L, Yip VLM. The Future of Personalized Medicine in Space: From Observations to Countermeasures. Front Bioeng Biotechnol 2021;9:739747. [PMID: 34966726 DOI: 10.3389/fbioe.2021.739747] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
563 Liu J, Zhao R, Jiang X, Li Z, Zhang B. Progress on the Application of Bortezomib and Bortezomib-Based Nanoformulations. Biomolecules 2022;12:51. [DOI: 10.3390/biom12010051] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
564 Pandey S, Lee MC, Lim JW, Choung YH, Jang KJ, Park SB, Kim JE, Chung JH, Garg P. SHMT1 siRNA-Loaded hyperosmotic nanochains for blood-brain/tumor barrier post-transmigration therapy. Biomaterials 2021;281:121359. [PMID: 34998172 DOI: 10.1016/j.biomaterials.2021.121359] [Reference Citation Analysis]
565 Loh DM, Nava M, Nocera DG. Polypyrrole-Silicon Nanowire Arrays for Controlled Intracellular Cargo Delivery. Nano Lett 2021. [PMID: 34965139 DOI: 10.1021/acs.nanolett.1c04033] [Reference Citation Analysis]
566 Lawson T, Joenathan A, Patwa A, Snyder BD, Grinstaff MW. Tantalum Oxide Nanoparticles for the Quantitative Contrast-Enhanced Computed Tomography of Ex Vivo Human Cartilage: Assessment of Biochemical Composition and Biomechanics. ACS Nano 2021;15:19175-84. [PMID: 34882411 DOI: 10.1021/acsnano.1c03375] [Reference Citation Analysis]
567 Alserihi RF, Mohammed MRS, Kaleem M, Khan MI, Sechi M, Sanna V, Zughaibi TA, Abuzenadah AM, Tabrez S. Development of (−)-epigallocatechin-3-gallate-loaded folate receptor-targeted nanoparticles for prostate cancer treatment. Nanotechnology Reviews 2022;11:298-311. [DOI: 10.1515/ntrev-2022-0013] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
568 Abdel-Mageed HM, Abd El Aziz AE, Mohamed SA, AbuelEzz NZ. The Tiny Big World of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: An Updated Review. J Microencapsul 2021;:1-42. [PMID: 34958628 DOI: 10.1080/02652048.2021.2021307] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
569 Kapnick SM. The Nanoparticle-Enabled Success of COVID-19 mRNA Vaccines and the Promise of Microneedle Platforms for Pandemic Vaccine Response. DNA Cell Biol 2021. [PMID: 34958232 DOI: 10.1089/dna.2021.0538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
570 Ghiarasim R, Simionescu N, Coroaba A, Uritu CM, Marangoci NL, Ibanescu SA, Pinteala M. SI-ATRP Decoration of Magnetic Nanoparticles with PHEMA and Post-Polymerization Modification with Folic Acid for Tumor Cells' Specific Targeting. Int J Mol Sci 2021;23:155. [PMID: 35008582 DOI: 10.3390/ijms23010155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
571 Drost M, Diamanti E, Fuhrmann K, Goes A, Shams A, Haupenthal J, Koch M, Hirsch AKH, Fuhrmann G. Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor. Pharmaceutics 2021;14:4. [PMID: 35056900 DOI: 10.3390/pharmaceutics14010004] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
572 Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021;8:rbab060. [PMID: 34925879 DOI: 10.1093/rb/rbab060] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
573 Yu W, Kim Y, Jang Y, Lee SM. Eu(III)-Chelated Polymeric Hybrid Nanoplatform for Luminescence Resonance Energy Transfer (LRET)-Based Real-Time Monitoring of Organic Cargo Release. ACS Macro Lett 2021;10:1602-8. [PMID: 35549142 DOI: 10.1021/acsmacrolett.1c00570] [Reference Citation Analysis]
574 Lee DJ, Juvekar V, Lee HW, Kim ES, Noh CK, Shin SJ, Kim HM. Cancer-Targeted Azo Dye for Two-Photon Photodynamic Therapy in Human Colon Tissue. Anal Chem 2021;93:16821-7. [PMID: 34886662 DOI: 10.1021/acs.analchem.1c03429] [Reference Citation Analysis]
575 Moyano Rodríguez E, Gomez-Mendoza M, Pérez-Ruiz R, Peñín B, Sampedro D, Caamaño A, de la Peña O'Shea VA. Controlled Synthesis of Up-Conversion NaYF4:Yb,Tm Nanoparticles for Drug Release under Near IR-Light Therapy. Biomedicines 2021;9:1953. [PMID: 34944769 DOI: 10.3390/biomedicines9121953] [Reference Citation Analysis]
576 Lee NK, Kim SN, Park CG. Immune cell targeting nanoparticles: a review. Biomater Res 2021;25:44. [PMID: 34930494 DOI: 10.1186/s40824-021-00246-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
577 Duarte F, Cuerva C, Fernández-Lodeiro C, Fernández-Lodeiro J, Jiménez R, Cano M, Lodeiro C. Polymer Micro and Nanoparticles Containing B(III) Compounds as Emissive Soft Materials for Cargo Encapsulation and Temperature-Dependent Applications. Nanomaterials (Basel) 2021;11:3437. [PMID: 34947786 DOI: 10.3390/nano11123437] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
578 Saiding Q, Cui W. Functional nanoparticles in electrospun fibers for biomedical applications. Nano Select. [DOI: 10.1002/nano.202100335] [Reference Citation Analysis]
579 Lee DH, Choi SY, Jung KK, Yang JY, Jeong JY, Oh JH, Kim SH, Lee JH. The Research of Toxicity and Sensitization Potential of PEGylated Silver and Gold Nanomaterials. Toxics 2021;9:355. [PMID: 34941789 DOI: 10.3390/toxics9120355] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
580 Bakr MM, Al-Ankily MM, Shogaa SM, Shamel M. Attenuating Effect of Vitamin E against Silver Nano Particles Toxicity in Submandibular Salivary Glands. Bioengineering (Basel) 2021;8:219. [PMID: 34940372 DOI: 10.3390/bioengineering8120219] [Reference Citation Analysis]
581 Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021;19:423. [PMID: 34915901 DOI: 10.1186/s12951-021-01174-y] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
582 Ogunnaike M, Wang H, Zempleni J. Bovine mammary alveolar MAC-T cells afford a tool for studies of bovine milk exosomes in drug delivery. Int J Pharm 2021;610:121263. [PMID: 34742829 DOI: 10.1016/j.ijpharm.2021.121263] [Reference Citation Analysis]
583 Álvarez-Benedicto E, Farbiak L, Márquez Ramírez M, Wang X, Johnson LT, Mian O, Guerrero ED, Siegwart DJ. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater Sci 2021. [PMID: 34904974 DOI: 10.1039/d1bm01454d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
584 Costoya J, Surnar B, Kalathil AA, Kolishetti N, Dhar S. Controlled release nanoplatforms for three commonly used chemotherapeutics. Mol Aspects Med 2021;:101043. [PMID: 34920863 DOI: 10.1016/j.mam.2021.101043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
585 Goscianska J, Freund R, Wuttke S. Nanoscience versus Viruses: The SARS‐CoV‐2 Case. Adv Funct Materials 2022;32:2107826. [DOI: 10.1002/adfm.202107826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
586 Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021;13:2137. [PMID: 34959418 DOI: 10.3390/pharmaceutics13122137] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
587 Roh EH, Fromen CA, Sullivan MO. Inhalable mRNA vaccines for respiratory diseases: a roadmap. Curr Opin Biotechnol 2021;74:104-9. [PMID: 34894574 DOI: 10.1016/j.copbio.2021.10.017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
588 George TA, Chen MM, Czosseck A, Chen HP, Huang HS, Lundy DJ. Liposome-encapsulated anthraquinone improves efficacy and safety in triple negative breast cancer. J Control Release 2021;342:31-43. [PMID: 34896187 DOI: 10.1016/j.jconrel.2021.12.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
589 Kuruppu AI, Turyanska L, Bradshaw TD, Manickam S, Galhena BP, Paranagama P, De Silva R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim Biophys Acta Gen Subj 2021;1866:130067. [PMID: 34896255 DOI: 10.1016/j.bbagen.2021.130067] [Reference Citation Analysis]
590 Tang Y, Chen Y, Zhang Z, Tang B, Zhou Z, Chen H. Nanoparticle-Based RNAi Therapeutics Targeting Cancer Stem Cells: Update and Prospective. Pharmaceutics 2021;13:2116. [PMID: 34959397 DOI: 10.3390/pharmaceutics13122116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
591 Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H. Emerging Nano-Based Strategies Against Drug Resistance in Tumor Chemotherapy. Front Bioeng Biotechnol 2021;9:798882. [DOI: 10.3389/fbioe.2021.798882] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
592 Peng X, Lin G, Zeng Y, Lei Z, Liu G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front Bioeng Biotechnol 2021;9:749381. [PMID: 34869261 DOI: 10.3389/fbioe.2021.749381] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
593 Yap KM, Sekar M, Wu YS, Gan SH, Rani NNIM, Seow LJ, Subramaniyan V, Fuloria NK, Fuloria S, Lum PT. Hesperidin and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi J Biol Sci 2021;28:6730-47. [PMID: 34866972 DOI: 10.1016/j.sjbs.2021.07.046] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
594 Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2022;280:121299. [PMID: 34871880 DOI: 10.1016/j.biomaterials.2021.121299] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
595 Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O'Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021;14:1278. [PMID: 34959677 DOI: 10.3390/ph14121278] [Reference Citation Analysis]
596 Zakharenkova SA, Lebedeva MI, Lebedeva AN, Doroshenko IA, Vlasova KY, Bartoshevich AA, Senyavin VM, Abramchuk SS, Krivtsov GG, Ezhov AA, Podrugina TA, Klyachko NL, Beklemishev MK. Imaging-Guided Delivery of a Hydrophilic Drug to Eukaryotic Cells Based on Its Hydrophobic Ion Pairing with Poly(hexamethylene guanidine) in a Maleated Chitosan Carrier. Molecules 2021;26:7426. [PMID: 34946504 DOI: 10.3390/molecules26247426] [Reference Citation Analysis]
597 Valderrama OJ, Nischang I. Reincarnation of the Analytical Ultracentrifuge: Emerging Opportunities for Nanomedicine. Anal Chem 2021;93:15805-15. [PMID: 34806364 DOI: 10.1021/acs.analchem.1c03116] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
598 Kang S, Yim G, Min D, Jang H. Wavelength Independent Photo‐Chemo Tri‐Modal Combinatorial Renal Cell Carcinoma Therapy with Biocompatible Gold‐Titania Nanostars. Advanced Therapeutics 2022;5:2100204. [DOI: 10.1002/adtp.202100204] [Reference Citation Analysis]
599 Ji D, Dali H, Guo S, Malaganahally S, Vollaire J, Josserand V, Dumortier H, Ménard-moyon C, Bianco A. Multifunctional Carbon Nanodots: Enhanced Near‐Infrared Photosensitizing, Photothermal Activity, and Body Clearance. Small Science 2022;2:2100082. [DOI: 10.1002/smsc.202100082] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
600 Katekar R, Singh P, Garg R, Verma S, Gayen JR. Emerging nanotechnology based combination therapies of taxanes for multiple drug-resistant cancers. Pharm Dev Technol 2021;:1-13. [PMID: 34806547 DOI: 10.1080/10837450.2021.2009861] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
601 Hobday CL, Krause S, Rogge SMJ, Evans JD, Bunzen H. Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Front Chem 2021;9:772059. [PMID: 34858946 DOI: 10.3389/fchem.2021.772059] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
602 Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021;12:753686. [PMID: 34858208 DOI: 10.3389/fphys.2021.753686] [Reference Citation Analysis]
603 Liu J, Kang W, Wang W. Photocleavage-based Photoresponsive Drug Delivery. Photochem Photobiol 2021. [PMID: 34861053 DOI: 10.1111/php.13570] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
604 Harris MA, Kuang H, Schneiderman Z, Shiao ML, Crane AT, Chrostek MR, Tăbăran AF, Pengo T, Liaw K, Xu B, Lin L, Chen CC, O'Sullivan MG, Kannan RM, Low WC, Kokkoli E. ssDNA nanotubes for selective targeting of glioblastoma and delivery of doxorubicin for enhanced survival. Sci Adv 2021;7:eabl5872. [PMID: 34851666 DOI: 10.1126/sciadv.abl5872] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
605 Zhang Z, Kuo JC, Zhang C, Huang Y, Zhou Z, Lee RJ. A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021;13:2060. [PMID: 34959344 DOI: 10.3390/pharmaceutics13122060] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
606 Altun E, Aydogdu MO, Chung E, Ren G, Homer-vanniasinkam S, Edirisinghe M. Metal-based nanoparticles for combating antibiotic resistance. Applied Physics Reviews 2021;8:041303. [DOI: 10.1063/5.0060299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
607 Cong M, Xu G, Yang S, Zhang J, Zhang W, Dhumal D, Laurini E, Zhang K, Xia Y, Pricl S, Peng L, Zhao W. A self-assembling prodrug nanosystem to enhance metabolic stability and anticancer activity of gemcitabine. Chinese Chemical Letters 2021. [DOI: 10.1016/j.cclet.2021.11.083] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
608 Fu P, Zhang J, Li H, Mak M, Xu W, Tao Z. Extracellular vesicles as delivery systems at nano-/micro-scale. Adv Drug Deliv Rev 2021;179:113910. [PMID: 34358539 DOI: 10.1016/j.addr.2021.113910] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
609 Qi X, Wang S, Ma S, Han K, Bian X, Li X. Quantitative prediction of rolling dynamics of leukocyte-inspired microroller in blood flow. Physics of Fluids 2021;33:121908. [DOI: 10.1063/5.0072842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
610 M'bitsi-ibouily GC, Marimuthu T, du Toit LC, Kumar P, Choonara YE. In vitro, ex vivo and in vivo evaluation of a novel metal-liganded nanocomposite for the controlled release and improved oral bioavailability of sulpiride. Journal of Drug Delivery Science and Technology 2021;66:102909. [DOI: 10.1016/j.jddst.2021.102909] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
611 Rani NNIM, Chen XY, Al-zubaidi ZM, Azhari H, Khaitir TMN, Buang F, Tan GC, Wong YP, Said MM, Hamid AA, Amin MCIM. Surface-engineered liposomes for dual-drug delivery targeting strategy against Methicillin-resistant Staphylococcus aureus (MRSA). Asian Journal of Pharmaceutical Sciences 2021. [DOI: 10.1016/j.ajps.2021.11.004] [Reference Citation Analysis]
612 Zhang N, Lin J, Chew SY. Neural Cell Membrane-Coated Nanoparticles for Targeted and Enhanced Uptake by Central Nervous System Cells. ACS Appl Mater Interfaces 2021;13:55840-50. [PMID: 34792341 DOI: 10.1021/acsami.1c16543] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
613 Ma R, Shi L. Trade-off effect of polymeric nano-medicine in anti-cancer drug delivery. Giant 2021;8:100074. [DOI: 10.1016/j.giant.2021.100074] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
614 Karlsson J, Luly KM, Tzeng SY, Green JJ. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv Drug Deliv Rev 2021;179:113999. [PMID: 34715258 DOI: 10.1016/j.addr.2021.113999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
615 Le Z, He Z, Liu H, Liu L, Liu Z, Chen Y. Antioxidant Enzymes Sequestered within Lipid-Polymer Hybrid Nanoparticles for the Local Treatment of Inflammatory Bowel Disease. ACS Appl Mater Interfaces 2021;13:55966-77. [PMID: 34792322 DOI: 10.1021/acsami.1c19457] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
616 Wang L, Wang J, Hao J, Dong Z, Wu J, Shen G, Ying T, Feng L, Cai X, Liu Z, Zheng Y. Guiding Drug Through Interrupted Bloodstream for Potentiated Thrombolysis by C-Shaped Magnetic Actuation System In Vivo. Adv Mater 2021;33:e2105351. [PMID: 34647345 DOI: 10.1002/adma.202105351] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
617 Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.11.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
618 Helmbrecht H, Xu N, Liao R, Nance E. Data Management Schema Design for Effective Nanoparticle Formulation for Neurotherapeutics. AIChE J 2021;67:e17459. [PMID: 35399334 DOI: 10.1002/aic.17459] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
619 Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021;179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
620 Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv Sci (Weinh) 2021;8:e2102051. [PMID: 34665528 DOI: 10.1002/advs.202102051] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
621 Cong VT, Tilley RD, Sharbeen G, Phillips PA, Gaus K, Gooding JJ. How to exploit different endocytosis pathways to allow selective delivery of anticancer drugs to cancer cells over healthy cells. Chem Sci 2021;12:15407-17. [PMID: 34976362 DOI: 10.1039/d1sc04656j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
622 Yan S, Li Q, Nie H, Wang S. Studying delivery of neuroprotective gabapentin drug by gold nanoparticles using a laser beam affecting surface plasmon resonance. Chem Pap 2021;75:6315-21. [DOI: 10.1007/s11696-021-01800-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
623 Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021;13:2045. [PMID: 34959326 DOI: 10.3390/pharmaceutics13122045] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
624 Rayamajhi S, Wilson S, Aryal S, DeLong R. Biocompatible FePO4 Nanoparticles: Drug Delivery, RNA Stabilization, and Functional Activity. Nanoscale Res Lett 2021;16:169. [PMID: 34837559 DOI: 10.1186/s11671-021-03626-8] [Reference Citation Analysis]
625 Zhan J, Wang Y, Ma S, Qin Q, Wang L, Cai Y, Yang Z. Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis. Bioact Mater 2022;9:120-33. [PMID: 34820560 DOI: 10.1016/j.bioactmat.2021.07.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
626 Malviya R, Fuloria S, Verma S, Subramaniyan V, Sathasivam KV, Kumarasamy V, Hari Kumar D, Vellasamy S, Meenakshi DU, Yadav S, Sharma A, Fuloria NK. Commercial utilities and future perspective of nanomedicines. PeerJ 2021;9:e12392. [PMID: 34820175 DOI: 10.7717/peerj.12392] [Reference Citation Analysis]
627 Lian H, Guan P, Tan H, Zhang X, Meng Z. Near-infrared light triggered multi-hit therapeutic nanosystem for tumor specific photothermal effect amplified signal pathway regulation and ferroptosis. Bioact Mater 2022;9:63-76. [PMID: 34820556 DOI: 10.1016/j.bioactmat.2021.07.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
628 Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. Nanoscale 2021;13:18912-24. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
629 Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao C. Lipid Nanoparticles for Drug Delivery. Advanced NanoBiomed Research 2022;2:2100109. [DOI: 10.1002/anbr.202100109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
630 Wang Y, Wang W, Kong F, Zhang Q, Xiao J, Zhang Y, Yan B. Tango of dual nanoparticles: Interplays between exosomes and nanomedicine. Bioeng Transl Med. [DOI: 10.1002/btm2.10269] [Reference Citation Analysis]
631 Boehnke N, Hammond PT. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS Au 2022;2:12-21. [DOI: 10.1021/jacsau.1c00313] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
632 Ahmad J, Haider N, Khan MA, Md S, Alhakamy NA, Ghoneim MM, Alshehri S, Sarim Imam S, Ahmad MZ, Mishra A. Novel therapeutic interventions for combating Parkinson's disease and prospects of Nose-to-Brain drug delivery. Biochem Pharmacol 2022;195:114849. [PMID: 34808125 DOI: 10.1016/j.bcp.2021.114849] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
633 Chiang CS, Huang BJ, Chen JY, Chieng WW, Lim SH, Lee W, Shyu WC, Jeng LB. Fucoidan-Based Nanoparticles with Inherently Therapeutic Efficacy for Cancer Treatment. Pharmaceutics 2021;13:1986. [PMID: 34959268 DOI: 10.3390/pharmaceutics13121986] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
634 Tian W, Wang S, Tian Y, Su X, Sun H, Tang Y, Lu G, Liu S, Shi H. Periodic mesoporous organosilica coupled with chlorin e6 and catalase for enhanced photodynamic therapy to treat triple-negative breast cancer. J Colloid Interface Sci 2021:S0021-9797(21)02017-8. [PMID: 34838318 DOI: 10.1016/j.jcis.2021.11.107] [Reference Citation Analysis]
635 Grasselli M, Alonso SDV. Polymer-based nanoparticles: fabrication to applications—the many faces of DC8,9PC and albumin. Biophys Rev 2021;13:925-30. [DOI: 10.1007/s12551-021-00872-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
636 Doroudian M, Azhdari MH, Goodarzi N, O'Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021;13:1972. [PMID: 34834387 DOI: 10.3390/pharmaceutics13111972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
637 Karakus OO, Darwish NHE, Sudha T, Salaheldin TA, Fujioka K, Dickinson PCT, Weil B, Mousa SA. Development of Triiodothyronine Polymeric Nanoparticles for Targeted Delivery in the Cardioprotection against Ischemic Insult. Biomedicines 2021;9:1713. [PMID: 34829942 DOI: 10.3390/biomedicines9111713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
638 Yong HW, Kakkar A. The unexplored potential of gas‐responsive polymers in drug delivery: progress, challenges and outlook. Polym Int. [DOI: 10.1002/pi.6320] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
639 Bian J, Girotti J, Fan Y, Levy ES, Zang N, Sethuraman V, Kou P, Zhang K, Gruenhagen J, Lin J. Fast and versatile analysis of liposome encapsulation efficiency by nanoParticle exclusion chromatography. J Chromatogr A 2021;1662:462688. [PMID: 34915190 DOI: 10.1016/j.chroma.2021.462688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
640 Delinois LJ, De León-vélez O, Vázquez-medina A, Vélez-cabrera A, Marrero-sánchez A, Nieves-escobar C, Alfonso-cano D, Caraballo-rodríguez D, Rodriguez-ortiz J, Acosta-mercado J, Benjamín-rivera JA, González-gonzález K, Fernández-adorno K, Santiago-pagán L, Delgado-vergara R, Torres-ávila X, Maser-figueroa A, Grajales-avilés G, Méndez GIM, Santiago-pagán J, Nieves-santiago M, Álvarez-carrillo V, Griebenow K, Tinoco AD. Cytochrome c: Using Biological Insight toward Engineering an Optimized Anticancer Biodrug. Inorganics 2021;9:83. [DOI: 10.3390/inorganics9110083] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
641 Hu X, Zhao P, Lu Y, Liu Y. ROS-Based Nanoparticles for Atherosclerosis Treatment. Materials (Basel) 2021;14:6921. [PMID: 34832328 DOI: 10.3390/ma14226921] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
642 Guo RC, Zhang XH, Fan PS, Song BL, Li ZX, Duan ZY, Qiao ZY, Wang H. In Vivo Self-Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem Int Ed Engl 2021;60:25128-34. [PMID: 34549872 DOI: 10.1002/anie.202111839] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
643 Deo SK, Dhar S, Daunert S. Drug delivery: Challenges and nanotechnology-based solutions. Mol Aspects Med 2021;:101051. [PMID: 34785059 DOI: 10.1016/j.mam.2021.101051] [Reference Citation Analysis]
644 Zhang G, Sun J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. Int J Nanomedicine 2021;16:7391-416. [PMID: 34764647 DOI: 10.2147/IJN.S331639] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
645 Le H, Karakasyan C, Jouenne T, Le Cerf D, Dé E. Application of Polymeric Nanocarriers for Enhancing the Bioavailability of Antibiotics at the Target Site and Overcoming Antimicrobial Resistance. Applied Sciences 2021;11:10695. [DOI: 10.3390/app112210695] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
646 Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2021. [PMID: 34767350 DOI: 10.1021/acs.chemrev.1c00622] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
647 Paoletti C, Chiono V. Bioengineering Methods in MicroRNA-Mediated Direct Reprogramming of Fibroblasts Into Cardiomyocytes. Front Cardiovasc Med 2021;8:750438. [PMID: 34760946 DOI: 10.3389/fcvm.2021.750438] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
648 Wang H, Ning X, Wang X, Ding F, Wang Y. A versatile modular preparation strategy for targeted drug delivery systems against multidrug-resistant cancer cells. Nanotechnology 2021;33. [PMID: 34670212 DOI: 10.1088/1361-6528/ac317c] [Reference Citation Analysis]
649 Oshchepkova A, Markov O, Evtushenko E, Chernonosov A, Kiseleva E, Morozova K, Matveeva V, Artemyeva L, Vlassov V, Zenkova M. Tropism of Extracellular Vesicles and Cell-Derived Nanovesicles to Normal and Cancer Cells: New Perspectives in Tumor-Targeted Nucleic Acid Delivery. Pharmaceutics 2021;13:1911. [PMID: 34834326 DOI: 10.3390/pharmaceutics13111911] [Reference Citation Analysis]
650 Farokhirad S, Kandy SK, Tsourkas A, Ayyaswamy PS, Eckmann DM, Radhakrishnan R. Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles. Adv Materials Inter 2021;8:2101290. [DOI: 10.1002/admi.202101290] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
651 Mahapatra C, Lee R, Paul MK. Emerging role and promise of nanomaterials in organoid research. Drug Discov Today 2021:S1359-6446(21)00486-4. [PMID: 34774765 DOI: 10.1016/j.drudis.2021.11.007] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
652 Guan Q, Zhou LL, Dong YB. Ferroptosis in cancer therapeutics: a materials chemistry perspective. J Mater Chem B 2021;9:8906-36. [PMID: 34505861 DOI: 10.1039/d1tb01654g] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
653 Pierce KM, Miklavcic WR, Cook KP, Hennen MS, Bayles KW, Hollingsworth MA, Brooks AE, Pullan JE, Dailey KM. The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. Nanomaterials (Basel) 2021;11:3018. [PMID: 34835785 DOI: 10.3390/nano11113018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
654 Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. Oxid Med Cell Longev 2021;2021:2990326. [PMID: 34745414 DOI: 10.1155/2021/2990326] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
655 Momin MY, Gaddam RR, Kravitz M, Gupta A, Vikram A. The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021;10:3097. [PMID: 34831320 DOI: 10.3390/cells10113097] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
656 Shen Y, Zhang W, Xie Y, Li A, Wang X, Chen X, Liu Q, Wang Q, Zhang G, Liu Q, Liu J, Zhang D, Zhang Z, Ding J. Surface modification to enhance cell migration on biomaterials and its combination with 3D structural design of occluders to improve interventional treatment of heart diseases. Biomaterials 2021;279:121208. [PMID: 34749074 DOI: 10.1016/j.biomaterials.2021.121208] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
657 Wu X, Yokoyama Y, Takahashi H, Kouda S, Yamamoto H, Wang J, Morimoto Y, Minami K, Hata T, Shamma A, Inoue A, Ohtsuka M, Shibata S, Kobayashi S, Akai S, Yamamoto H. Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method. J Pers Med 2021;11:1160. [PMID: 34834512 DOI: 10.3390/jpm11111160] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
658 Ljubimova JY, Ramesh A, Israel LL, Holler E. Small-Sized Co-Polymers for Targeted Delivery of Multiple Imaging and Therapeutic Agents. Nanomaterials (Basel) 2021;11:2996. [PMID: 34835760 DOI: 10.3390/nano11112996] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
659 Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021;13:1897. [PMID: 34834311 DOI: 10.3390/pharmaceutics13111897] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
660 Roacho-Pérez JA, Garza-Treviño EN, Delgado-Gonzalez P, G-Buentello Z, Delgado-Gallegos JL, Chapa-Gonzalez C, Sánchez-Domínguez M, Sánchez-Domínguez CN, Islas JF. Target Nanoparticles against Pancreatic Cancer: Fewer Side Effects in Therapy. Life (Basel) 2021;11:1187. [PMID: 34833063 DOI: 10.3390/life11111187] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
661 De Dios Andres P, Ramos-Docampo MA, Qian X, Stingaciu M, Städler B. Locomotion of micromotors in paper chips. Nanoscale 2021;13:17900-11. [PMID: 34679159 DOI: 10.1039/d1nr06221b] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
662 Duan Y, Wang S, Zhang Q, Gao W, Zhang L. Nanoparticle approaches against SARS-CoV-2 infection. Curr Opin Solid State Mater Sci 2021;25:100964. [PMID: 34729031 DOI: 10.1016/j.cossms.2021.100964] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
663 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
664 Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021;29:3107-24. [PMID: 34509669 DOI: 10.1016/j.ymthe.2021.09.002] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
665 Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021;178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
666 Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S, Zhou J, Ding Y. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian Journal of Pharmaceutical Sciences 2021;16:738-61. [DOI: 10.1016/j.ajps.2021.10.001] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
667 Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021;178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Reference Citation Analysis]
668 Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021;178:113971. [PMID: 34530013 DOI: 10.1016/j.addr.2021.113971] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
669 Zeng W, Peng H, Wu J, Lin Q, Wang X, Ning J, Lv X, Li J, Zhu L, Peng Y, Guo J, Wen J. Up-down conversion luminescence and drug-loading capability of novel MoO3-x based carriers. Advanced Powder Technology 2021;32:4373-83. [DOI: 10.1016/j.apt.2021.09.043] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
670 Carney CP, Pandey N, Kapur A, Woodworth GF, Winkles JA, Kim AJ. Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Deliv Transl Res 2021;11:2344-70. [PMID: 34716900 DOI: 10.1007/s13346-021-01039-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
671 Okubo K, Umezawa M, Soga K. Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System. Biomedicines 2021;9:1583. [PMID: 34829811 DOI: 10.3390/biomedicines9111583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
672 Kim HJ, Kim A, Miyata K. Synthetic molecule libraries for nucleic acid delivery: Design parameters in cationic/ionizable lipids and polymers. Drug Metab Pharmacokinet 2021;42:100428. [PMID: 34837771 DOI: 10.1016/j.dmpk.2021.100428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
673 Zhou Q, Li C, Guo J, Jiang W, Zhu Y, Mao W, Li L. Self-assembled biocompatible heparin-based supramolecular hydrogel for doxorubicin delivery. Carbohydr Res 2021;511:108464. [PMID: 34741880 DOI: 10.1016/j.carres.2021.108464] [Reference Citation Analysis]
674 Iorio M, Umesh Ganesh N, De Luise M, Porcelli AM, Gasparre G, Kurelac I. The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers (Basel) 2021;13:5447. [PMID: 34771610 DOI: 10.3390/cancers13215447] [Reference Citation Analysis]
675 Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021;340:221-42. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
676 Calvo A, Moreno E, Clemente U, Pérez E, Larrea E, Sanmartín C, Irache JM, Espuelas S. Changes in the nanoparticle uptake and distribution caused by an intramacrophagic parasitic infection. Nanoscale 2021;13:17486-503. [PMID: 34651151 DOI: 10.1039/d1nr03797h] [Reference Citation Analysis]
677 Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021;13:5414. [PMID: 34771577 DOI: 10.3390/cancers13215414] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
678 Gravel-Tatta L, DeWolf C, Badia A. Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers. Langmuir 2021;37:12365-76. [PMID: 34644076 DOI: 10.1021/acs.langmuir.1c01906] [Reference Citation Analysis]
679 Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloid Interface Sci Commun 2021;45:100533. [PMID: 34692429 DOI: 10.1016/j.colcom.2021.100533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
680 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
681 Kaewchim K, Glab-Ampai K, Mahasongkram K, Chulanetra M, Seesuay W, Chaicumpa W, Sookrung N. Engineered Fully Human Single-Chain Monoclonal Antibodies to PIM2 Kinase. Molecules 2021;26:6436. [PMID: 34770845 DOI: 10.3390/molecules26216436] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
682 Walters AA, Dhadwar B, Al-Jamal KT. Modulating expression of inhibitory and stimulatory immune 'checkpoints' using nanoparticulate-assisted nucleic acid delivery. EBioMedicine 2021;73:103624. [PMID: 34688033 DOI: 10.1016/j.ebiom.2021.103624] [Reference Citation Analysis]
683 Zheng Z, Yu P, Cao H, Cheng M, Zhou T, Lee LE, Ulstrup J, Zhang J, Engelbrekt C, Ma L. Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy. Small 2021;17:e2103461. [PMID: 34672082 DOI: 10.1002/smll.202103461] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
684 Giordano F, Lenna S, Rampado R, Brozovich A, Hirase T, Tognon MG, Martini F, Agostini M, Yustein JT, Taraballi F. Nanodelivery Systems Face Challenges and Limitations in Bone Diseases Management. Adv Therap 2021;4:2100152. [DOI: 10.1002/adtp.202100152] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
685 Guo R, Zhang X, Fan P, Song B, Li Z, Duan Z, Qiao Z, Wang H. In Vivo Self‐Assembly Induced Cell Membrane Phase Separation for Improved Peptide Drug Internalization. Angew Chem 2021;133:25332-8. [DOI: 10.1002/ange.202111839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
686 Zheng K, Xie J. Cluster Materials as Traceable Antibacterial Agents. Acc Mater Res 2021;2:1104-16. [DOI: 10.1021/accountsmr.1c00186] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
687 Zhou L, Huang Z, Yang S, Wei J, Xu Y, Hu L, Guo X, Yuan L, Yuan Z, Yang X, Tao X, Zhang Q. Preparation of ICA-loaded mPEG-ICA nanoparticles and their application in the treatment of LPS-induced H9c2 cell damage. Nanoscale Res Lett 2021;16:155. [PMID: 34657986 DOI: 10.1186/s11671-021-03609-9] [Reference Citation Analysis]
688 Adhipandito CF, Cheung SH, Lin YH, Wu SH. Atypical Renal Clearance of Nanoparticles Larger Than the Kidney Filtration Threshold. Int J Mol Sci 2021;22:11182. [PMID: 34681853 DOI: 10.3390/ijms222011182] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
689 Alvi SB, Ahmed S, Sridharan D, Naseer Z, Pracha N, Wang H, Boudoulas KD, Zhu W, Sayed N, Khan M. De novo Drug Delivery Modalities for Treating Damaged Hearts: Current Challenges and Emerging Solutions. Front Cardiovasc Med 2021;8:742315. [PMID: 34651028 DOI: 10.3389/fcvm.2021.742315] [Reference Citation Analysis]
690 Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. Advanced NanoBiomed Research 2022;2:2100087. [DOI: 10.1002/anbr.202100087] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
691 Haque S, Tripathy S, Patra CR. Manganese-based advanced nanoparticles for biomedical applications: future opportunity and challenges. Nanoscale 2021;13:16405-26. [PMID: 34586121 DOI: 10.1039/d1nr04964j] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
692 Nocito MC, De Luca A, Prestia F, Avena P, La Padula D, Zavaglia L, Sirianni R, Casaburi I, Puoci F, Chimento A, Pezzi V. Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021;9:1476. [PMID: 34680593 DOI: 10.3390/biomedicines9101476] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
693 Żak MM, Zangi L. Lipid Nanoparticles for Organ-Specific mRNA Therapeutic Delivery. Pharmaceutics 2021;13:1675. [PMID: 34683969 DOI: 10.3390/pharmaceutics13101675] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
694 León-Buitimea A, Garza-Cervantes JA, Gallegos-Alvarado DY, Osorio-Concepción M, Morones-Ramírez JR. Nanomaterial-Based Antifungal Therapies to Combat Fungal Diseases Aspergillosis, Coccidioidomycosis, Mucormycosis, and Candidiasis. Pathogens 2021;10:1303. [PMID: 34684252 DOI: 10.3390/pathogens10101303] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
695 Sorolla MA, Hidalgo I, Sorolla A, Montal R, Pallisé O, Salud A, Parisi E. Microenvironmental Reactive Oxygen Species in Colorectal Cancer: Involved Processes and Therapeutic Opportunities. Cancers (Basel) 2021;13:5037. [PMID: 34680186 DOI: 10.3390/cancers13205037] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
696 Low J, Chan B, Tay A. Targeted Therapeutics Delivery by Exploiting Biophysical Properties of Senescent Cells. Adv Funct Materials 2022;32:2107990. [DOI: 10.1002/adfm.202107990] [Reference Citation Analysis]
697 Garg NK, Tandel N, Bhadada SK, Tyagi RK. Nanostructured Lipid Carrier-Mediated Transdermal Delivery of Aceclofenac Hydrogel Present an Effective Therapeutic Approach for Inflammatory Diseases. Front Pharmacol 2021;12:713616. [PMID: 34616297 DOI: 10.3389/fphar.2021.713616] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
698 Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021;9:734720. [PMID: 34616741 DOI: 10.3389/fcell.2021.734720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
699 Ledesma F, Ozcan B, Sun X, Medina SM, Landry MP. Nanomaterial Strategies for Delivery of Therapeutic Cargoes. Adv Funct Materials 2022;32:2107174. [DOI: 10.1002/adfm.202107174] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
700 Zhdanov VP. How nanoparticles can induce dimerization and aggregation of cells in blood or lymph. Biosystems 2021;210:104551. [PMID: 34597710 DOI: 10.1016/j.biosystems.2021.104551] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
701 Llacer-Wintle J, Rivas-Dapena A, Chen XZ, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. Adv Mater 2021;33:e2102049. [PMID: 34480388 DOI: 10.1002/adma.202102049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
702 Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021;177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
703 Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv Drug Deliv Rev 2021;177:113807. [PMID: 34023331 DOI: 10.1016/j.addr.2021.05.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
704 Saha T, Mondal J, Khiste S, Lusic H, Hu ZW, Jayabalan R, Hodgetts KJ, Jang H, Sengupta S, Eunice Lee S, Park Y, Lee LP, Goldman A. Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer. Nanophotonics 2021;10:3063-73. [PMID: 34589378 DOI: 10.1515/nanoph-2021-0142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
705 Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). Nanomaterials (Basel) 2021;11:2525. [PMID: 34684966 DOI: 10.3390/nano11102525] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
706 Stan D, Enciu AM, Mateescu AL, Ion AC, Brezeanu AC, Stan D, Tanase C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front Pharmacol 2021;12:723233. [PMID: 34552489 DOI: 10.3389/fphar.2021.723233] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
707 Feng Y, Quinnell SP, Lanzi AM, Vegas AJ. Alginate-Based Amphiphilic Block Copolymers as a Drug Codelivery Platform. Nano Lett 2021;21:7495-504. [PMID: 34495662 DOI: 10.1021/acs.nanolett.1c01525] [Reference Citation Analysis]
708 Keša P, Paúrová M, Babič M, Heizer T, Matouš P, Turnovcová K, Mareková D, Šefc L, Herynek V. Photoacoustic Properties of Polypyrrole Nanoparticles. Nanomaterials (Basel) 2021;11:2457. [PMID: 34578773 DOI: 10.3390/nano11092457] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
709 Yu N, Xu Y, Liu T, Zhong H, Xu Z, Ji T, Zou H, Mu J, Chen Z, Liang XJ, Shi L, Kohane DS, Guo S. Modular ketal-linked prodrugs and biomaterials enabled by organocatalytic transisopropenylation of alcohols. Nat Commun 2021;12:5532. [PMID: 34545089 DOI: 10.1038/s41467-021-25856-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
710 Bajpai A, Desai NN, Pandey S, Shukla C, Datta B, Basu S. Nanoparticle-Mediated Routing of Antibiotics into Mitochondria in Cancer Cells. ACS Appl Bio Mater 2021;4:6799-806. [PMID: 35006980 DOI: 10.1021/acsabm.1c00527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
711 Mignani S, Shi X, Karpus A, Lentini G, Majoral JP. Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. Pharmaceutics 2021;13:1513. [PMID: 34575589 DOI: 10.3390/pharmaceutics13091513] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
712 Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021;22:10009. [PMID: 34576180 DOI: 10.3390/ijms221810009] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
713 Motealleh A, Kart D, Czieborowski M, Kehr NS. Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation. ACS Appl Mater Interfaces 2021;13:43755-68. [PMID: 34464080 DOI: 10.1021/acsami.1c13392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
714 Piperno A, Sciortino MT, Giusto E, Montesi M, Panseri S, Scala A. Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. Int J Nanomedicine 2021;16:5981-6002. [PMID: 34511901 DOI: 10.2147/IJN.S321329] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
715 Napione L. Integrated Nanomaterials and Nanotechnologies in Lateral Flow Tests for Personalized Medicine Applications. Nanomaterials (Basel) 2021;11:2362. [PMID: 34578678 DOI: 10.3390/nano11092362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
716 Xu R, Meng F, Liu Y, Duosiken D, Sun K, Pan S, Tao K. Lattice distortion of CaF2 nanocrystals for shortening their 19F longitude relaxation time. Chem Commun (Camb) 2021;57:9148-51. [PMID: 34498611 DOI: 10.1039/d1cc02448e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
717 Cao J, Qi J, Lin X, Xiong Y, He F, Deng W, Liu G. Biomimetic Black Phosphorus Nanosheet-Based Drug Delivery System for Targeted Photothermal-Chemo Cancer Therapy. Front Bioeng Biotechnol 2021;9:707208. [PMID: 34490221 DOI: 10.3389/fbioe.2021.707208] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
718 Zhou Q, Wang Y, Li X, Lu N, Ge Z. Polymersome Nanoreactor‐Mediated Combination Chemodynamic‐Immunotherapy via ROS Production and Enhanced STING Activation. Adv Therap 2021;4:2100130. [DOI: 10.1002/adtp.202100130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
719 Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021;22:9664. [PMID: 34575831 DOI: 10.3390/ijms22189664] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
720 Estupiñán Ó, Niza E, Bravo I, Rey V, Tornín J, Gallego B, Clemente-Casares P, Moris F, Ocaña A, Blanco-Lorenzo V, Rodríguez-Santamaría M, Vallina-Álvarez A, González MV, Rodríguez A, Hermida-Merino D, Alonso-Moreno C, Rodríguez R. Mithramycin delivery systems to develop effective therapies in sarcomas. J Nanobiotechnology 2021;19:267. [PMID: 34488783 DOI: 10.1186/s12951-021-01008-x] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
721 Huang L, Du J, Zhu Z. Neutrally Buoyant Particle Migration in Poiseuille Flow Driven by Pulsatile Velocity. Micromachines (Basel) 2021;12:1075. [PMID: 34577719 DOI: 10.3390/mi12091075] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
722 Kalinova R, Valchanova M, Dimitrov I, Turmanova S, Ugrinova I, Petrova M, Vlahova Z, Rangelov S. Functional Polyglycidol-Based Block Copolymers for DNA Complexation. Int J Mol Sci 2021;22:9606. [PMID: 34502513 DOI: 10.3390/ijms22179606] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
723 Gao Y, Wang J, Han H, Xiao H, Jin WK, Wang S, Shao S, Wang Z, Yang W, Wang L, Weng L. A nanoparticle-containing polycaprolactone implant for combating post-resection breast cancer recurrence. Nanoscale 2021;13:14417-25. [PMID: 34473184 DOI: 10.1039/d1nr04125h] [Reference Citation Analysis]
724 Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022;7:292-323. [PMID: 34466734 DOI: 10.1016/j.bioactmat.2021.05.038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
725 Tang J, Liu J, Zheng Q, Li W, Sheng J, Mao L, Wang M. In‐Situ Encapsulation of Protein into Nanoscale Hydrogen‐Bonded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie 2021;133:22489-95. [DOI: 10.1002/ange.202105634] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
726 Tan J, Deng Z, Song C, Xu J, Zhang Y, Yu Y, Hu J, Liu S. Coordinating External and Built-In Triggers for Tunable Degradation of Polymeric Nanoparticles via Cycle Amplification. J Am Chem Soc 2021;143:13738-48. [PMID: 34411484 DOI: 10.1021/jacs.1c05617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
727 Han S, Mei L, Quach T, Porter C, Trevaskis N. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles. Pharm Res 2021;38:1497-518. [PMID: 34463935 DOI: 10.1007/s11095-021-03093-x] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
728 Kharbikar BN, Zhong JX, Cuylear DL, Perez CA, Desai TA. Theranostic biomaterials for tissue engineering. Current Opinion in Biomedical Engineering 2021;19:100299. [DOI: 10.1016/j.cobme.2021.100299] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
729 Li Z, Wang Y, Liu J, Rawding P, Bu J, Hong S, Hu Q. Chemically and Biologically Engineered Bacteria-Based Delivery Systems for Emerging Diagnosis and Advanced Therapy. Adv Mater 2021;33:e2102580. [PMID: 34347325 DOI: 10.1002/adma.202102580] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
730 Kim J, Shi Y, Kwon CJ, Gao Y, Mitragotri S. A Deep Eutectic Solvent-Based Approach to Intravenous Formulation. Adv Healthc Mater 2021;10:e2100585. [PMID: 34351085 DOI: 10.1002/adhm.202100585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
731 Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021;176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
732 Xie Y, Ma C, Yang X, Wang J, Long G, Zhou J. Phytonanomaterials as therapeutic agents and drug delivery carriers. Adv Drug Deliv Rev 2021;176:113868. [PMID: 34303754 DOI: 10.1016/j.addr.2021.113868] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
733 Nagai A, Nishimura R, Hattori Y, Hatano E, Fujimoto A, Morimoto M, Yasuda N, Kamada K, Sotome H, Miyasaka H, Yokojima S, Nakamura S, Uchida K. Molecular crystalline capsules that release their contents by light. Chem Sci 2021;12:11585-92. [PMID: 34567506 DOI: 10.1039/d1sc03394h] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
734 Fu H, Wu Y, Yang X, Huang S, Yu F, Deng H, Zhang S, Xiang Q. Stem cell and its derivatives as drug delivery vehicles: an effective new strategy of drug delivery system. All Life 2021;14:782-98. [DOI: 10.1080/26895293.2021.1967202] [Reference Citation Analysis]
735 Ang CW, Tan L, Qu Z, West NP, Cooper MA, Popat A, Blaskovich MAT. Mesoporous Silica Nanoparticles Improve Oral Delivery of Antitubercular Bicyclic Nitroimidazoles. ACS Biomater Sci Eng 2021. [PMID: 34464089 DOI: 10.1021/acsbiomaterials.1c00807] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
736 Pan Y, Song X, Wang Y, Wei J. Firing up the Tumor Microenvironment with Nanoparticle-Based Therapies. Pharmaceutics 2021;13:1338. [PMID: 34575414 DOI: 10.3390/pharmaceutics13091338] [Reference Citation Analysis]
737 Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. Curr Opin Biomed Eng 2021;19:100295. [PMID: 34423177 DOI: 10.1016/j.cobme.2021.100295] [Reference Citation Analysis]
738 Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021;22:9092. [PMID: 34445799 DOI: 10.3390/ijms22169092] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
739 Abdel-Bar HM, Abdallah IA, Fayed MAA, Moatasim Y, Mostafa A, El-Behairy MF, Elimam H, Elshaier YAMM, Abouzid KAM. Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies. RSC Adv 2021;11:28876-91. [PMID: 35478590 DOI: 10.1039/d1ra04576h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
740 Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021;9:686303. [PMID: 34409014 DOI: 10.3389/fchem.2021.686303] [Cited by in Crossref: 3] [Cited by in F6Publishing: 33] [Article Influence: 3.0] [Reference Citation Analysis]
741 Balogh M, Janjic JM, Shepherd AJ. Targeting Neuroimmune Interactions in Diabetic Neuropathy with Nanomedicine. Antioxid Redox Signal 2021. [PMID: 34416821 DOI: 10.1089/ars.2021.0123] [Reference Citation Analysis]
742 Zhang RX, Dong K, Wang Z, Miao R, Lu W, Wu XY. Nanoparticulate Drug Delivery Strategies to Address Intestinal Cytochrome P450 CYP3A4 Metabolism towards Personalized Medicine. Pharmaceutics 2021;13:1261. [PMID: 34452222 DOI: 10.3390/pharmaceutics13081261] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
743 Lafuente-Gómez N, Milán-Rois P, García-Soriano D, Luengo Y, Cordani M, Alarcón-Iniesta H, Salas G, Somoza Á. Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers (Basel) 2021;13:4095. [PMID: 34439250 DOI: 10.3390/cancers13164095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
744 Anselmo AC, Mitragotri S. Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioeng Transl Med 2021;:e10246. [PMID: 34514159 DOI: 10.1002/btm2.10246] [Cited by in Crossref: 5] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
745 Tang J, Liu J, Zheng Q, Li W, Sheng J, Mao L, Wang M. In-Situ Encapsulation of Protein into Nanoscale Hydrogen-Bonded Organic Frameworks for Intracellular Biocatalysis. Angew Chem Int Ed Engl 2021. [PMID: 34382314 DOI: 10.1002/anie.202105634] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
746 Yanes-Díaz J, Palao-Suay R, Aguilar MR, Riestra-Ayora JI, Ferruelo-Alonso A, Rojo Del Olmo L, Vázquez-Lasa B, Sanz-Fernández R, Sánchez-Rodríguez C. Antitumor Activity of Nanoparticles Loaded with PHT-427, a Novel AKT/PDK1 Inhibitor, for the Treatment of Head and Neck Squamous Cell Carcinoma. Pharmaceutics 2021;13:1242. [PMID: 34452203 DOI: 10.3390/pharmaceutics13081242] [Reference Citation Analysis]
747 Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co-assembly with Camptothecin Prodrug. Angew Chem Int Ed Engl 2021;60:21033-9. [PMID: 34278702 DOI: 10.1002/anie.202108658] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
748 Zhou Z, Du C, Zhang Q, Yu G, Zhang F, Chen X. Exquisite Vesicular Nanomedicine by Paclitaxel Mediated Co‐assembly with Camptothecin Prodrug. Angewandte Chemie 2021;133:21201-7. [DOI: 10.1002/ange.202108658] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
749 Antunes JC, Seabra CL, Domingues JM, Teixeira MO, Nunes C, Costa-Lima SA, Homem NC, Reis S, Amorim MTP, Felgueiras HP. Drug Targeting of Inflammatory Bowel Diseases by Biomolecules. Nanomaterials (Basel) 2021;11:2035. [PMID: 34443866 DOI: 10.3390/nano11082035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
750 Gao Y, Yang K, Shelling AN, Wu Z. Nanotechnology-Enabled COVID-19 mRNA Vaccines. Encyclopedia 2021;1:773-80. [DOI: 10.3390/encyclopedia1030059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
751 Mirón-Barroso S, Domènech EB, Trigueros S. Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. Int J Mol Sci 2021;22:8537. [PMID: 34445243 DOI: 10.3390/ijms22168537] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
752 Tosi G, Thomas Duskey J, Angela Vandelli M, Ruozi B. Nanomedicines for brain diseases: where we are and where we are going. Ther Deliv 2021;12:631-5. [PMID: 34355580 DOI: 10.4155/tde-2021-0051] [Reference Citation Analysis]
753 Hayat H, Nukala A, Nyamira A, Fan J, Wang P. A concise review: the synergy between artificial intelligence and biomedical nanomaterials that empowers nanomedicine. Biomed Mater 2021;16. [PMID: 34280907 DOI: 10.1088/1748-605X/ac15b2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
754 Dey S, Chatterjee S, Patel A, Pradhan N, Srivastava D, Patra N, Bhattacharyya A, Manna D. Photoresponsive transformation from spherical to nanotubular assemblies: anticancer drug delivery using macrocyclic cationic gemini amphiphiles. Chem Commun (Camb) 2021;57:4646-9. [PMID: 33881081 DOI: 10.1039/d1cc01468d] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
755 Li S, Jiang Q, Liu Y, Wang W, Yu W, Wang F, Liu X. Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer-Specific Therapy. Anal Chem 2021;93:11275-83. [PMID: 34342424 DOI: 10.1021/acs.analchem.1c02264] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
756 Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021;12:701390. [PMID: 34408653 DOI: 10.3389/fphar.2021.701390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
757 Mendanha D, Vieira de Castro J, Ferreira H, Neves NM. Biomimetic and cell-based nanocarriers - New strategies for brain tumor targeting. J Control Release 2021;337:482-93. [PMID: 34352316 DOI: 10.1016/j.jconrel.2021.07.047] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
758 Kang Y, Liu J, Jiang Y, Yin S, Huang Z, Zhang Y, Wu J, Chen L, Shao L. Understanding the interactions between inorganic-based nanomaterials and biological membranes. Adv Drug Deliv Rev 2021;175:113820. [PMID: 34087327 DOI: 10.1016/j.addr.2021.05.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
759 Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm Sin B 2021;11:2150-71. [PMID: 34522582 DOI: 10.1016/j.apsb.2021.05.020] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
760 Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021;175:113831. [PMID: 34139255 DOI: 10.1016/j.addr.2021.113831] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
761 Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021;175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
762 Anand M. Tailoring Local Hysteresis in Small Clusters of Dipolar Interacting Magnetic Nanoparticles. NANO 2021;16:2150104. [DOI: 10.1142/s1793292021501046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
763 Czarnomysy R, Radomska D, Szewczyk OK, Roszczenko P, Bielawski K. Platinum and Palladium Complexes as Promising Sources for Antitumor Treatments. Int J Mol Sci 2021;22:8271. [PMID: 34361037 DOI: 10.3390/ijms22158271] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
764 Bordawekar S, Diwan M, Nere NK. Positioning for a sustainable future—Role of chemical engineers in transforming pharmaceutical process development. AIChE J 2021;67. [DOI: 10.1002/aic.17364] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
765 Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. Small Methods 2021;:2100402. [PMID: 34514087 DOI: 10.1002/smtd.202100402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
766 Welch EC, Powell JM, Clevinger TB, Fairman AE, Shukla A. Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Adv Funct Mater 2021;31:2104126. [DOI: 10.1002/adfm.202104126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
767 Liang M, Gao Y, Qiu W, Ye M, Hu J, Xu J, Xue P, Kang Y, Xu Z. Acid-Sensitive Supramolecular Nanoassemblies with Multivalent Interaction: Effective Tumor Retention and Deep Intratumor Infiltration. ACS Appl Mater Interfaces 2021;13:37680-92. [PMID: 34313427 DOI: 10.1021/acsami.1c10064] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
768 Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials (Basel) 2021;14:4135. [PMID: 34361329 DOI: 10.3390/ma14154135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 22] [Article Influence: 1.0] [Reference Citation Analysis]
769 Kim WJ, Kim GR, Cho HJ, Choi JM. The Cysteine-Containing Cell-Penetrating Peptide AP Enables Efficient Macromolecule Delivery to T Cells and Controls Autoimmune Encephalomyelitis. Pharmaceutics 2021;13:1134. [PMID: 34452095 DOI: 10.3390/pharmaceutics13081134] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
770 Atabakhshi-Kashi M, Carril M, Mahdavi H, Parak WJ, Carrillo-Carrion C, Khajeh K. In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials (Basel) 2021;11:1906. [PMID: 34443736 DOI: 10.3390/nano11081906] [Reference Citation Analysis]
771 Singh AK, Singh SS, Rathore AS, Singh SP, Mishra G, Awasthi R, Mishra SK, Gautam V, Singh SK. Lipid-Coated MCM-41 Mesoporous Silica Nanoparticles Loaded with Berberine Improved Inhibition of Acetylcholine Esterase and Amyloid Formation. ACS Biomater Sci Eng 2021;7:3737-53. [PMID: 34297529 DOI: 10.1021/acsbiomaterials.1c00514] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
772 Wu B, Ndugire W, Chen X, Yan M. Maltoheptaose-Presenting Nanoscale Glycoliposomes for the Delivery of Rifampicin to E. coli. ACS Appl Nano Mater 2021;4:7343-57. [PMID: 34746649 DOI: 10.1021/acsanm.1c01320] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
773 Waghule T, Dabholkar N, Gorantla S, Rapalli VK, Saha RN, Singhvi G. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach. Biomed Pharmacother 2021;141:111940. [PMID: 34328089 DOI: 10.1016/j.biopha.2021.111940] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
774 Neto CMS, Lima FC, Morais RP, de Andrade LRM, de Lima R, Chaud MV, Pereira MM, de Albuquerque Júnior RLC, Cardoso JC, Zielińska A, Souto EB, Lima ÁS, Severino P. Rutin-Functionalized Multi-Walled Carbon Nanotubes: Molecular Docking, Physicochemistry and Cytotoxicity in Fibroblasts. Toxics 2021;9:173. [PMID: 34437491 DOI: 10.3390/toxics9080173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
775 Ressnerova A, Novotny F, Michalkova H, Pumera M, Adam V, Heger Z. Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano 2021. [PMID: 34282903 DOI: 10.1021/acsnano.1c01172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
776 Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y. Lipids and Lipid Derivatives for RNA Delivery. Chem Rev 2021. [PMID: 34279087 DOI: 10.1021/acs.chemrev.1c00244] [Cited by in Crossref: 1] [Cited by in F6Publishing: 36] [Article Influence: 1.0] [Reference Citation Analysis]
777 Tan OJ, Loo HL, Thiagarajah G, Palanisamy UD, Sundralingam U. Improving oral bioavailability of medicinal herbal compounds through lipid-based formulations - A Scoping Review. Phytomedicine 2021;90:153651. [PMID: 34340903 DOI: 10.1016/j.phymed.2021.153651] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
778 Carucci C, Scalas N, Porcheddu A, Piludu M, Monduzzi M, Salis A. Adsorption and Release of Sulfamethizole from Mesoporous Silica Nanoparticles Functionalised with Triethylenetetramine. Int J Mol Sci 2021;22:7665. [PMID: 34299286 DOI: 10.3390/ijms22147665] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
779 Kozovska Z, Rajcaniova S, Munteanu P, Dzacovska S, Demkova L. CRISPR: History and perspectives to the future. Biomed Pharmacother 2021;141:111917. [PMID: 34328110 DOI: 10.1016/j.biopha.2021.111917] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
780 Wang H, Deng H, Gao M, Zhang W. Self-Assembled Nanogels Based on Ionic Gelation of Natural Polysaccharides for Drug Delivery. Front Bioeng Biotechnol 2021;9:703559. [PMID: 34336811 DOI: 10.3389/fbioe.2021.703559] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
781 Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bull 2021;:1-7. [PMID: 34305307 DOI: 10.1557/s43577-021-00132-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
782 Sioson VA, Kim M, Joo J. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomed Eng Lett 2021;11:217-33. [PMID: 34350049 DOI: 10.1007/s13534-021-00199-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
783 Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The Nanosystems Involved in Treating Lung Cancer. Life (Basel) 2021;11:682. [PMID: 34357054 DOI: 10.3390/life11070682] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
784 Ashok B, Peppas NA, Wechsler ME. Lipid- and Polymer-Based Nanoparticle Systems for the Delivery of CRISPR/Cas9. J Drug Deliv Sci Technol 2021;65:102728. [PMID: 34335878 DOI: 10.1016/j.jddst.2021.102728] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
785 Kang S, Park SE, Huh DD. Organ-on-a-chip technology for nanoparticle research. Nano Converg 2021;8:20. [PMID: 34236537 DOI: 10.1186/s40580-021-00270-x] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
786 Motawea A, Ahmed DAM, El-Mansy AA, Saleh NM. Crucial Role of PLGA Nanoparticles in Mitigating the Amiodarone-Induced Pulmonary Toxicity. Int J Nanomedicine 2021;16:4713-37. [PMID: 34267519 DOI: 10.2147/IJN.S314074] [Reference Citation Analysis]
787 Tortella GR, Pieretti JC, Rubilar O, Fernández-Baldo M, Benavides-Mendoza A, Diez MC, Seabra AB. Silver, copper and copper oxide nanoparticles in the fight against human viruses: progress and perspectives. Crit Rev Biotechnol 2021;:1-19. [PMID: 34233551 DOI: 10.1080/07388551.2021.1939260] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
788 Porcino M, Li X, Gref R, Martineau-Corcos C. Solid-State NMR Spectroscopy: A Key Tool to Unravel the Supramolecular Structure of Drug Delivery Systems. Molecules 2021;26:4142. [PMID: 34299416 DOI: 10.3390/molecules26144142] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
789 Xiao Q, Du W, Dong X, Du S, Ong SY, Tang G, Zhang C, Yang F, Li L, Gao L, Yao SQ. Cell-Penetrating Mitochondrion-Targeting Ligands for the Universal Delivery of Small Molecules, Proteins and Nanomaterials. Chemistry 2021;27:12207-14. [PMID: 34115398 DOI: 10.1002/chem.202101989] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
790 Zhao Y, Li A, Jiang L, Gu Y, Liu J. Hybrid Membrane-Coated Biomimetic Nanoparticles (HM@BNPs): A Multifunctional Nanomaterial for Biomedical Applications. Biomacromolecules 2021;22:3149-67. [PMID: 34225451 DOI: 10.1021/acs.biomac.1c00440] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
791 Wong KK, Lee SWH, Kua KP. N-Acetylcysteine as Adjuvant Therapy for COVID-19 - A Perspective on the Current State of the Evidence. J Inflamm Res 2021;14:2993-3013. [PMID: 34262324 DOI: 10.2147/JIR.S306849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
792 Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted Drug Delivery - From Magic Bullet to Nanomedicine: Principles, Challenges, and Future Perspectives. J Multidiscip Healthc 2021;14:1711-24. [PMID: 34267523 DOI: 10.2147/JMDH.S313968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
793 Ertas YN, Abedi Dorcheh K, Akbari A, Jabbari E. Nanoparticles for Targeted Drug Delivery to Cancer Stem Cells: A Review of Recent Advances. Nanomaterials (Basel) 2021;11:1755. [PMID: 34361141 DOI: 10.3390/nano11071755] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
794 Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, Yamauchi Y, Popat A, Salomon C. Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications. Small 2021;:e2102220. [PMID: 34216426 DOI: 10.1002/smll.202102220] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
795 Mrsny RJ, Mahmood TA. Re-Assessing PK/PD Issues for Oral Protein and Peptide Delivery. Pharmaceutics 2021;13:1006. [PMID: 34371698 DOI: 10.3390/pharmaceutics13071006] [Reference Citation Analysis]
796 Dolai J, Mandal K, Jana NR. Nanoparticle Size Effects in Biomedical Applications. ACS Appl Nano Mater 2021;4:6471-96. [DOI: 10.1021/acsanm.1c00987] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
797 Farbiak L, Cheng Q, Wei T, Álvarez-Benedicto E, Johnson LT, Lee S, Siegwart DJ. All-In-One Dendrimer-Based Lipid Nanoparticles Enable Precise HDR-Mediated Gene Editing In Vivo. Adv Mater 2021;33:e2006619. [PMID: 34137093 DOI: 10.1002/adma.202006619] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
798 Bunzen H. Chemical Stability of Metal‐organic Frameworks for Applications in Drug Delivery. ChemNanoMat 2021;7:998-1007. [DOI: 10.1002/cnma.202100226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
799 Wang C, Hong H, Chen M, Ding Z, Rui Y, Qi J, Li ZC, Liu Z. A Cationic Micelle as In Vivo Catalyst for Tumor-Localized Cleavage Chemistry. Angew Chem Int Ed Engl 2021;60:19750-8. [PMID: 34046980 DOI: 10.1002/anie.202106526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
800 Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Adv Mater 2021;33:e2008094. [PMID: 34048101 DOI: 10.1002/adma.202008094] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
801 Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021;174:140-67. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
802 Day CM, Sweetman MJ, Song Y, Plush SE, Garg S. Functionalized Mesoporous Silica Nanoparticles as Delivery Systems for Doxorubicin: Drug Loading and Release. Applied Sciences 2021;11:6121. [DOI: 10.3390/app11136121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
803 Zhu D, Chen W, Lin W, Li Y, Liu X. Reactive oxygen species-responsive nanoplatforms for nucleic acid-based gene therapy of cancer and inflammatory diseases. Biomed Mater 2021;16. [PMID: 34116517 DOI: 10.1088/1748-605X/ac0a8f] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
804 Kamiya K, Kayama K, Nobuoka M, Sakaguchi S, Sakurai T, Kawata M, Tsutsui Y, Suda M, Idesaki A, Koshikawa H, Sugimoto M, Lakshmi GBVS, Avasthi DK, Seki S. Ubiquitous organic molecule-based free-standing nanowires with ultra-high aspect ratios. Nat Commun 2021;12:4025. [PMID: 34188041 DOI: 10.1038/s41467-021-24335-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
805 Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Cited by in Crossref: 86] [Cited by in F6Publishing: 107] [Article Influence: 86.0] [Reference Citation Analysis]
806 Chen L, Li G, Wang X, Li J, Zhang Y. Spherical Nucleic Acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and Antisense Oligonucleotide. ACS Nano 2021. [PMID: 34170121 DOI: 10.1021/acsnano.1c03072] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
807 Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021;9:707319. [PMID: 34249894 DOI: 10.3389/fbioe.2021.707319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
808 Wang X, Li L, Song F. Interplay of Nanoparticle Properties during Endocytosis. Crystals 2021;11:728. [DOI: 10.3390/cryst11070728] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
809 Shi T, Hu J, Wang W, Jiang Q, Xu Z, Yu S, Wang F, Liu X. Multiple Blockades of the HGF/Met Signaling Pathway for Metastasis Suppression Using Nanoinhibitors. ACS Appl Mater Interfaces 2021;13:30350-8. [PMID: 34165951 DOI: 10.1021/acsami.1c07010] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
810 Huppertsberg A, Kaps L, Zhong Z, Schmitt S, Stickdorn J, Deswarte K, Combes F, Czysch C, De Vrieze J, Kasmi S, Choteschovsky N, Klefenz A, Medina-Montano C, Winterwerber P, Chen C, Bros M, Lienenklaus S, Sanders NN, Koynov K, Schuppan D, Lambrecht BN, David SA, De Geest BG, Nuhn L. Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. J Am Chem Soc 2021;143:9872-83. [PMID: 34166595 DOI: 10.1021/jacs.1c03772] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
811 Zhu C, Ji Z, Ma J, Ding Z, Shen J, Wang Q. Recent Advances of Nanotechnology-Facilitated Bacteria-Based Drug and Gene Delivery Systems for Cancer Treatment. Pharmaceutics 2021;13:940. [PMID: 34202452 DOI: 10.3390/pharmaceutics13070940] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
812 Antunes JC, Domingues JM, Miranda CS, Silva AFG, Homem NC, Amorim MTP, Felgueiras HP. Bioactivity of Chitosan-Based Particles Loaded with Plant-Derived Extracts for Biomedical Applications: Emphasis on Antimicrobial Fiber-Based Systems. Mar Drugs 2021;19:359. [PMID: 34201803 DOI: 10.3390/md19070359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
813 Lunardi VB, Soetaredjo FE, Putro JN, Santoso SP, Yuliana M, Sunarso J, Ju YH, Ismadji S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers (Basel) 2021;13:2052. [PMID: 34201884 DOI: 10.3390/polym13132052] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
814 Chen F, Liu Q, Xiong Y, Xu L. Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease. Int J Nanomedicine 2021;16:4225-37. [PMID: 34188471 DOI: 10.2147/IJN.S310952] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
815 Yan N, Tang BZ, Wang WX. Cell Cycle Control of Nanoplastics Internalization in Phytoplankton. ACS Nano 2021. [PMID: 34156825 DOI: 10.1021/acsnano.1c03879] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
816 Talamini L, Picchetti P, Ferreira LM, Sitia G, Russo L, Violatto MB, Travaglini L, Fernandez Alarcon J, Righelli L, Bigini P, De Cola L. Organosilica Cages Target Hepatic Sinusoidal Endothelial Cells Avoiding Macrophage Filtering. ACS Nano 2021;15:9701-16. [PMID: 34009950 DOI: 10.1021/acsnano.1c00316] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
817 Marras AE, Campagna TR, Vieregg JR, Tirrell MV. Physical Property Scaling Relationships for Polyelectrolyte Complex Micelles. Macromolecules 2021;54:6585-94. [DOI: 10.1021/acs.macromol.1c00743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
818 Li Y, Zhong D, Zhou C, Tu Z, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Sub‐50 nm Supramolecular Nanohybrids with Active Targeting Corona for Image‐Guided Solid Tumor Treatment and Metastasis Inhibition. Adv Funct Materials 2021;31:2103272. [DOI: 10.1002/adfm.202103272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
819 Friedl JD, Nele V, De Rosa G, Bernkop‐schnürch A. Bioinert, Stealth or Interactive: How Surface Chemistry of Nanocarriers Determines Their Fate In Vivo. Adv Funct Materials 2021;31:2103347. [DOI: 10.1002/adfm.202103347] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
820 Khawar IA, Ghosh T, Park JK, Kuh H. Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. J Pharm Investig 2021;51:541-53. [DOI: 10.1007/s40005-021-00534-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
821 Yang G, Liu Y, Zhao CX. Quantitative comparison of different fluorescent dye-loaded nanoparticles. Colloids Surf B Biointerfaces 2021;206:111923. [PMID: 34146992 DOI: 10.1016/j.colsurfb.2021.111923] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
822 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
823 Zhou Q, Zhou Y, Li T, Ge Z. Nanoparticle-Mediated STING Agonist Delivery for Enhanced Cancer Immunotherapy. Macromol Biosci 2021;21:e2100133. [PMID: 34117839 DOI: 10.1002/mabi.202100133] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
824 Wang J, Xu F, Zhu X, Li X, Li Y, Li J. Targeting microRNAs to Regulate the Integrity of the Blood-Brain Barrier. Front Bioeng Biotechnol 2021;9:673415. [PMID: 34178963 DOI: 10.3389/fbioe.2021.673415] [Reference Citation Analysis]
825 Yan J, Kang DD, Dong Y. Harnessing lipid nanoparticles for efficient CRISPR delivery. Biomater Sci 2021. [PMID: 34115079 DOI: 10.1039/d1bm00537e] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
826 Grüner MC, Leite IS, Inada NM, de Camargo AS. Photosensitizing nanoclays for efficient cell uptake and in vitro photodynamic therapy. Photodiagnosis Photodyn Ther 2021;35:102384. [PMID: 34116252 DOI: 10.1016/j.pdpdt.2021.102384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
827 Alsudir SA, Almalik A, Alhasan AH. Catalogue of self-targeting nano-medical inventions to accelerate clinical trials. Biomater Sci 2021;9:3898-910. [PMID: 33912874 DOI: 10.1039/d1bm00235j] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
828 Wu CR, Huang YD, Hong YH, Liu YH, Narwane M, Chang YH, Dinh TK, Hsieh HT, Hseuh YJ, Wu PC, Pao CW, Chan TS, Hsu IJ, Chen Y, Chen HC, Chin TY, Lu TT. Endogenous Conjugation of Biomimetic Dinitrosyl Iron Complex with Protein Vehicles for Oral Delivery of Nitric Oxide to Brain and Activation of Hippocampal Neurogenesis. JACS Au 2021;1:998-1013. [PMID: 34467346 DOI: 10.1021/jacsau.1c00160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
829 Mancuso C, Re F, Rivolta I, Elli L, Gnodi E, Beaulieu JF, Barisani D. Dietary Nanoparticles Interact with Gluten Peptides and Alter the Intestinal Homeostasis Increasing the Risk of Celiac Disease. Int J Mol Sci 2021;22:6102. [PMID: 34198897 DOI: 10.3390/ijms22116102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
830 Yang J, Jia C, Yang J. Designing Nanoparticle-based Drug Delivery Systems for Precision Medicine. Int J Med Sci 2021;18:2943-9. [PMID: 34220321 DOI: 10.7150/ijms.60874] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
831 Zhu C, Ma J, Ji Z, Shen J, Wang Q. Recent Advances of Cell Membrane Coated Nanoparticles in Treating Cardiovascular Disorders. Molecules 2021;26:3428. [PMID: 34198794 DOI: 10.3390/molecules26113428] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
832 Dumas A, Knaus UG. Raising the ‘Good’ Oxidants for Immune Protection. Front Immunol 2021;12:698042. [DOI: 10.3389/fimmu.2021.698042] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
833 Zhdanov VP. Kinetic aspects of virus targeting by nanoparticles in vivo. J Biol Phys 2021;47:95-101. [PMID: 34080098 DOI: 10.1007/s10867-021-09570-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
834 Zhdanov VP. Virology from the perspective of theoretical colloid and interface science. Current Opinion in Colloid & Interface Science 2021;53:101450. [DOI: 10.1016/j.cocis.2021.101450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
835 Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021;605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
836 Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. Molecules 2021;26:3304. [PMID: 34072765 DOI: 10.3390/molecules26113304] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
837 Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021;11:1625. [PMID: 34072849 DOI: 10.3390/ani11061625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
838 Zhao W, Li T, Long Y, Guo R, Sheng Q, Lu Z, Li M, Li J, Zang S, Zhang Z, He Q. Self-promoted Albumin-Based Nanoparticles for Combination Therapy against Metastatic Breast Cancer via a Hyperthermia-Induced "Platelet Bridge". ACS Appl Mater Interfaces 2021;13:25701-14. [PMID: 34041901 DOI: 10.1021/acsami.1c04442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
839 Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021;164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
840 Mohamed A, Korzhikov-Vlakh V, Zhang N, Said A, Pilipenko I, Schäfer-Korting M, Zoschke C, Tennikova T. Effect of Poly(L-lysine) and Heparin Coatings on the Surface of Polyester-Based Particles on Prednisolone Release and Biocompatibility. Pharmaceutics 2021;13:801. [PMID: 34072016 DOI: 10.3390/pharmaceutics13060801] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
841 Bernardo-Castro S, Albino I, Barrera-Sandoval ÁM, Tomatis F, Sousa JA, Martins E, Simões S, Lino MM, Ferreira L, Sargento-Freitas J. Therapeutic Nanoparticles for the Different Phases of Ischemic Stroke. Life (Basel) 2021;11:482. [PMID: 34073229 DOI: 10.3390/life11060482] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
842 Nguyen Cao TG, Kang JH, You JY, Kang HC, Rhee WJ, Ko YT, Shim MS. Safe and Targeted Sonodynamic Cancer Therapy Using Biocompatible Exosome-Based Nanosonosensitizers. ACS Appl Mater Interfaces 2021;13:25575-88. [PMID: 34033477 DOI: 10.1021/acsami.0c22883] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
843 Cao J, Wu J, Mu J, Feng S, Gao J. The design criteria and therapeutic strategy of functional scaffolds for spinal cord injury repair. Biomater Sci 2021;9:4591-606. [PMID: 34018520 DOI: 10.1039/d1bm00361e] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
844 Finiuk NS, Klyuchivska OY, Ivasechko II, Mitina NE, Ostapiuk YV, Obushak MD, Zaichenko OS, Babsky AM, Stoika RS; Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine, Ivan Franko National University of Lviv, Lviv, Ukraine;, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine, Lviv Polytechnic National University, Lviv, Ukraine;, Ivan Franko National University of Lviv, Lviv, Ukraine;, Ivan Franko National University of Lviv, Lviv, Ukraine;, Lviv Polytechnic National University, Lviv, Ukraine;, Ivan Franko National University of Lviv, Lviv, Ukraine;, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine, Ivan Franko National University of Lviv, Lviv, Ukraine;. Effect of a novel thiazole derivative and its complex with a polymeric carrier on stability of DNA in human breast cancer cells. Ukr Biochem J 2021;93:39-51. [DOI: 10.15407/ubj93.02.039] [Reference Citation Analysis]
845 Ediriweera GR, Chen L, Yerbury JJ, Thurecht KJ, Vine KL. Non-Viral Vector-Mediated Gene Therapy for ALS: Challenges and Future Perspectives. Mol Pharm 2021;18:2142-60. [PMID: 34010004 DOI: 10.1021/acs.molpharmaceut.1c00297] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
846 Li Q, Hu E, Yu K, Lu M, Xie R, Lu F, Lu B, Bao R, Lan G. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioact Mater 2021;6:4625-39. [PMID: 34095621 DOI: 10.1016/j.bioactmat.2021.05.006] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
847 Chen Q, Ding F, Zhang S, Li Q, Liu X, Song H, Zuo X, Fan C, Mou S, Ge Z. Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. Nano Lett 2021;21:4394-402. [PMID: 33998787 DOI: 10.1021/acs.nanolett.1c01044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
848 Wang L, Ji X, Guo D, Shi C, Luo J. Facial Solid-Phase Synthesis of Well-Defined Zwitterionic Amphiphiles for Enhanced Anticancer Drug Delivery. Mol Pharm 2021;18:2349-59. [PMID: 33983742 DOI: 10.1021/acs.molpharmaceut.1c00163] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
849 Liang J, Zhao X. Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biol Med 2021:j. [PMID: 33979069 DOI: 10.20892/j.issn.2095-3941.2021.0004] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
850 Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021;165:219-43. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
851 Helfield B, Zou Y, Matsuura N. Acoustically-Stimulated Nanobubbles: Opportunities in Medical Ultrasound Imaging and Therapy. Front Phys 2021;9:654374. [DOI: 10.3389/fphy.2021.654374] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
852 Lima‐sousa R, Melo BL, Alves CG, Moreira AF, Mendonça AG, Correia IJ, de Melo‐diogo D. Combining Photothermal‐Photodynamic Therapy Mediated by Nanomaterials with Immune Checkpoint Blockade for Metastatic Cancer Treatment and Creation of Immune Memory. Adv Funct Mater 2021;31:2010777. [DOI: 10.1002/adfm.202010777] [Cited by in Crossref: 6] [