BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lostalé-seijo I, Montenegro J. Synthetic materials at the forefront of gene delivery. Nat Rev Chem 2018;2:258-77. [DOI: 10.1038/s41570-018-0039-1] [Cited by in Crossref: 152] [Cited by in F6Publishing: 155] [Article Influence: 30.4] [Reference Citation Analysis]
Number Citing Articles
1 Su DD, Ali LMA, Coste M, Laroui N, Bessin Y, Barboiu M, Bettache N, Ulrich S. Structure-Activity Relationships in Nucleic-Acid-Templated Vectors Based on Peptidic Dynamic Covalent Polymers. Chemistry 2023;29:e202202921. [PMID: 36342312 DOI: 10.1002/chem.202202921] [Reference Citation Analysis]
2 Zhang H, Ding F, Zhu Z, Sun Q, Yang C. Engineered ionizable lipid nanoparticles mediated efficient siRNA delivery to macrophages for anti-inflammatory treatment of acute liver injury. Int J Pharm 2023;631:122489. [PMID: 36521639 DOI: 10.1016/j.ijpharm.2022.122489] [Reference Citation Analysis]
3 Salvador C, Andreozzi P, Romero G, Loinaz I, Dupin D, Moya SE. Self-Assembled Oleic Acid-Modified Polyallylamines for Improved siRNA Transfection Efficiency and Lower Cytotoxicity. ACS Appl Bio Mater 2023. [PMID: 36647574 DOI: 10.1021/acsabm.2c00845] [Reference Citation Analysis]
4 Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials 2023. [DOI: 10.1080/00914037.2023.2167081] [Reference Citation Analysis]
5 Hu J, Zou Z, Mo F, Lin X, Zhao Y, Shi T, Wang F, Liu X. Triggered amplification of gene theranostics with high accuracy and efficacy using metallo-nanoassemblies. Chemical Engineering Journal 2023;452:139323. [DOI: 10.1016/j.cej.2022.139323] [Reference Citation Analysis]
6 Fauzi MB, Lo S, Thambirajoo M, Mazlan Z, Zulkiflee I, Masri S, Mohd Isa IL, Mokhtar SA. Thermoresponsive polymers and polymeric composites. Advances in Biomedical Polymers and Composites 2023. [DOI: 10.1016/b978-0-323-88524-9.00007-3] [Reference Citation Analysis]
7 Sun Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev 2023;192:114624. [PMID: 36435229 DOI: 10.1016/j.addr.2022.114624] [Reference Citation Analysis]
8 Wang H, You W, Gao F, Zhang L, Shen A, Wang F, Chen G, Nie X, Xia L, Huang W, Zhang W, Wang L, Hong C, Zhang Z, You Y. Direct cytosolic delivery of DNA by creating fast closable holes in the cell membrane. Chemical Engineering Journal 2023;455:140962. [DOI: 10.1016/j.cej.2022.140962] [Reference Citation Analysis]
9 Ganguly K, Dutta SD, Patel DK, Patil TV, Luthfikasari R, Lim K. Biomolecule-Based Nanorobot for Targeted Delivery of Therapeutics. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine 2023. [DOI: 10.1007/978-3-031-16084-4_3] [Reference Citation Analysis]
10 Wei Y, Li X, Lin J, Zhou Y, Yang J, Hou M, Wu F, Yan J, Ge C, Hu D, Yin L. Oral Delivery of siRNA Using Fluorinated, Small-Sized Nanocapsules toward Anti-Inflammation Treatment. Adv Mater 2022;:e2206821. [PMID: 36574636 DOI: 10.1002/adma.202206821] [Reference Citation Analysis]
11 Kang W, Ma X, Kakarla D, Zhang H, Fang Y, Chen B, Zhu K, Zheng D, Wu Z, Li B, Xue C. Organizing Enzymes on Self-Assembled Protein Cages for Cascade Reactions. Angew Chem Int Ed Engl 2022;:e202214001. [PMID: 36288455 DOI: 10.1002/anie.202214001] [Reference Citation Analysis]
12 Protopapa G, Bono N, Visone R, D'Alessandro F, Rasponi M, Candiani G. A new microfluidic platform for the highly reproducible preparation of non-viral gene delivery complexes. Lab Chip 2022;23:136-45. [PMID: 36477137 DOI: 10.1039/d2lc00744d] [Reference Citation Analysis]
13 Moakes RJA, Grover LM, Robinson TE. Can We Structure Biomaterials to Spray Well Whilst Maintaining Functionality? Bioengineering (Basel) 2022;10. [PMID: 36671575 DOI: 10.3390/bioengineering10010003] [Reference Citation Analysis]
14 Matsumura K, Rajan R, Ahmed S. Bridging polymer chemistry and cryobiology. Polym J 2022. [DOI: 10.1038/s41428-022-00735-8] [Reference Citation Analysis]
15 DeRidder L, Rubinson DA, Langer R, Traverso G. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J Control Release 2022;352:840-60. [PMID: 36334860 DOI: 10.1016/j.jconrel.2022.10.043] [Reference Citation Analysis]
16 Sinclair F, Begum AA, Dai CC, Toth I, Moyle PM. Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing.. [DOI: 10.21203/rs.3.rs-2212281/v1] [Reference Citation Analysis]
17 Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. Journal of Controlled Release 2022;351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Reference Citation Analysis]
18 Chen D, Kong N, Wang H. Leading‐Edge Pulmonary Gene Therapy Approached by Barrier‐Permeable Delivery System: A Concise Review on Peptide System. Advanced NanoBiomed Research 2022. [DOI: 10.1002/anbr.202200113] [Reference Citation Analysis]
19 Kotras C, Leclercq M, Roger M, Bouillon C, Recupido A, Lebrun A, Bessin Y, Gerbier P, Richeter S, Ulrich S, Clément S, Surin M. Fluorescent Dynamic Covalent Polymers for DNA Complexation and Templated Assembly. Molecules 2022;27:6648. [PMID: 36235185 DOI: 10.3390/molecules27196648] [Reference Citation Analysis]
20 Yang H, Han M, Li J, Ke H, Kong Y, Wang W, Wang L, Ma W, Qiu J, Wang X, Xin T, Liu H. Delivery of miRNAs through Metal-Organic Framework Nanoparticles for Assisting Neural Stem Cell Therapy for Ischemic Stroke. ACS Nano 2022;16:14503-16. [PMID: 36065995 DOI: 10.1021/acsnano.2c04886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Hall RN, Weill U, Drees L, Leal-ortiz S, Li H, Khariton M, Chai C, Xue Y, Rosental B, Quake SR, Sánchez Alvarado A, Melosh NA, Fire AZ, Rink JC, Wang B. Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection. Cell Reports Methods 2022. [DOI: 10.1016/j.crmeth.2022.100298] [Reference Citation Analysis]
22 Otoničar J, Hostnik M, Grundner M, Kostanjšek R, Gredar T, Garvas M, Arsov Z, Podlesek Z, Gostinčar C, Jakše J, Busby SJW, Butala M. A method for targeting a specified segment of DNA to a bacterial microorganelle. Nucleic Acids Res 2022:gkac714. [PMID: 36029110 DOI: 10.1093/nar/gkac714] [Reference Citation Analysis]
23 Cheng D, Theivendran S, Tang J, Cai L, Zhang J, Song H, Yu C. Surface chemistry of spiky silica nanoparticles tailors polyethyleneimine binding and intracellular DNA delivery. J Colloid Interface Sci 2022;628:297-305. [PMID: 35998455 DOI: 10.1016/j.jcis.2022.08.038] [Reference Citation Analysis]
24 Abdul Khalil H, Bashir Yahya E, Jummaat F, Adnan A, Olaiya N, Rizal S, Abdullah C, Pasquini D, Thomas S. Biopolymers based Aerogels: A Review on Revolutionary Solutions for Smart Therapeutics Delivery. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101014] [Reference Citation Analysis]
25 Du Y, Wang Q, Shi L, Li T. G-Quadruplex-Proximized Aptamers (G4PA) Efficiently Targeting Cell-Surface Transferrin Receptors for Targeted Cargo Delivery. Nano Lett 2022. [PMID: 35900277 DOI: 10.1021/acs.nanolett.2c02064] [Reference Citation Analysis]
26 Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. Research 2022;2022:1-32. [DOI: 10.34133/2022/9804014] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Ansari MJ, Rajendran RR, Mohanto S, Agarwal U, Panda K, Dhotre K, Manne R, Deepak A, Zafar A, Yasir M, Pramanik S. Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels 2022;8:454. [DOI: 10.3390/gels8070454] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Gupta J, Sharma VK, Srinivasan H, Bhatt H, Kumar S, Sarter M, Sakai VG, Mitra S. Microscopic diffusion in cationic vesicles across different phases. Phys Rev Materials 2022;6. [DOI: 10.1103/physrevmaterials.6.075602] [Reference Citation Analysis]
29 Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. Small 2022;:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Hachim D, Zhao J, Bhankharia J, Nuñez-Toldra R, Brito L, Seong H, Becce M, Ouyang L, Grigsby CL, Higgins SG, Terracciano CM, Stevens MM. Polysaccharide-Polyplex Nanofilm Coatings Enhance Nanoneedle-Based Gene Delivery and Transfection Efficiency. Small 2022;:e2202303. [PMID: 35770803 DOI: 10.1002/smll.202202303] [Reference Citation Analysis]
31 Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS Appl Bio Mater 2022. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Reference Citation Analysis]
32 Costa B, Boueri B, Oliveira C, Silveira I, Ribeiro AJ. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opinion on Drug Delivery. [DOI: 10.1080/17425247.2022.2075846] [Reference Citation Analysis]
33 Liu R, Luo C, Pang Z, Zhang J, Ruan S, Wu M, Wang L, Sun T, Li N, Han L, Shi J, Huang Y, Guo W, Peng S, Zhou W, Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.05.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
34 Li H, Yang Y, Sun T. Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Front Bioeng Biotechnol 2022;10:889291. [DOI: 10.3389/fbioe.2022.889291] [Reference Citation Analysis]
35 Rhym LH, Anderson DG. Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med 2022;3:167-87. [DOI: 10.1016/j.medj.2022.02.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Lv J, Wang H, Rong G, Cheng Y. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides. Acc Chem Res 2022;55:722-33. [PMID: 35175741 DOI: 10.1021/acs.accounts.1c00766] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
37 Moradian H, Gossen M, Lendlein A. Co-delivery of genes can be confounded by bicistronic vector design. MRS Communications. [DOI: 10.1557/s43579-021-00128-7] [Reference Citation Analysis]
38 Han B, Song Y, Park J, Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
40 Chrysostomou V, Forys A, Trzebicka B, Demetzos C, Pispas S. Structure of micelleplexes formed between QPDMAEMA-b-PLMA amphiphilic cationic copolymer micelles and DNA of different lengths. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Gallego I, Montenegro J. Glycan shields for penetrating peptides. Chem Commun (Camb) 2022;58:1394-7. [PMID: 34994362 DOI: 10.1039/d1cc06252b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Abouelmagd SA, Khalil IA, Harashima H. Nucleic Acids for Gene Therapy. The ADME Encyclopedia 2022. [DOI: 10.1007/978-3-030-84860-6_115] [Reference Citation Analysis]
43 Wang L, You Y. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_15] [Reference Citation Analysis]
44 Parhizkar M, Tsaoulidis D. The Outlook for Novel Pharmaceutics. Future of Business and Finance 2022. [DOI: 10.1007/978-3-030-99838-7_16] [Reference Citation Analysis]
45 Madu SJ, Hassan D, Igbokwe N, Orugun OA, Muazu J. Temperature-sensitive polymers for biomaterials for drug delivery, gene delivery, and tissue engineering. Polymeric Biomaterials for Healthcare Applications 2022. [DOI: 10.1016/b978-0-323-85233-3.00011-2] [Reference Citation Analysis]
46 Zhu J, Feng J, Zhang X. Preparation and Evaluation of Virus-Inspired Nanogenes for Host-Specific Transfection. Biomaterial Engineering 2022. [DOI: 10.1007/978-981-16-5419-0_24] [Reference Citation Analysis]
47 Nunes SC, Pais A. DNA adsorption on like-charged surfaces mediated by polycations. Journal of Molecular Liquids 2022;346:117060. [DOI: 10.1016/j.molliq.2021.117060] [Reference Citation Analysis]
48 Saeed MU, Hussain N, Bilal M. Biomaterials in Gene Delivery. Functional Biomaterials 2022. [DOI: 10.1007/978-981-16-7152-4_5] [Reference Citation Analysis]
49 Maiti B, Kumar K, Datta S, Bhattacharya S. Physical-Chemical Characterization of Bilayer Membranes Derived from (±) α-Tocopherol-Based Gemini Lipids and Their Interaction with Phosphatidylcholine Bilayers and Lipoplex Formation with Plasmid DNA. Langmuir 2021. [PMID: 34955028 DOI: 10.1021/acs.langmuir.1c01039] [Reference Citation Analysis]
50 Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. Nanoscale 2021;13:18912-24. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
51 Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
52 Asfiya R, Maiti B, Kamra M, Karande AA, Bhattacharya S. Novel α-tocopherol-ferrocene conjugates for the specific delivery of transgenes in liver cancer cells under high serum conditions. Biomater Sci 2021;9:7636-47. [PMID: 34676384 DOI: 10.1039/d1bm00607j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Ren J, Cao Y, Li L, Wang X, Lu H, Yang J, Wang S. Self-assembled polymeric micelle as a novel mRNA delivery carrier. J Control Release 2021;338:537-47. [PMID: 34481924 DOI: 10.1016/j.jconrel.2021.08.061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
54 Huo S, Kwak M, Qin J, Dittrichn B, Herrmann A. Dynamic DNA-based biomaterials interacting with external, macroscopic, and molecular stimuli. Materials Today 2021;49:378-90. [DOI: 10.1016/j.mattod.2021.04.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
55 Luo T, Nie Y, Lu J, Bi Q, Cai Z, Song X, Ai H, Jin R. Iron doped carbon dots based nanohybrids as a tetramodal imaging agent for gene delivery promotion and photothermal-chemodynamic cancer synergistic theranostics. Materials & Design 2021;208:109878. [DOI: 10.1016/j.matdes.2021.109878] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
56 Lomazzi M, Franceschi V, Bagnacani V, Vezzoni CA, Donofrio G, Casnati A, Sansone F. A Structure‐Activity Investigation on Modified Analogues of an Argininocalixarene Based Non‐viral Gene Vector. Eur J Org Chem 2021;2021:4076-4087. [DOI: 10.1002/ejoc.202100338] [Reference Citation Analysis]
57 Tieu T, Wei Y, Cifuentes‐rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. Adv Therap 2021;4:2100108. [DOI: 10.1002/adtp.202100108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
58 Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y. Lipids and Lipid Derivatives for RNA Delivery. Chem Rev 2021. [PMID: 34279087 DOI: 10.1021/acs.chemrev.1c00244] [Cited by in Crossref: 49] [Cited by in F6Publishing: 57] [Article Influence: 24.5] [Reference Citation Analysis]
59 Pylaev T, Avdeeva E, Khlebtsov N. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition. J Innov Opt Health Sci 2021;14:2130003. [DOI: 10.1142/s1793545821300032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
60 Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N. Nonspecific Binding-Fundamental Concepts and Consequences for Biosensing Applications. Chem Rev 2021;121:8095-160. [PMID: 34105942 DOI: 10.1021/acs.chemrev.1c00044] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
61 Chen X, Xu K, Yu J, Zhao X, Zhang Q, Zhang Y, Cheng Y. Peptide modified polycations with pH triggered lytic activity for efficient gene delivery. Biomater Sci 2020;8:6301-8. [PMID: 33020778 DOI: 10.1039/d0bm01231a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Cheng Y. Design of Polymers for Intracellular Protein and Peptide Delivery. Chin J Chem 2021;39:1443-9. [DOI: 10.1002/cjoc.202000655] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
63 Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B 2021;11:1158-74. [PMID: 34094826 DOI: 10.1016/j.apsb.2021.03.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
64 Bono N, Coloma Smith B, Moreschi F, Redaelli A, Gautieri A, Candiani G. In silico prediction of the in vitro behavior of polymeric gene delivery vectors. Nanoscale 2021;13:8333-42. [PMID: 33900339 DOI: 10.1039/d0nr09052b] [Reference Citation Analysis]
65 Hall RN, Weill U, Drees L, Leal-ortiz S, Li H, Chai C, Alvarado AS, Melosh NA, Fire AZ, Rink JC, Wang B. Heterologous reporter expression in the planarian Schmidtea mediterranea through somatic mRNA transfection.. [DOI: 10.1101/2021.04.20.440701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Akbari V, Rezazadeh M, Hanaie NS, Hasanzadeh F. Preparation and in vitro characterization of histidine trimethyl chitosan conjugated nanocomplex incorporated into injectable thermosensitive hydrogels for localized gene delivery. Biotechnol Appl Biochem 2021. [PMID: 33878804 DOI: 10.1002/bab.2175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Kucharski M, Mrowiec P, Ocłoń E. Current standards and pitfalls associated with the transfection of primary fibroblast cells. Biotechnol Prog 2021;37:e3152. [PMID: 33774920 DOI: 10.1002/btpr.3152] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
68 Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021;171:139-63. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
69 Kim H, Yuk SA, Dieterly AM, Kwon S, Park J, Meng F, Gadalla HH, Cadena MJ, Lyle LT, Yeo Y. Nanosac, a Noncationic and Soft Polyphenol Nanocapsule, Enables Systemic Delivery of siRNA to Solid Tumors. ACS Nano 2021;15:4576-93. [PMID: 33645963 DOI: 10.1021/acsnano.0c08694] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
70 Arulkumaran N, Lanphere C, Gaupp C, Burns JR, Singer M, Howorka S. DNA Nanodevices with Selective Immune Cell Interaction and Function. ACS Nano 2021;15:4394-404. [PMID: 33492943 DOI: 10.1021/acsnano.0c07915] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
71 Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical Self‐assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angew Chem Int Ed 2021;60:5429-35. [DOI: 10.1002/anie.202013904] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 18.0] [Reference Citation Analysis]
72 Liu J, Luo T, Xue Y, Mao L, Stang PJ, Wang M. Hierarchical Self‐assembly of Discrete Metal–Organic Cages into Supramolecular Nanoparticles for Intracellular Protein Delivery. Angew Chem 2021;133:5489-95. [DOI: 10.1002/ange.202013904] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
73 Hu J, Jiang W, Yuan L, Duan C, Yuan Q, Long Z, Lou X, Xia F. Recent advances in stimuli‐responsive theranostic systems with aggregation‐induced emission characteristics. Aggregate 2021;2:48-65. [DOI: 10.1002/agt2.10] [Cited by in Crossref: 44] [Cited by in F6Publishing: 51] [Article Influence: 22.0] [Reference Citation Analysis]
74 Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021;10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
75 Ashfaq M, Ahmad A. Chitosan and its derivatives-based dimensional frameworks as carrier for gene delivery. Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering 2021. [DOI: 10.1016/b978-0-12-821230-1.00014-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Abouelmagd SA, Khalil IA, Harashima H. Nucleic Acids for Gene Therapy. The ADME Encyclopedia 2021. [DOI: 10.1007/978-3-030-51519-5_115-1] [Reference Citation Analysis]
77 Peptanariu D, Abadie MJM, Pinteala M. Non-viral Vectors and Drug Delivery: In Vitro Assessment. New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications 2021. [DOI: 10.1007/978-3-030-57456-7_12] [Reference Citation Analysis]
78 Zhu J, Feng J, Zhang X. Preparation and Evaluation of Virus-Inspired Nanogenes for Host-Specific Transfection. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_24-1] [Reference Citation Analysis]
79 Wang L, You Y. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles. Biomaterial Engineering 2021. [DOI: 10.1007/978-981-33-6198-0_15-1] [Reference Citation Analysis]
80 Lv J, Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem Soc Rev 2021;50:5435-67. [DOI: 10.1039/d0cs00258e] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 31.0] [Reference Citation Analysis]
81 Zhang R, El-mayta R, Murdoch TJ, Warzecha CC, Billingsley MM, Shepherd SJ, Gong N, Wang L, Wilson JM, Lee D, Mitchell MJ. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater Sci 2021;9:1449-63. [DOI: 10.1039/d0bm01609h] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
82 Ram DR, Kroll K, Reeves RK. Skipped Over: Tuning Natural Killer Cells Toward HIV Through Alternative Splicing. AIDS Res Hum Retroviruses 2020;36:969-72. [PMID: 32862656 DOI: 10.1089/AID.2020.0116] [Reference Citation Analysis]
83 Han X, Mitchell MJ, Nie G. Nanomaterials for Therapeutic RNA Delivery. Matter 2020;3:1948-75. [DOI: 10.1016/j.matt.2020.09.020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
84 Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM. Efficient Polymer-Mediated Delivery of Gene-Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning. ACS Nano 2020. [PMID: 33225680 DOI: 10.1021/acsnano.0c08549] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 8.7] [Reference Citation Analysis]
85 Urello M, Hsu WH, Christie RJ. Peptides as a material platform for gene delivery: Emerging concepts and converging technologies. Acta Biomater 2020;117:40-59. [PMID: 32966922 DOI: 10.1016/j.actbio.2020.09.027] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
86 Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020;26:15259-69. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
87 Wang X, Rong G, Yan J, Pan D, Wang L, Xu Y, Yang M, Cheng Y. In Vivo Tracking of Fluorinated Polypeptide Gene Carriers by Positron Emission Tomography Imaging. ACS Appl Mater Interfaces 2020;12:45763-71. [PMID: 32940028 DOI: 10.1021/acsami.0c11967] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
88 Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. International Journal of Polymeric Materials and Polymeric Biomaterials 2022;71:246-65. [DOI: 10.1080/00914037.2020.1825081] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
89 Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. Adv Mater 2020;32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
90 Pereira-silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. European Journal of Pharmaceutical Sciences 2020;153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
91 Maslanka Figueroa S, Fleischmann D, Goepferich A. Biomedical nanoparticle design: What we can learn from viruses. J Control Release 2021;329:552-69. [PMID: 33007365 DOI: 10.1016/j.jconrel.2020.09.045] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
92 Yin D, Wen H, Wu G, Li S, Liu C, Lu H, Liang D. PEGylated gene carriers in serum under shear flow. Soft Matter 2020;16:2301-10. [PMID: 32052004 DOI: 10.1039/c9sm02397f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
93 Ain QU, Campos EVR, Huynh A, Witzigmann D, Hedtrich S. Gene Delivery to the Skin - How Far Have We Come? Trends Biotechnol 2021;39:474-87. [PMID: 32873394 DOI: 10.1016/j.tibtech.2020.07.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
94 Rissanou AN, Ouranidis A, Karatasos K. Complexation of single stranded RNA with an ionizable lipid: an all-atom molecular dynamics simulation study. Soft Matter 2020;16:6993-7005. [PMID: 32667026 DOI: 10.1039/d0sm00736f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
95 Pereira-silva M, Jarak I, Alvarez-lorenzo C, Concheiro A, Santos AC, Veiga F, Figueiras A. Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies. Journal of Controlled Release 2020;323:442-62. [DOI: 10.1016/j.jconrel.2020.04.041] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
96 Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020;21:2966-82. [DOI: 10.1021/acs.biomac.0c00438] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
97 Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med. 2019;60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
98 Wang J, Zhou X, Wang H, Xiao Q, Ding K, Dong X, Xu S, Shen B, Sun J, Zhou Z, Tang J, Liu X, Shen Y. Autophagy-inhibiting polymer as an effective nonviral cancer gene therapy vector with inherent apoptosis-sensitizing ability. Biomaterials 2020;255:120156. [PMID: 32505754 DOI: 10.1016/j.biomaterials.2020.120156] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
99 Leigh T, Fernandez-trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020;4:291-310. [DOI: 10.1038/s41570-020-0180-5] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
100 Méndez‐ardoy A, Bayón‐fernández A, Yu Z, Abell C, Granja JR, Montenegro J. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angew Chem 2020;132:6969-75. [DOI: 10.1002/ange.202000103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
101 Méndez‐ardoy A, Bayón‐fernández A, Yu Z, Abell C, Granja JR, Montenegro J. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angew Chem Int Ed 2020;59:6902-8. [DOI: 10.1002/anie.202000103] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
102 Gonçalves SDÁ, Vieira RP. Current status of ATRP-based materials for gene therapy. Reactive and Functional Polymers 2020;147:104453. [DOI: 10.1016/j.reactfunctpolym.2019.104453] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
103 Zhou J, Shao Z, Liu J, Duan Q, Wang X, Li J, Yang H. From Endocytosis to Nonendocytosis: The Emerging Era of Gene Delivery. ACS Appl Bio Mater 2020;3:2686-701. [DOI: 10.1021/acsabm.9b01131] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
104 Gurnani P, Blakney AK, Yeow J, Bouton CR, Shattock RJ, Stevens MM, Alexander C. An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection. Polym Chem 2020;11:5861-9. [DOI: 10.1039/d0py00912a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
105 Shim G, Kim D, Le Q, Byun J, Park J, Oh Y. Biomaterials for gene editing therapeutics. Biomaterials for Cancer Therapeutics 2020. [DOI: 10.1016/b978-0-08-102983-1.00008-9] [Reference Citation Analysis]
106 Liu L, Ni D, Yan Y, Wu S, Chen X, Guan J, Xiong X, Liu G. Development of a novel DNA delivery system based on rice bran polysaccharide-Fe(III) complexes. International Journal of Biological Macromolecules 2020;142:600-8. [DOI: 10.1016/j.ijbiomac.2019.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
107 Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020;8:9385-403. [DOI: 10.1039/d0tb01836h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
108 Romero-azogil L, Benito JM, Molina Pinilla I, Hakkou K, Bueno Martínez M, Cantón I, López-cornejo P, García-calderón CB, Rosado IV, García-martín M, Benito E. Structure-property relationships of d-mannitol-based cationic poly(amide triazoles) and their self-assembling complexes with DNA. European Polymer Journal 2020;123:109458. [DOI: 10.1016/j.eurpolymj.2019.109458] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
109 Bao X, Zeng J, Huang H, Ma C, Wang L, Wang F, Liao X, Song X. Cancer-targeted PEDF-DNA therapy for metastatic colorectal cancer. Int J Pharm 2020;576:118999. [PMID: 31893541 DOI: 10.1016/j.ijpharm.2019.118999] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
110 Tang Q, Liu J, Jiang Y, Zhang M, Mao L, Wang M. Cell-Selective Messenger RNA Delivery and CRISPR/Cas9 Genome Editing by Modulating the Interface of Phenylboronic Acid-Derived Lipid Nanoparticles and Cellular Surface Sialic Acid. ACS Appl Mater Interfaces 2019;11:46585-90. [PMID: 31763806 DOI: 10.1021/acsami.9b17749] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
111 Ji K, Xiao Y, Zhang W. Acid-activated nonviral peptide vector for gene delivery. J Pept Sci 2020;26:e3230. [PMID: 31696619 DOI: 10.1002/psc.3230] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
112 Shah E, Kadam A, Jubin T, Begum R, Upadhyay P, Soni HP. EDTA‐Capped Iron Oxide Core‐Corona System as Vehicle for Gene Delivery to Transform E.coli : Mimicking the Lipid Bilayer Environment. ChemistrySelect 2019;4:7883-7890. [DOI: 10.1002/slct.201900964] [Reference Citation Analysis]
113 Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering: R: Reports 2019;137:66-105. [DOI: 10.1016/j.mser.2019.01.001] [Cited by in Crossref: 77] [Cited by in F6Publishing: 80] [Article Influence: 19.3] [Reference Citation Analysis]
114 Zink M, Hotzel K, Schubert US, Heinze T, Fischer D. Amino Acid–Substituted Dextran‐Based Non‐Viral Vectors for Gene Delivery. Macromol Biosci 2019;19:1900085. [DOI: 10.1002/mabi.201900085] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
115 Luo T, Liang H, Jin R, Nie Y. Virus-inspired and mimetic designs in non-viral gene delivery. J Gene Med 2019;21:e3090. [PMID: 30968996 DOI: 10.1002/jgm.3090] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
116 Radmanesh F, Abandansari HS, Pahlavan S, Alikhani M, Karimi M, Rajabi S, Kazemi B, Baharvand H. Optimization of miRNA delivery by using a polymeric conjugate based on deoxycholic acid-modified polyethylenimine. International Journal of Pharmaceutics 2019;565:391-408. [DOI: 10.1016/j.ijpharm.2019.05.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
117 Santo D, Mendonça PV, Lima MS, Cordeiro RA, Cabanas L, Serra A, Coelho JFJ, Faneca H. Poly(ethylene glycol)- block-poly(2-aminoethyl methacrylate hydrochloride)-Based Polyplexes as Serum-Tolerant Nanosystems for Enhanced Gene Delivery. Mol Pharm 2019;16:2129-41. [PMID: 30986077 DOI: 10.1021/acs.molpharmaceut.9b00101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
118 Luo J, Höhn M, Reinhard S, Loy DM, Klein PM, Wagner E. IL4‐Receptor‐Targeted Dual Antitumoral Apoptotic Peptide—siRNA Conjugate Lipoplexes. Adv Funct Mater 2019;29:1900697. [DOI: 10.1002/adfm.201900697] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
119 Gallego I, Rioboo A, Reina JJ, Díaz B, Canales Á, Cañada FJ, Guerra‐varela J, Sánchez L, Montenegro J. Glycosylated Cell‐Penetrating Peptides (GCPPs). ChemBioChem 2019;20:1400-9. [DOI: 10.1002/cbic.201800720] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
120 Ulrich S. Growing Prospects of Dynamic Covalent Chemistry in Delivery Applications. Acc Chem Res 2019;52:510-9. [PMID: 30676745 DOI: 10.1021/acs.accounts.8b00591] [Cited by in Crossref: 109] [Cited by in F6Publishing: 115] [Article Influence: 27.3] [Reference Citation Analysis]
121 Madkour LH. DNA complexes as an efficient gene anticancer drug delivery therapy. Nucleic Acids as Gene Anticancer Drug Delivery Therapy 2019. [DOI: 10.1016/b978-0-12-819777-6.00020-2] [Reference Citation Analysis]
122 Steffens L, de Barros Dias MCH, Morás AM, Moura DJ, Nugent M. Natural polysaccharides for the delivery of anticancer therapeutics. Natural Polysaccharides in Drug Delivery and Biomedical Applications 2019. [DOI: 10.1016/b978-0-12-817055-7.00019-4] [Reference Citation Analysis]
123 Khanmohammadi Chenab K, Sohrabi B, Rahmanzadeh A. Superhydrophobicity: advanced biological and biomedical applications. Biomater Sci 2019;7:3110-37. [DOI: 10.1039/c9bm00558g] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 13.5] [Reference Citation Analysis]
124 Carbajo-gordillo AI, Rodríguez-lavado J, Jiménez Blanco JL, Benito JM, Di Giorgio C, Vélaz I, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Trehalose-based Siamese twin amphiphiles with tunable self-assembling, DNA nanocomplexing and gene delivery properties. Chem Commun 2019;55:8227-30. [DOI: 10.1039/c9cc04489b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]