BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Silva-santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 2019;19:392-404. [DOI: 10.1038/s41568-019-0153-5] [Cited by in Crossref: 91] [Cited by in F6Publishing: 81] [Article Influence: 30.3] [Reference Citation Analysis]
Number Citing Articles
1 Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020;298:198-217. [DOI: 10.1111/imr.12916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Barisa M, Fowler D, Fisher J. Interplay between γδT-Cell Metabolism and Tumour Microenvironment Offers Opportunities for Therapeutic Intervention. Immunometabolism 2021;3:210026. [PMID: 34394978 DOI: 10.20900/immunometab20210026] [Reference Citation Analysis]
3 Bank I. The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells 2020;9:E462. [PMID: 32085540 DOI: 10.3390/cells9020462] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
4 Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2020;100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
5 Lawrence M, Wiesheu R, Coffelt SB. The duplexity of unconventional T cells in cancer. Int J Biochem Cell Biol 2022;146:106213. [PMID: 35447350 DOI: 10.1016/j.biocel.2022.106213] [Reference Citation Analysis]
6 Li P, Zhu X, Cao G, Wu R, Li K, Yuan W, Chen B, Sun G, Xia X, Zhang H, Wang X, Yin Z, Lu L, Gao Y. 1α,25(OH)2D3 reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells. J Immunother Cancer 2022;10:e003477. [PMID: 35318258 DOI: 10.1136/jitc-2021-003477] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 McMurray JL, von Borstel A, Taher TE, Syrimi E, Taylor GS, Sharif M, Rossjohn J, Remmerswaal EBM, Bemelman FJ, Vieira Braga FA, Chen X, Teichmann SA, Mohammed F, Berry AA, Lyke KE, Williamson KC, Stubbington MJT, Davey MS, Willcox CR, Willcox BE. Transcriptional profiling of human Vδ1 T cells reveals a pathogen-driven adaptive differentiation program. Cell Rep 2022;39:110858. [PMID: 35613583 DOI: 10.1016/j.celrep.2022.110858] [Reference Citation Analysis]
8 Hu Y, Liu T, Li J, Mai F, Li J, Chen Y, Jing Y, Dong X, Lin L, He J, Xu Y, Shan C, Hao J, Yin Z, Chen T, Wu Y. Selenium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials 2019;222:119397. [PMID: 31442884 DOI: 10.1016/j.biomaterials.2019.119397] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 10.0] [Reference Citation Analysis]
9 Gordino G, Costa-Pereira S, Corredeira P, Alves P, Costa L, Gomes AQ, Silva-Santos B, Ribot JC. MicroRNA-181a restricts human γδ T cell differentiation by targeting Map3k2 and Notch2. EMBO Rep 2021;:e52234. [PMID: 34821000 DOI: 10.15252/embr.202052234] [Reference Citation Analysis]
10 Liu B, He X, Wang Y, Huang J, Zheng Y, Li Y, Lu L. Bibliometric Analysis of γδ T Cells as Immune Regulators in Cancer Prognosis. Front Immunol 2022;13:874640. [DOI: 10.3389/fimmu.2022.874640] [Reference Citation Analysis]
11 Lopes N, Silva-Santos B. Functional and metabolic dichotomy of murine γδ T cell subsets in cancer immunity. Eur J Immunol 2021;51:17-26. [PMID: 33188652 DOI: 10.1002/eji.201948402] [Reference Citation Analysis]
12 Mehellou Y, Willcox BE. A two-pronged attack on antibiotic-resistant microbes. Nature 2021;589:517-8. [PMID: 33432214 DOI: 10.1038/d41586-020-03660-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bhat J, Placek K, Faissner S. Contemplating Dichotomous Nature of Gamma Delta T Cells for Immunotherapy. Front Immunol 2022;13:894580. [DOI: 10.3389/fimmu.2022.894580] [Reference Citation Analysis]
14 Lopes N, McIntyre C, Martin S, Raverdeau M, Sumaria N, Kohlgruber AC, Fiala GJ, Agudelo LZ, Dyck L, Kane H, Douglas A, Cunningham S, Prendeville H, Loftus R, Carmody C, Pierre P, Kellis M, Brenner M, Argüello RJ, Silva-Santos B, Pennington DJ, Lynch L. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat Immunol 2021;22:179-92. [PMID: 33462452 DOI: 10.1038/s41590-020-00848-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
15 Yu L, Zhang Y, Xiong J, Liu J, Zha Y, Kang Q, Zhi P, Wang Q, Wang H, Zeng W, Huang Y. Activated γδ T Cells With Higher CD107a Expression and Inflammatory Potential During Early Pregnancy in Patients With Recurrent Spontaneous Abortion. Front Immunol 2021;12:724662. [PMID: 34484234 DOI: 10.3389/fimmu.2021.724662] [Reference Citation Analysis]
16 Ding H, Fan GL, Yi YX, Zhang W, Xiong XX, Mahgoub OK. Prognostic Implications of Immune-Related Genes' (IRGs) Signature Models in Cervical Cancer and Endometrial Cancer. Front Genet 2020;11:725. [PMID: 32793281 DOI: 10.3389/fgene.2020.00725] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Liao R, Ma QZ, Zhou CY, Li JJ, Weng NN, Yang Y, Zhu Q. Identification of biomarkers related to Tumor-Infiltrating Lymphocytes (TILs) infiltration with gene co-expression network in colorectal cancer. Bioengineered 2021;12:1676-88. [PMID: 33960283 DOI: 10.1080/21655979.2021.1921551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Xu Q, Chen S, Hu Y, Huang W. Landscape of Immune Microenvironment Under Immune Cell Infiltration Pattern in Breast Cancer. Front Immunol 2021;12:711433. [PMID: 34512634 DOI: 10.3389/fimmu.2021.711433] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kaminski H, Couzi L, Eberl M. Unconventional T cells and kidney disease. Nat Rev Nephrol 2021. [PMID: 34446934 DOI: 10.1038/s41581-021-00466-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kang K, Zhou Q, McGinn L, Nguyen T, Luo Y, Djalilian A, Rosenblatt M. High fat diet induced gut dysbiosis alters corneal epithelial injury response in mice. Ocul Surf 2021;23:49-59. [PMID: 34808360 DOI: 10.1016/j.jtos.2021.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Soloff AC, Jones KE, Powers AA, Murthy P, Wang Y, Russell KL, Byrne-Steele M, Lund AW, Yuan JM, Monaco SE, Han J, Dhupar R, Lotze MT. HMGB1 Promotes Myeloid Egress and Limits Lymphatic Clearance of Malignant Pleural Effusions. Front Immunol 2020;11:2027. [PMID: 33013860 DOI: 10.3389/fimmu.2020.02027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021;12:592031. [PMID: 34335558 DOI: 10.3389/fimmu.2021.592031] [Reference Citation Analysis]
23 Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021;13:6212. [PMID: 34944832 DOI: 10.3390/cancers13246212] [Reference Citation Analysis]
24 Ma L, Phalke S, Stévigny C, Souard F, Vermijlen D. Mistletoe-Extract Drugs Stimulate Anti-Cancer Vγ9Vδ2 T Cells. Cells 2020;9:E1560. [PMID: 32604868 DOI: 10.3390/cells9061560] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021;131:143759. [PMID: 33720040 DOI: 10.1172/JCI143759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kurebayashi Y, Kubota N, Sakamoto M. Immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma: Relationship with histopathological and molecular classifications. Hepatol Res 2021;51:5-18. [DOI: 10.1111/hepr.13539] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
27 Weng RR, Lu HH, Lin CT, Fan CC, Lin RS, Huang TC, Lin SY, Huang YJ, Juan YH, Wu YC, Hung ZC, Liu C, Lin XH, Hsieh WC, Chiu TY, Liao JC, Chiu YL, Chen SY, Yu CJ, Tsai HC. Epigenetic modulation of immune synaptic-cytoskeletal networks potentiates γδ T cell-mediated cytotoxicity in lung cancer. Nat Commun 2021;12:2163. [PMID: 33846331 DOI: 10.1038/s41467-021-22433-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Deng J, Yin H. Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go? European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.174803] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Cai Q, Zhu M, Duan J, Wang H, Chen J, Xiao Y, Wang Y, Wang J, Yu X, Yang H. Comprehensive Analysis of Immune-Related Prognosis of TK1 in Hepatocellular Carcinoma. Front Oncol 2022;11:786873. [DOI: 10.3389/fonc.2021.786873] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Coffelt SB, Kabelitz D, Silva-Santos B, Kuball J, Born W, Bank I. Editorial: γδ T Cells in Cancer. Front Immunol 2020;11:602411. [PMID: 33329597 DOI: 10.3389/fimmu.2020.602411] [Reference Citation Analysis]
31 Gammon ST, Liu TW, Piwnica-Worms D. Interrogating Cellular Communication in Cancer with Genetically Encoded Imaging Reporters. Radiol Imaging Cancer 2020;2:e190053. [PMID: 32803164 DOI: 10.1148/rycan.2020190053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Tan L, Inácio D, Prinz I, Silva-santos B. New insights on murine γδ T cells from single-cell multi-omics. Science Bulletin 2022. [DOI: 10.1016/j.scib.2022.03.008] [Reference Citation Analysis]
33 Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021;13:2372. [PMID: 34960641 DOI: 10.3390/v13122372] [Reference Citation Analysis]
34 Parascandolo A, Bonavita R, Astaburuaga R, Sciuto A, Reggio S, Barra E, Corcione F, Salvatore M, Mazzoccoli G, Relógio A, Laukkanen MO. Effect of naive and cancer-educated fibroblasts on colon cancer cell circadian growth rhythm. Cell Death Dis 2020;11:289. [PMID: 32341349 DOI: 10.1038/s41419-020-2468-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Yang R, He Q, Zhou H, Gong C, Wang X, Song X, Luo F, Lei Y, Ni Q, Wang Z, Xu S, Xue Y, Zhang M, Wen H, Fang L, Zeng L, Yan Y, Shi J, Zhang J, Yi J, Zhou P. Vγ2 x PD-L1, a Bispecific Antibody Targeting Both the Vγ2 TCR and PD-L1, Improves the Anti-Tumor Response of Vγ2Vδ2 T Cell. Front Immunol 2022;13:923969. [DOI: 10.3389/fimmu.2022.923969] [Reference Citation Analysis]
36 Liu Y, Zhang C. The Role of Human γδ T Cells in Anti-Tumor Immunity and Their Potential for Cancer Immunotherapy. Cells 2020;9:E1206. [PMID: 32413966 DOI: 10.3390/cells9051206] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
37 Xie H, Xie S, Wang M, Wei H, Huang H, Xie A, Li J, Fang C, Shi F, Yang Q, Qi Y, Yin Z, Wang X, Huang J. Properties and Roles of γδT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Front Cell Infect Microbiol 2022;11:788546. [DOI: 10.3389/fcimb.2021.788546] [Reference Citation Analysis]
38 Liu M, Liu Z, Chen Y, Peng S, Yang J, Chen C, Wang J, Shang R, Tang Y, Huang Y, Zhang X, Hu X, Liou YC, Luo G, He W. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res Ther 2022;13:121. [PMID: 35313958 DOI: 10.1186/s13287-022-02783-6] [Reference Citation Analysis]
39 Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021;53:318-27. [PMID: 33707742 DOI: 10.1038/s12276-021-00576-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Chen W, Liang W, He Y, Liu C, Chen H, Lv P, Yao Y, Zhou H. Immune microenvironment-related gene mapping predicts immunochemotherapy response and prognosis in diffuse large B-cell lymphoma. Med Oncol 2022;39:44. [PMID: 35092504 DOI: 10.1007/s12032-021-01642-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Gao Y, You M, Yang P. Revisit the signatures of γδ T cells in hepatocellular carcinoma. Clin Transl Med 2022;12:e859. [PMID: 35538898 DOI: 10.1002/ctm2.859] [Reference Citation Analysis]
42 Hu J, Mao F, Li L, Wang X, Cai D, He L, Wu Q, Wang C, Zhang N, Ma Y, Wu X, Qu K, Wang X. Analysis of the Heterogeneity of the Tumor Microenvironment and the Prognosis and Immunotherapy Response of Different Immune Subtypes in Hepatocellular Carcinoma. J Oncol 2022;2022:1087399. [PMID: 35401750 DOI: 10.1155/2022/1087399] [Reference Citation Analysis]
43 Serrano R, Lettau M, Zarobkiewicz M, Wesch D, Peters C, Kabelitz D. Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. OncoImmunology 2022;11:2030021. [DOI: 10.1080/2162402x.2022.2030021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Xu Q, Taher TE, Ashby E, Sharif M, Willcox BE, Mehellou Y. Generation of Stable Isopentenyl Monophosphate Aryloxy Triester Phosphoramidates as Activators of Vγ9Vδ2 T Cells. ChemMedChem 2021;16:2375-80. [PMID: 33899332 DOI: 10.1002/cmdc.202100198] [Reference Citation Analysis]
45 Girard P, Sosa Cuevas E, Ponsard B, Mouret S, Gil H, Col E, De Fraipont F, Sturm N, Charles J, Manches O, Chaperot L, Aspord C. Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδ T cells in melanoma patients, which impacts clinical outcomes. Clin Transl Immunology 2021;10:e1329. [PMID: 34786191 DOI: 10.1002/cti2.1329] [Reference Citation Analysis]
46 Ou L, Wang H, Liu Q, Zhang J, Lu H, Luo L, Shi C, Lin S, Dong L, Guo Y, Huang L, Zhu J, Yin X, Huang AC, Karakousis G, Schuchter L, Amaravadi R, Zheng C, Fan Y, Guo W, Xu X. Dichotomous and stable gamma delta T-cell number and function in healthy individuals. J Immunother Cancer 2021;9:e002274. [PMID: 34011536 DOI: 10.1136/jitc-2020-002274] [Reference Citation Analysis]
47 Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M. Characterization of ascites- and tumor-infiltrating γδ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci Transl Med 2021;13:eabb0192. [PMID: 33472952 DOI: 10.1126/scitranslmed.abb0192] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
48 Bernicke B, Engelbogen N, Klein K, Franzenburg J, Borzikowsky C, Peters C, Janssen O, Junker R, Serrano R, Kabelitz D. Analysis of the Seasonal Fluctuation of γδ T Cells and Its Potential Relation with Vitamin D3. Cells 2022;11:1460. [DOI: 10.3390/cells11091460] [Reference Citation Analysis]
49 Serrano R, Coch C, Peters C, Hartmann G, Wesch D, Kabelitz D. Monocyte-dependent co-stimulation of cytokine induction in human γδ T cells by TLR8 RNA ligands. Sci Rep 2021;11:15231. [PMID: 34315922 DOI: 10.1038/s41598-021-94428-6] [Reference Citation Analysis]
50 Zhang M, Lu X, Wei C, Li X. Association between αβ and γδ T-cell subsets and clinicopathological characteristics in patients with breast cancer. Oncol Lett 2020;20:325. [PMID: 33123241 DOI: 10.3892/ol.2020.12188] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Tian G, Guan J, Chu Y, Zhao Q, Jiang T. Immunomodulatory Effect of Irreversible Electroporation Alone and Its Cooperating With Immunotherapy in Pancreatic Cancer. Front Oncol 2021;11:712042. [PMID: 34568040 DOI: 10.3389/fonc.2021.712042] [Reference Citation Analysis]
52 Serrano R, Wesch D, Kabelitz D. Activation of Human γδ T Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells 2020;9:E713. [PMID: 32183240 DOI: 10.3390/cells9030713] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
53 Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022. [PMID: 35435599 DOI: 10.1007/s10555-022-10031-9] [Reference Citation Analysis]
54 van de Donk PP, Kist de Ruijter L, Lub-de Hooge MN, Brouwers AH, van der Wekken AJ, Oosting SF, Fehrmann RS, de Groot DJA, de Vries EG. Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics 2020;10:1708-18. [PMID: 32042331 DOI: 10.7150/thno.38339] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 17.0] [Reference Citation Analysis]
55 Garnier J, Turrini O, Chretien AS, Olive D. Local Ablative Therapy Associated with Immunotherapy in Locally Advanced Pancreatic Cancer: A Solution to Overcome the Double Trouble?-A Comprehensive Review. J Clin Med 2022;11:1948. [PMID: 35407555 DOI: 10.3390/jcm11071948] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Zhang B, Li H, Liu W, Tian H, Li L, Gao C, Zheng J. Adoptive cell therapy of patient-derived renal cell carcinoma xenograft model with IL-15-induced γδT cells. Med Oncol 2021;38:30. [PMID: 33598783 DOI: 10.1007/s12032-021-01474-1] [Reference Citation Analysis]
57 Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y, Tu W. CD137 Costimulation Enhances the Antitumor Activity of Vγ9Vδ2-T Cells in IL-10-Mediated Immunosuppressive Tumor Microenvironment. Front Immunol 2022;13:872122. [DOI: 10.3389/fimmu.2022.872122] [Reference Citation Analysis]
58 Hu Y, Fang K, Wang Y, Lu N, Sun H, Zhang C. Single-cell analysis reveals the origins and intrahepatic development of liver-resident IFN-γ-producing γδ T cells. Cell Mol Immunol 2021;18:954-68. [PMID: 33692482 DOI: 10.1038/s41423-021-00656-1] [Reference Citation Analysis]
59 Qin VM, D'Souza C, Neeson PJ, Zhu JJ. Chimeric Antigen Receptor beyond CAR-T Cells. Cancers (Basel) 2021;13:404. [PMID: 33499101 DOI: 10.3390/cancers13030404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020;9:E2044. [PMID: 32906785 DOI: 10.3390/cells9092044] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
61 Rafia C, Harly C, Scotet E. Beyond CAR T cells: Engineered Vγ9Vδ2 T cells to fight solid tumors. Immunol Rev 2020;298:117-33. [DOI: 10.1111/imr.12920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Lu H, Dai W, Guo J, Wang D, Wen S, Yang L, Lin D, Xie W, Wen L, Fang J, Wang Z. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Front Immunol 2020;11:573920. [PMID: 33101298 DOI: 10.3389/fimmu.2020.573920] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 McGraw JM, Thelen F, Hampton EN, Bruno NE, Young TS, Havran WL, Witherden DA. JAML promotes CD8 and γδ T cell antitumor immunity and is a novel target for cancer immunotherapy. J Exp Med 2021;218:e20202644. [PMID: 34427588 DOI: 10.1084/jem.20202644] [Reference Citation Analysis]
64 Li XH, Lu MY, Li YJ, Liu ZH, Yin ZN, Liu B, Wu YZ. Circulating PD1+Vδ1+γδ T Cell Predicts Fertility in Endometrial Polyp Patients of Reproductive-Age. Front Immunol 2021;12:639221. [PMID: 34211457 DOI: 10.3389/fimmu.2021.639221] [Reference Citation Analysis]
65 Karunakaran MM, Willcox CR, Salim M, Paletta D, Fichtner AS, Noll A, Starick L, Nöhren A, Begley CR, Berwick KA, Chaleil RAG, Pitard V, Déchanet-Merville J, Bates PA, Kimmel B, Knowles TJ, Kunzmann V, Walter L, Jeeves M, Mohammed F, Willcox BE, Herrmann T. Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vγ9Vδ2 TCR and Is Essential for Phosphoantigen Sensing. Immunity 2020;52:487-498.e6. [PMID: 32155411 DOI: 10.1016/j.immuni.2020.02.014] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 34.0] [Reference Citation Analysis]
66 Harly C, Joyce SP, Domblides C, Bachelet T, Pitard V, Mannat C, Pappalardo A, Couzi L, Netzer S, Massara L, Obre E, Hawchar O, Lartigue L, Claverol S, Cano C, Moreau JF, Mahouche I, Soubeyran I, Rossignol R, Viollet B, Willcox CR, Mohammed F, Willcox BE, Faustin B, Déchanet-Merville J. Human γδ T cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. Sci Immunol 2021;6:eaba9010. [PMID: 34330813 DOI: 10.1126/sciimmunol.aba9010] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
67 Zhang H, Zhao H, Huang Y, Sun G, Zhang Y. Microenvironment-activatable cascaded responsive carbonized polymer dots as a theranostic platform for precise rapamycin delivery to potentiate the synergy of chemotherapy and γδ T cells-mediated immunotherapy against tumor. Applied Materials Today 2022;26:101364. [DOI: 10.1016/j.apmt.2022.101364] [Reference Citation Analysis]
68 Fiala GJ, Gomes AQ, Silva-Santos B. From thymus to periphery: Molecular basis of effector γδ-T cell differentiation. Immunol Rev 2020;298:47-60. [PMID: 33191519 DOI: 10.1111/imr.12918] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
69 Majeed M, Hakeem KR, Rehman RU. Mistletoe lectins: From interconnecting proteins to potential tumour inhibiting agents. Phytomedicine Plus 2021;1:100039. [DOI: 10.1016/j.phyplu.2021.100039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
70 Contreras AV, Wiest DL. Recent advances in understanding the development and function of γδ T cells. F1000Res 2020;9:F1000 Faculty Rev-306. [PMID: 32399190 DOI: 10.12688/f1000research.22161.1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Feng R, Chen Y, Liu Y, Zhou Q, Zhang W. The role of B7-H3 in tumors and its potential in clinical application. Int Immunopharmacol 2021;101:108153. [PMID: 34678689 DOI: 10.1016/j.intimp.2021.108153] [Reference Citation Analysis]
72 Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, Zhi H, Wong WH, Wei H, Ng IO, Lee PP, Chan GC, Lau YL, Tu W. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med 2020;12:eaaz3426. [PMID: 32998970 DOI: 10.1126/scitranslmed.aaz3426] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
73 Raffray L, Burton RJ, Baker SE, Morgan MP, Eberl M. Zoledronate rescues immunosuppressed monocytes in sepsis patients. Immunology 2020;159:88-95. [PMID: 31606902 DOI: 10.1111/imm.13132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Hovav AH, Wilharm A, Barel O, Prinz I. Development and Function of γδT Cells in the Oral Mucosa. J Dent Res 2020;99:498-505. [PMID: 32091949 DOI: 10.1177/0022034520908839] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
75 Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022;13:889051. [PMID: 35603176 DOI: 10.3389/fimmu.2022.889051] [Reference Citation Analysis]
76 Zhang H, Zhu T, Fu R, Peng Y, Jing P, Xu W, Wang H, Li S, Shu Z, Yin Y, Zhang X. Combination of Detoxified Pneumolysin Derivative ΔA146Ply and Berbamine as a Treatment Approach for Breast Cancer. Mol Ther Oncolytics 2020;18:247-61. [PMID: 32728613 DOI: 10.1016/j.omto.2020.06.015] [Reference Citation Analysis]
77 Papotto PH, Yilmaz B, Silva-Santos B. Crosstalk between γδ T cells and the microbiota. Nat Microbiol 2021;6:1110-7. [PMID: 34341528 DOI: 10.1038/s41564-021-00948-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Cimini E, Agrati C. γδ T Cells in Emerging Viral Infection: An Overview. Viruses 2022;14:1166. [PMID: 35746638 DOI: 10.3390/v14061166] [Reference Citation Analysis]
79 Huang X, Wang C, Wang N. Vγ9Vδ2 T cells strengthen cisplatin inhibition activity against breast cancer MDA-MB-231 cells by disrupting mitochondrial function and cell ultrastructure. Cancer Cell Int 2021;21:113. [PMID: 33593340 DOI: 10.1186/s12935-021-01815-0] [Reference Citation Analysis]
80 Roels J, Kuchmiy A, De Decker M, Strubbe S, Lavaert M, Liang KL, Leclercq G, Vandekerckhove B, Van Nieuwerburgh F, Van Vlierberghe P, Taghon T. Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδ T cell development. Nat Immunol 2020;21:1280-92. [PMID: 32719521 DOI: 10.1038/s41590-020-0747-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
81 Yang R, Shen S, Gong C, Wang X, Luo F, Luo F, Lei Y, Wang Z, Xu S, Ni Q, Xue Y, Fu Z, Zeng L, Fang L, Yan Y, Zhang J, Gan L, Yi J, Zhou P. Bispecific Antibody PD-L1 x CD3 Boosts the Anti-Tumor Potency of the Expanded Vγ2Vδ2 T Cells. Front Immunol 2021;12:654080. [PMID: 34040604 DOI: 10.3389/fimmu.2021.654080] [Reference Citation Analysis]
82 Casey DL, Cheung NV. Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunol Res 2020;8:161-6. [PMID: 32015013 DOI: 10.1158/2326-6066.CIR-19-0692] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
83 Kurebayashi Y, Choyke PL, Sato N. Imaging of cell-based therapy using 89Zr-oxine ex vivo cell labeling for positron emission tomography. Nanotheranostics 2021;5:27-35. [PMID: 33391973 DOI: 10.7150/ntno.51391] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
84 Zhu YG, Xiao BF, Zhang JT, Cui XR, Lu ZM, Wu N. Genetically Modified T Cells for Esophageal Cancer Therapy: A Promising Clinical Application. Front Oncol 2021;11:763806. [PMID: 34858843 DOI: 10.3389/fonc.2021.763806] [Reference Citation Analysis]
85 Hu Y, Chen D, Hong M, Liu J, Li Y, Hao J, Lu L, Yin Z, Wu Y. Apoptosis, Pyroptosis, and Ferroptosis Conspiringly Induce Immunosuppressive Hepatocellular Carcinoma Microenvironment and γδ T-Cell Imbalance. Front Immunol 2022;13:845974. [PMID: 35444645 DOI: 10.3389/fimmu.2022.845974] [Reference Citation Analysis]
86 Willcox BE, Mohammed F, Willcox CR. γδ TCR Recognition of MR1: Adapting to Life on the Flip Side. Trends Biochem Sci 2020;45:551-3. [PMID: 32299647 DOI: 10.1016/j.tibs.2020.03.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
87 Song YJ, Xu Y, Zhu X, Fu J, Deng C, Chen H, Xu H, Song G, Lu J, Tang Q, Wang J. Immune Landscape of the Tumor Microenvironment Identifies Prognostic Gene Signature CD4/CD68/CSF1R in Osteosarcoma. Front Oncol 2020;10:1198. [PMID: 32850346 DOI: 10.3389/fonc.2020.01198] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
88 Gaballa A, Alagrafi F, Uhlin M, Stikvoort A. Revisiting the Role of γδ T Cells in Anti-CMV Immune Response after Transplantation. Viruses 2021;13:1031. [PMID: 34072610 DOI: 10.3390/v13061031] [Reference Citation Analysis]
89 Zhang Z, Yang C, Li L, Zhu Y, Su K, Zhai L, Wang Z, Huang J. "γδT Cell-IL17A-Neutrophil" Axis Drives Immunosuppression and Confers Breast Cancer Resistance to High-Dose Anti-VEGFR2 Therapy. Front Immunol 2021;12:699478. [PMID: 34721375 DOI: 10.3389/fimmu.2021.699478] [Reference Citation Analysis]
90 Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, Yang J, Hu Y, Chen Y, Lin L, Hao J, Li J, Chen J, Li M, Wu Q, Peters C, Zhou Q, Li J, Liang Y, Wang X, Han B, Ma M, Kabelitz D, Xu K, Tu W, Wu Y, Yin Z. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol 2021;18:427-39. [PMID: 32939032 DOI: 10.1038/s41423-020-0515-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
91 Mann BT, Sambrano E 3rd, Maggirwar SB, Soriano-Sarabia N. Boosting the Immune System for HIV Cure: A γδ T Cell Perspective. Front Cell Infect Microbiol 2020;10:221. [PMID: 32509594 DOI: 10.3389/fcimb.2020.00221] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Liu J, Gao H, Xu LP, Mo XD, Liu R, Liang S, Wu N, Wang M, Wang Z, Chang YJ, Wang Y, Zhang XH, Huang XJ. Immunosuppressant indulges EBV reactivation and related lymphoproliferative disease by inhibiting Vδ2+ T cells activities after hematopoietic transplantation for blood malignancies. J Immunother Cancer 2020;8:e000208. [PMID: 32221014 DOI: 10.1136/jitc-2019-000208] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
93 Sato Y, Mori K, Hirano K, Yagi K, Kobayashi Y, Nagaoka K, Hosoi A, Matsushita H, Kakimi K, Seto Y. Adoptive γδT-cell transfer alone or combined with chemotherapy for the treatment of advanced esophageal cancer. Cytotherapy 2021;23:423-32. [PMID: 33781711 DOI: 10.1016/j.jcyt.2021.02.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
94 Wang Y, Yin C, Geng L, Cai W. Immune Infiltration Landscape in Clear Cell Renal Cell Carcinoma Implications. Front Oncol 2020;10:491621. [PMID: 33665156 DOI: 10.3389/fonc.2020.491621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
95 Ma Y, Ou J, Lin T, Chen L, Chen J, Wang M. Next Generation Sequencing-Based Identification of T-Cell Receptors for Immunotherapy Against Hepatocellular Carcinoma. Hepatol Commun 2021;5:1106-19. [PMID: 34141993 DOI: 10.1002/hep4.1697] [Reference Citation Analysis]
96 Vacchini A, Chancellor A, Spagnuolo J, Mori L, De Libero G. MR1-Restricted T Cells Are Unprecedented Cancer Fighters. Front Immunol 2020;11:751. [PMID: 32411144 DOI: 10.3389/fimmu.2020.00751] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
97 Sun W, Yang H, Chen X, Yang X, Zhang Y, Ma C. Identification of the function of γδ1 T cells in the lung cancer microenvironments. Clin Transl Oncol 2022;24:1365-71. [PMID: 35091999 DOI: 10.1007/s12094-022-02780-4] [Reference Citation Analysis]
98 Xiao H, Chen Y, Alnaggar M. Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron 2019;126:102750. [PMID: 31522088 DOI: 10.1016/j.micron.2019.102750] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
99 Summers C, Sheth VS, Bleakley M. Minor Histocompatibility Antigen-Specific T Cells. Front Pediatr 2020;8:284. [PMID: 32582592 DOI: 10.3389/fped.2020.00284] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Biernacki MA, Sheth VS, Bleakley M. T cell optimization for graft-versus-leukemia responses. JCI Insight 2020;5:134939. [PMID: 32376800 DOI: 10.1172/jci.insight.134939] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
101 Moreno-Lama L, Galindo-Campos MA, Martínez C, Comerma L, Vazquez I, Vernet-Tomas M, Ampurdanés C, Lutfi N, Martin-Caballero J, Dantzer F, Quintela-Fandino M, Ali SO, Jimeno J, Yélamos J. Coordinated signals from PARP-1 and PARP-2 are required to establish a proper T cell immune response to breast tumors in mice. Oncogene 2020;39:2835-43. [PMID: 32001817 DOI: 10.1038/s41388-020-1175-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
102 Edwards SC, Hoevenaar WHM, Coffelt SB. Emerging immunotherapies for metastasis. Br J Cancer 2021;124:37-48. [PMID: 33262520 DOI: 10.1038/s41416-020-01160-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
103 Borroto A, Alarcón B, Navarro MN. Mutation of the Polyproline Sequence in CD3ε Evidences TCR Signaling Requirements for Differentiation and Function of Pro-Inflammatory Tγδ17 Cells. Front Immunol 2022;13:799919. [PMID: 35432331 DOI: 10.3389/fimmu.2022.799919] [Reference Citation Analysis]
104 Ruan S, Greenberg Z, Pan X, Zhuang P, Erwin N, He M. Extracellular Vesicles as an Advanced Delivery Biomaterial for Precision Cancer Immunotherapy. Adv Healthc Mater 2022;11:e2100650. [PMID: 34197051 DOI: 10.1002/adhm.202100650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
105 Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022:S1044-579X(22)00083-9. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Reference Citation Analysis]
106 Li P, Wu R, Li K, Yuan W, Zeng C, Zhang Y, Wang X, Zhu X, Zhou J, Li P, Gao Y. IDO Inhibition Facilitates Antitumor Immunity of Vγ9Vδ2 T Cells in Triple-Negative Breast Cancer. Front Oncol 2021;11:679517. [PMID: 34381711 DOI: 10.3389/fonc.2021.679517] [Reference Citation Analysis]
107 Liu L, Chen X, Lu Y, Sun X, Ze K, Zhou Y, Li W, Li X, Li H, Li B. Celastrol gel ameliorates imiquimod-induced psoriasis-like dermatitis in mice by targeting Langerhans cells. Biomedicine & Pharmacotherapy 2022;147:112644. [DOI: 10.1016/j.biopha.2022.112644] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Vanhaverbeke C, Touboul D, Elie N, Prévost M, Meunier C, Michelland S, Cunin V, Ma L, Vermijlen D, Delporte C, Pochet S, Le Gouellec A, Sève M, Van Antwerpen P, Souard F. Untargeted metabolomics approach to discriminate mistletoe commercial products. Sci Rep 2021;11:14205. [PMID: 34244531 DOI: 10.1038/s41598-021-93255-z] [Reference Citation Analysis]
109 Girard P, Ponsard B, Charles J, Chaperot L, Aspord C. Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints. Front Immunol 2020;11:861. [PMID: 32435249 DOI: 10.3389/fimmu.2020.00861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
110 Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021;70:1797-809. [PMID: 33386466 DOI: 10.1007/s00262-020-02805-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Barros MS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021;12:729085. [PMID: 34630403 DOI: 10.3389/fimmu.2021.729085] [Reference Citation Analysis]
112 Lee D, Rosenthal CJ, Penn NE, Dunn ZS, Zhou Y, Yang L. Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022;14:3005. [PMID: 35740670 DOI: 10.3390/cancers14123005] [Reference Citation Analysis]
113 Stocker N, Gaugler B, Labopin M, Farge A, Ye Y, Ricard L, Brissot E, Duléry R, Sestili S, Battipaglia G, Médiavilla C, Paviglianiti A, Banet A, Van De Wyngaert Z, Ledraa T, Mohty M, Malard F. High-dose post-transplant cyclophosphamide impairs γδ T-cell reconstitution after haploidentical haematopoietic stem cell transplantation using low-dose antithymocyte globulin and peripheral blood stem cell graft. Clin Transl Immunology 2020;9:e1171. [PMID: 33005413 DOI: 10.1002/cti2.1171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Juno JA, Kent SJ. What Can Gamma Delta T Cells Contribute to an HIV Cure? Front Cell Infect Microbiol 2020;10:233. [PMID: 32509601 DOI: 10.3389/fcimb.2020.00233] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
115 Bu Y, Li WS, Lin J, Wei YW, Sun QY, Zhu SJ, Tang ZS. Electroacupuncture Attenuates Immune-Inflammatory Response in Hippocampus of Rats with Vascular Dementia by Inhibiting TLR4/MyD88 Signaling Pathway. Chin J Integr Med 2021. [PMID: 34913150 DOI: 10.1007/s11655-021-3350-5] [Reference Citation Analysis]
116 Han B, Song Y, Park J, Doh J. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.049] [Reference Citation Analysis]
117 Lin M, Zhang X, Liang S, Luo H, Alnaggar M, Liu A, Yin Z, Chen J, Niu L, Jiang Y. Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduct Target Ther 2020;5:215. [PMID: 33093457 DOI: 10.1038/s41392-020-00260-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
118 Beucke N, Wingerter S, Hähnel K, Larsen LA, Christensen K, Pawelec G, Wistuba-Hamprecht K. Genetic Influence on the Peripheral Differentiation Signature of Vδ2+ γδ and CD4+ αβ T Cells in Adults. Cells 2021;10:373. [PMID: 33670279 DOI: 10.3390/cells10020373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Gao H, Liu R, Wu N, Mo XD, Han W, Huang X, Huang XJ, Liu J. Valproic acid enhances pamidronate-sensitized cytotoxicity of Vδ2+ T cells against EBV-related lymphoproliferative cells. Int Immunopharmacol 2020;88:106890. [PMID: 32818705 DOI: 10.1016/j.intimp.2020.106890] [Reference Citation Analysis]
120 Li Y, Li G, Zhang J, Wu X, Chen X. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Front Immunol 2020;11:619954. [PMID: 33664732 DOI: 10.3389/fimmu.2020.619954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
121 Papadopoulou M, Sanchez Sanchez G, Vermijlen D. Innate and adaptive γδ T cells: How, when, and why. Immunol Rev 2020;298:99-116. [PMID: 33146423 DOI: 10.1111/imr.12926] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]