BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng 2017;1:0008. [PMID: 28649464 DOI: 10.1038/s41551-016-0008] [Cited by in Crossref: 359] [Cited by in F6Publishing: 376] [Article Influence: 59.8] [Reference Citation Analysis]
Number Citing Articles
1 Shang H, Wu J, Liu X, Tong Y, He Y, Huang Q, Xia D, Peng E, Chen Z, Tang K. Second near-infrared nanomaterials for cancer photothermal immunotherapy. Materials Today Advances 2023;17:100339. [DOI: 10.1016/j.mtadv.2022.100339] [Reference Citation Analysis]
2 Kim H, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. Biophysics Rev 2023;4:011304. [DOI: 10.1063/5.0102811] [Reference Citation Analysis]
3 Gulfam M, Jo SH, Vu TT, Ali I, Rizwan A, Joo SB, Park SH, Lim KT. NIR-degradable and biocompatible hydrogels derived from hyaluronic acid and coumarin for drug delivery and bio-imaging. Carbohydr Polym 2023;303:120457. [PMID: 36657844 DOI: 10.1016/j.carbpol.2022.120457] [Reference Citation Analysis]
4 Mao Z, Kim JH, Lee J, Xiong H, Zhang F, Kim JS. Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews 2023;476:214908. [DOI: 10.1016/j.ccr.2022.214908] [Reference Citation Analysis]
5 Zhao Z, Rose A, Kwon SJ, Jeon Y, Cho ES. Rapid photonic curing effects of xenon flash lamp on ITO-Ag-ITO multilayer electrodes for high throughput transparent electronics. Sci Rep 2023;13:1042. [PMID: 36658174 DOI: 10.1038/s41598-023-27942-4] [Reference Citation Analysis]
6 Chen Y, Wang S, Zhang F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat Rev Bioeng 2023;1:60-78. [DOI: 10.1038/s44222-022-00002-8] [Reference Citation Analysis]
7 Zhang L, Yang A, Ruan C, Jiang BP, Guo X, Liang H, Kuo WS, Shen XC. Copper-Nitrogen-Coordinated Carbon Dots: Transformable Phototheranostics from Precise PTT/PDT to Post-Treatment Imaging-Guided PDT for Residual Tumor Cells. ACS Appl Mater Interfaces 2023;15:3253-65. [PMID: 36598330 DOI: 10.1021/acsami.2c17525] [Reference Citation Analysis]
8 Sousa A, Phung AN, Škalko-Basnet N, Obuobi S. Smart delivery systems for microbial biofilm therapy: Dissecting design, drug release and toxicological features. J Control Release 2023;354:394-416. [PMID: 36638844 DOI: 10.1016/j.jconrel.2023.01.003] [Reference Citation Analysis]
9 Chen Y, Li M, Tang Q, Cheng Y, Miao A, Cheng L, Zhu S, Luo T, Liu G, Zhang L, Niu F, Zhao L, Chen J, Yang R. High‐Speed NIR‐Driven Untethered 3D‐Printed Hydrogel Microrobots in High‐Viscosity Liquids. Advanced Intelligent Systems 2023. [DOI: 10.1002/aisy.202200311] [Reference Citation Analysis]
10 Jia Z, Shao H, Xu J, Dai Y, Qiao J. Crown ether-assisted room-temperature halide passivation for high-efficiency PbS quantum dots enabling large-area and long-lifetime near-infrared QD-OLEDs. Nano Res 2023. [DOI: 10.1007/s12274-022-5286-2] [Reference Citation Analysis]
11 Crispim MJB, Pereira CCS, Oliveira NTC, Chevrollier M, Oliveira RA, Martins WS, Reyna AS. Intensity correlation scan (IC-scan) technique to characterize the optical nonlinearities of scattering media.. [DOI: 10.21203/rs.3.rs-2451754/v1] [Reference Citation Analysis]
12 Yang Y, Xie Y, Zhang F. Second near-infrared window fluorescence nanoprobes for deep-tissue in vivo multiplexed bioimaging. Adv Drug Deliv Rev 2023;193:114697. [PMID: 36641080 DOI: 10.1016/j.addr.2023.114697] [Reference Citation Analysis]
13 Jo S, Sun IC, Ahn CH, Lee S, Kim K. Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS Appl Mater Interfaces 2023;15:120-37. [PMID: 35184560 DOI: 10.1021/acsami.1c22803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Feng J, Cheng Y, Tang C, Bai L, Liang F, Tu H, Shen J, Yu H, Zhang G, Wu Y. Nd3+-Doped La2CaB8O16 Crystals for Orthogonally Polarized Dual-Wavelength Near-Infrared Lasers. Chem Mater 2023. [DOI: 10.1021/acs.chemmater.2c03533] [Reference Citation Analysis]
15 Marotta C, Giorgi E, Binacchi F, Cirri D, Gabbiani C, Pratesi A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies. Inorganica Chimica Acta 2023. [DOI: 10.1016/j.ica.2023.121388] [Reference Citation Analysis]
16 Xenodochidis C, Staneva D, Vasileva B, Draganova M, Miloshev G, Georgieva M, Zagorchev P. The Photobiomodulation of MAO-A Affects the Contractile Activity of Smooth Muscle Gastric Tissues. Biomolecules 2022;13. [PMID: 36671417 DOI: 10.3390/biom13010032] [Reference Citation Analysis]
17 Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2022;353:1050-67. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Reference Citation Analysis]
18 Huang W, Rajendran V, Chan M, Hsiao M, Chang H, Liu R. Near‐Infrared Windows I and II Phosphors for Theranostic Applications: Spectroscopy, Bioimaging, and Light‐Emitting Diode Photobiomodulation. Advanced Optical Materials 2022. [DOI: 10.1002/adom.202202061] [Reference Citation Analysis]
19 Chen G, Hou K, Yu N, Wei P, Chen T, Zhang C, Wang S, Liu H, Cao R, Zhu L, Hsiao BS, Zhu M. Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat Commun 2022;13:7789. [PMID: 36526631 DOI: 10.1038/s41467-022-35440-w] [Reference Citation Analysis]
20 Markov A, Gerasimenko A, Boromangnaeva A, Shashova S, Iusupovskaia E, Kurilova U, Nikitina V, Suetina I, Mezentseva M, Savelyev M, Timashev P, Telyshev D, Liang X. Multilayered organic semiconductors for high performance optoelectronic stimulation of cells. Nano Res 2022. [DOI: 10.1007/s12274-022-5130-8] [Reference Citation Analysis]
21 Yang Q, Huang X, Gao B, Gao L, Yu F, Wang F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2022. [PMID: 36475529 DOI: 10.1039/d2an01159j] [Reference Citation Analysis]
22 Mamani S, Shintre S, Li Z, Rodríguez-contreras A, Shi L, Alfano R. OAM transmission of polarized multipole laser beams in rat cerebellum tissue. Optics Communications 2022. [DOI: 10.1016/j.optcom.2022.129241] [Reference Citation Analysis]
23 Zhang Y, Wang K, Xing G, Dong X, Zhu D, Yang W, Mei L, Lv F. Nanozyme-laden intelligent macrophage EXPRESS amplifying cancer photothermal-starvation therapy by responsive stimulation. Mater Today Bio 2022;16:100421. [PMID: 36105675 DOI: 10.1016/j.mtbio.2022.100421] [Reference Citation Analysis]
24 Sheng S, Yu X, Xing G, Jin L, Zhang Y, Zhu D, Dong X, Mei L, Lv F. An Apoptotic Body‐based Vehicle with Navigation for Photothermal‐Immunotherapy by Precise Delivery and Tumor Microenvironment Regulation. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202212118] [Reference Citation Analysis]
25 Kang D, Kim HS, Han S, Lee Y, Kim Y, Lee DY, Lee J. A Local Water Molecular-heating Strategy for NIR Long-lifetime Imaging-guided Photothermal Therapy of Deep-tissue-bearing Tumor.. [DOI: 10.21203/rs.3.rs-2204981/v1] [Reference Citation Analysis]
26 Gaitan B, Inglut C, Kanniyappan U, Xu HN, Conant EF, Frankle L, Li LZ, Chen Y, Huang H. Development of an Endoscopic Auto-Fluorescent Sensing Device to Aid in the Detection of Breast Cancer and Inform Photodynamic Therapy. Metabolites 2022;12:1097. [DOI: 10.3390/metabo12111097] [Reference Citation Analysis]
27 Chen C, Chen Y, Zhang L, Wang X, Tang Q, Luo Y, Wang Y, Ma C, Liang X. Dual-targeting nanozyme for tumor activatable photo-chemodynamic theranostics. J Nanobiotechnology 2022;20:466. [PMID: 36329465 DOI: 10.1186/s12951-022-01662-9] [Reference Citation Analysis]
28 Sim TM. Nanoparticle-assisted targeting of the tumour microenvironment. OpenNano 2022;8:100097. [DOI: 10.1016/j.onano.2022.100097] [Reference Citation Analysis]
29 Choi S, Jeon Y, Kwon JH, Ihm C, Kim SY, Choi KC. Wearable Photomedicine for Neonatal Jaundice Treatment Using Blue Organic Light-Emitting Diodes (OLEDs): Toward Textile-Based Wearable Phototherapeutics. Adv Sci (Weinh) 2022;9:e2204622. [PMID: 36310107 DOI: 10.1002/advs.202204622] [Reference Citation Analysis]
30 Kim SJ, Choi M, Hong G, Hahn SK. Controlled afterglow luminescent particles for photochemical tissue bonding. Light Sci Appl 2022;11:314. [PMID: 36302759 DOI: 10.1038/s41377-022-01011-3] [Reference Citation Analysis]
31 Wu J, Guo Y, Deng C, Zhang A, Qiao H, Lu Z, Xie J, Fang L, Dai Q. An integrated imaging sensor for aberration-corrected 3D photography. Nature 2022. [PMID: 36261533 DOI: 10.1038/s41586-022-05306-8] [Reference Citation Analysis]
32 Thankachan D, Anbazhagan R, Krishnamoorthi R, Tsai HC, Gebrie HT, Darge HF, Lu C, Chen J. MnO2 nanoparticle encapsulated in polyelectrolytic hybrids from alkyl functionalized carboxymethyl cellulose and azide functionalized gelatin to treat tumors by photodynamic therapy and photothermal therapy. Journal of the Taiwan Institute of Chemical Engineers 2022;139:104503. [DOI: 10.1016/j.jtice.2022.104503] [Reference Citation Analysis]
33 Jain R, Kedir N, Hassan H, Chen WW, Tallman TN. Self-sensing of pulsed laser ablation in carbon nanofiber-based smart composites. Journal of Intelligent Material Systems and Structures. [DOI: 10.1177/1045389x221121951] [Reference Citation Analysis]
34 Pedersen SV, Muramutsa F, Greseth C, Wood JD, Husko C, Eixenberger J, Estrada D, Jaques BJ. Mechanochemistry of Phosphorus and Arsenic Alloys for Visible and Infrared Photonics. Advanced Photonics Research 2022;3:2200038. [DOI: 10.1002/adpr.202200038] [Reference Citation Analysis]
35 Klok H, Herrmann A, Göstl R. Force ahead: Emerging Applications and Opportunities of Polymer Mechanochemistry. ACS Polym Au 2022;2:208-212. [DOI: 10.1021/acspolymersau.2c00029] [Reference Citation Analysis]
36 Zhu L, Xu J, Song J, Qin M, Gu S, Sun W, You Z. Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Sci China Mater 2022;65:2207-2216. [DOI: 10.1007/s40843-021-1961-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li J, Dong Y, Wei R, Jiang G, Yao C, Lv M, Wu Y, Gardner SH, Zhang F, Lucero MY, Huang J, Chen H, Ge G, Chan J, Chen J, Sun H, Luo X, Qian X, Yang Y. Stable, Bright, and Long-Fluorescence-Lifetime Dyes for Deep-Near-Infrared Bioimaging. J Am Chem Soc 2022. [PMID: 35905456 DOI: 10.1021/jacs.2c05826] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Yang F, Wu X, Cui H, Ou Z, Jiang S, Cai S, Zhou Q, Wong BG, Huang H, Hong G. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. Sci Adv 2022;8:eabo6743. [PMID: 35905189 DOI: 10.1126/sciadv.abo6743] [Reference Citation Analysis]
39 Bispo M, van Dijl JM, Szymanski W. Molecular Photoswitches in Antimicrobial Photopharmacology. Molecular Photoswitches 2022. [DOI: 10.1002/9783527827626.ch35] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Chang T, Qiu Q, Ji A, Qu C, Chen H, Cheng Z. Organic single molecule based nano-platform for NIR-II imaging and chemo-photothermal synergistic treatment of tumor. Biomaterials 2022;287:121670. [PMID: 35835000 DOI: 10.1016/j.biomaterials.2022.121670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Chen H, Agrawal S, Osman M, Minotto J, Mirg S, Liu J, Dangi A, Tran Q, Jackson T, Kothapalli S. A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging. BME Frontiers 2022;2022:1-14. [DOI: 10.34133/2022/9871098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Hui X, Malik MOA, Pramanik M. Looking deep inside tissue with photoacoustic molecular probes: a review. J Biomed Opt 2022;27:070901. [PMID: 36451698 DOI: 10.1117/1.JBO.27.7.070901] [Reference Citation Analysis]
43 Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022;186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
44 Zhao C, Wan J, Zhang L, Zhang C, Wang J, Lin K, Wang X. Two-Dimensional Borocarbonitride Nanosheet-Engineered Hydrogel as an All-In-One Platform for Melanoma Therapy and Skin Regeneration. Chem Mater . [DOI: 10.1021/acs.chemmater.2c01457] [Reference Citation Analysis]
45 Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022;186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
46 Bonelli J, Ortega-Forte E, Rovira A, Bosch M, Torres O, Cuscó C, Rocas J, Ruiz J, Marchán V. Improving Photodynamic Therapy Anticancer Activity of a Mitochondria-Targeted Coumarin Photosensitizer Using a Polyurethane-Polyurea Hybrid Nanocarrier. Biomacromolecules 2022. [PMID: 35695426 DOI: 10.1021/acs.biomac.2c00361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Xu C, Uahengo G, Rudnicki C, Hung C, Huang A, Xu Q, Chen Y, Halaney DL, Garay JE, Mangolini L, Aguilar G, Liu HH. Nanocrystalline Yttria-Stabilized Zirconia Ceramics for Cranial Window Applications. ACS Appl Bio Mater 2022. [PMID: 35671525 DOI: 10.1021/acsabm.2c00119] [Reference Citation Analysis]
48 Rosenman G, Apter B. Bioinspired materials: Physical properties governed by biological refolding. Applied Physics Reviews 2022;9:021303. [DOI: 10.1063/5.0079866] [Reference Citation Analysis]
49 Wang H, Liu H, Guo Y, Zai W, Li X, Xiong W, Zhao X, Yao Y, Hu Y, Zou Z, Wu J. Photosynthetic microorganisms coupled photodynamic therapy for enhanced antitumor immune effect. Bioactive Materials 2022;12:97-106. [DOI: 10.1016/j.bioactmat.2021.10.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 An JM, Suh J, Kim J, Kim Y, Chung JY, Kim HS, Cho SY, Ku JH, Kwak C, Kim HH, Jeong CW, Kim D. First-in-Class: Cervical cancer diagnosis based on a urine test with fluorescent cysteine probe. Sensors and Actuators B: Chemical 2022;360:131646. [DOI: 10.1016/j.snb.2022.131646] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
51 Lu L, Zhang F. A deep tissue optical sensing. Nat Nanotechnol . [DOI: 10.1038/s41565-022-01132-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Karatum O, Yildiz E, Kaleli HN, Sahin A, Ulgut B, Nizamoglu S. RuO 2 Supercapacitor Enabled Flexible, Safe, and Efficient Optoelectronic Neural Interface. Adv Funct Materials. [DOI: 10.1002/adfm.202109365] [Reference Citation Analysis]
53 Nguyen VN, Zhao Z, Tang BZ, Yoon J. Organic photosensitizers for antimicrobial phototherapy. Chem Soc Rev 2022;51:3324-40. [PMID: 35373787 DOI: 10.1039/d1cs00647a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
54 Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. Chem Rec 2022;:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Reference Citation Analysis]
55 Sun B, Bte Rahmat JN, Kim HJ, Mahendran R, Esuvaranathan K, Chiong E, Ho JS, Neoh KG, Zhang Y. Wirelessly Activated Nanotherapeutics for In Vivo Programmable Photodynamic-Chemotherapy of Orthotopic Bladder Cancer. Adv Sci (Weinh) 2022;9:e2200731. [PMID: 35393785 DOI: 10.1002/advs.202200731] [Reference Citation Analysis]
56 Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J. Wearable Pressure Sensors for Pulse Wave Monitoring. Adv Mater 2022;34:e2109357. [PMID: 35044014 DOI: 10.1002/adma.202109357] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 43.0] [Reference Citation Analysis]
57 Yao Y, Ran G, Hou CL, Zhang R, Mangel DN, Yang ZS, Zhu M, Zhang W, Zhang J, Sessler JL, Gao S, Zhang JL. Nonaromatic Organonickel(II) Phototheranostics. J Am Chem Soc 2022. [PMID: 35420807 DOI: 10.1021/jacs.2c00710] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Sun H, Yee SS, Gobeze HB, He R, Martinez D, Risinger AL, Schanze KS. One- and Two-Photon Activated Release of Oxaliplatin from a Pt(IV)-Functionalized Poly(phenylene ethynylene). ACS Appl Mater Interfaces 2022;14:15996-6005. [PMID: 35360898 DOI: 10.1021/acsami.2c00859] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022;13:4239-69. [PMID: 35509461 DOI: 10.1039/d2sc01003h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
60 Zhu C, Wang Y, Li Z, Sun W, Jiang BP, Shen XC. Metallopolysaccharide-Based Smart Nanotheranostic for Imaging-Guided Precise Phototherapy and Sequential Enzyme-Activated Ferroptosis. Biomacromolecules 2022. [PMID: 35404583 DOI: 10.1021/acs.biomac.2c00018] [Reference Citation Analysis]
61 Guo Y, Wang X, Liu W, Zheng X, Ren H, Wu J, Ge J, Zhang W, Lee C, Wang P. One-pot synthesis and applications of two asymmetrical benzoxanthene dyes. Dyes and Pigments 2022;200:110152. [DOI: 10.1016/j.dyepig.2022.110152] [Reference Citation Analysis]
62 Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Adv Mater 2022;34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
63 Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. Adv Mater 2022;:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Gao Y, Xiong Z, Wang J, Tang J, Li D. Light hybrid micro/nano-robots: From propulsion to functional signals. Nano Res . [DOI: 10.1007/s12274-022-4119-7] [Reference Citation Analysis]
65 Kobauri P, Galenkamp NS, Schulte AM, de Vries J, Simeth NA, Maglia G, Thallmair S, Kolarski D, Szymanski W, Feringa BL. Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. J Med Chem 2022. [PMID: 35258959 DOI: 10.1021/acs.jmedchem.1c01962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Nouizi F, Algarawi M, Erkol H, Luk A, Gulsen G. Photo‐magnetic imaging: a new functional imaging modality for more accurate photothermal therapy planning. Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic and Photobiomodulation Therapy XXX 2022. [DOI: 10.1117/12.2610298] [Reference Citation Analysis]
67 Lee GH, Jeon C, Mok JW, Shin S, Kim SK, Han HH, Kim SJ, Hong SH, Kim H, Joo CK, Sim JY, Hahn SK. Smart Wireless Near-Infrared Light Emitting Contact Lens for the Treatment of Diabetic Retinopathy. Adv Sci (Weinh) 2022;9:e2103254. [PMID: 35092362 DOI: 10.1002/advs.202103254] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
68 Luo Y, Tseng ML, Vyas S, Kuo HY, Chu CH, Chen MK, Lee HC, Chen WP, Su VC, Shi X, Misawa H, Tsai DP, Yang PC. Metasurface-Based Abrupt Autofocusing Beam for Biomedical Applications. Small Methods 2022;:e2101228. [PMID: 35212186 DOI: 10.1002/smtd.202101228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Zan P, Than A, Zhang W, Cai HX, Zhao W, Chen P. Transdermal Photothermal-Pharmacotherapy to Remodel Adipose Tissue for Obesity and Metabolic Disorders. ACS Nano 2022;16:1813-25. [PMID: 34979079 DOI: 10.1021/acsnano.1c06410] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
70 Yan H, Forwad S, Kim K, Wu Y, Hui J, Kashiparekh A, Yun S. Highly efficient, all-organic bioluminescence-photosensitizer conjugate eradicates early-stage tumors and prevents metastasis in mice.. [DOI: 10.1101/2022.01.29.478339] [Reference Citation Analysis]
71 Lécuyer T, Bia N, Burckel P, Loubat C, Graillot A, Seguin J, Corvis Y, Liu J, Valéro L, Scherman D, Mignet N, Richard C. Persistent luminescence nanoparticles functionalized by polymers bearing phosphonic acid anchors: synthesis, characterization, and in vivo behaviour. Nanoscale 2022. [PMID: 35018394 DOI: 10.1039/d1nr07114a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
72 Chen Q, Xu S, Liu S, Wang Y, Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J Control Release 2022;342:280-94. [PMID: 35016919 DOI: 10.1016/j.jconrel.2022.01.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
73 Pei P, Hu H, Chen Y, Wang S, Chen J, Ming J, Yang Y, Sun C, Zhao S, Zhang F. NIR-II Ratiometric Lanthanide-Dye Hybrid Nanoprobes Doped Bioscaffolds for In Situ Bone Repair Monitoring. Nano Lett 2022. [PMID: 35005958 DOI: 10.1021/acs.nanolett.1c04356] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
74 Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022;180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
75 Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B 2022;12:92-106. [PMID: 35127374 DOI: 10.1016/j.apsb.2021.08.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
76 Cerullo G, Vanna R. Lasers for health. Europhysics News 2022;53:28-31. [DOI: 10.1051/epn/2022305] [Reference Citation Analysis]
77 Yang X, Gong C, Zhang C, Wang Y, Yan G, Wei L, Chen Y, Rao Y, Gong Y. Fiber Optofluidic Microlasers: Structures, Characteristics, and Applications. Laser & Photonics Reviews 2022;16:2100171. [DOI: 10.1002/lpor.202100171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
78 Genova T, Borisova E. Tryptophan fluorescence for diagnosis and staging of gastrointestinal cancers. Biophotonics, Tryptophan and Disease 2022. [DOI: 10.1016/b978-0-12-822790-9.00008-5] [Reference Citation Analysis]
79 Apter B, Lapsker I, Inberg A, Rosenman G. Photon Recycling Effect and Lossless Fluorescence Propagation in β‐Sheet Peptide Fibers. Advanced Optical Materials 2022;10:2102342. [DOI: 10.1002/adom.202102342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Silverå Ejneby M, Jakešová M, Ferrero JJ, Migliaccio L, Sahalianov I, Zhao Z, Berggren M, Khodagholy D, Đerek V, Gelinas JN, Głowacki ED. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat Biomed Eng 2021. [PMID: 34916610 DOI: 10.1038/s41551-021-00817-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
81 Gao D, Shi Y, Ni J, Chen S, Wang Y, Zhao B, Song M, Guo X, Ren X, Zhang X, Tian Z, Yang Z. NIR/MRI-Guided Oxygen-Independent Carrier-Free Anti-Tumor Nano-Theranostics. Small 2021;:e2106000. [PMID: 34854571 DOI: 10.1002/smll.202106000] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
82 Zhuo X, Shen H, Bian Y, Xu A, Zhu R. Projection-suspended stereolithography 3D printing for low-loss optical hydrogel fiber fabrication. APL Photonics 2021;6:121302. [DOI: 10.1063/5.0067486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Jeong Y, Jo YK, Kim MS, Joo KI, Cha HJ. Tunicate-Inspired Photoactivatable Proteinic Nanobombs for Tumor-Adhesive Multimodal Therapy. Adv Healthc Mater 2021;10:e2101212. [PMID: 34626527 DOI: 10.1002/adhm.202101212] [Reference Citation Analysis]
84 Yao W, Wang K, Guo Y, Wei R, Luo S, Tang W, Wang N, He C, Wei X, Yang R, Yuan Y, Jiang X. Nitric oxide nano-prodrug platform with synchronous glutathione depletion and hypoxia relief for enhanced photodynamic cancer therapy. Materials Science and Engineering: C 2021. [DOI: 10.1016/j.msec.2021.112616] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Abdelhalim I, Hamdy O, Hassan AA, Elnaby SH. Nd:YAG fourth harmonic (266-nm) generation for corneal reshaping procedure: An ex-vivo experimental study. PLoS One 2021;16:e0260494. [PMID: 34843558 DOI: 10.1371/journal.pone.0260494] [Reference Citation Analysis]
86 Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. Biosensors (Basel) 2021;11:472. [PMID: 34940229 DOI: 10.3390/bios11120472] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
87 Li S, Cheng D, He L, Yuan L. Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation. Front Bioeng Biotechnol 2021;9:768698. [PMID: 34790654 DOI: 10.3389/fbioe.2021.768698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
88 Fan Y, Ma Q, Li M, Luan D, Kang H. Quantitative investigation of laser ablation based on real-time temperature variations and OCT images for laser treatment applications. Lasers Surg Med 2021. [PMID: 34779006 DOI: 10.1002/lsm.23491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
89 Lu B, Zhang Z, Jin D, Yuan X, Wang J, Ding Y, Wang Y, Yao Y. A-DA'D-A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chem Commun (Camb) 2021;57:12020-3. [PMID: 34713878 DOI: 10.1039/d1cc04629b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
90 Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021;12:100149. [PMID: 34746734 DOI: 10.1016/j.mtbio.2021.100149] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
91 Vaidya SP, Patra M. X-rays Actuate Anticancer Drugs: Opening New Vistas in Prodrug Therapy. Chembiochem 2021;22:2998-3000. [PMID: 34406685 DOI: 10.1002/cbic.202100373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Potapova EV, Mikhailova MA, Koroleva AK, Stavtsev DD, Dremin VV, Dunaev AV, Yakushkina NY, Krupatkin AI, Margaryants NB. A Multiparametric Approach to the Assessment of Cutaneous Microcirculation in Dermatological Patients (on the Example of Patients with Psoriasis). Hum Physiol 2021;47:619-627. [DOI: 10.1134/s0362119721050091] [Reference Citation Analysis]
93 Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021;279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
94 Bodian S, Colchester RJ, Macdonald TJ, Ambroz F, Briceno de Gutierrez M, Mathews SJ, Fong YMM, Maneas E, Welsby KA, Gordon RJ, Collier P, Zhang EZ, Beard PC, Parkin IP, Desjardins AE, Noimark S. CuInS2 Quantum Dot and Polydimethylsiloxane Nanocomposites for All-Optical Ultrasound and Photoacoustic Imaging. Adv Mater Interfaces 2021;8:2100518. [PMID: 34777946 DOI: 10.1002/admi.202100518] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
95 Golubova N, Dremin V, Potapova E, Shupletsov V, Dunaev A. Multimodal Laparoscopic System for Biological Tissue Perfusion and Metabolism Assessment. 2021 International Conference on Electrical Engineering and Photonics (EExPolytech) 2021. [DOI: 10.1109/eexpolytech53083.2021.9614866] [Reference Citation Analysis]
96 Li S, Wu L, Zhen W, Zhu M, Cheng X, Jiang X. Molecular Nature of Structured Water in the Light-Induced Interfacial Capacitance Changes at the Bioelectric Interface. J Phys Chem Lett 2021;12:9982-8. [PMID: 34617750 DOI: 10.1021/acs.jpclett.1c02617] [Reference Citation Analysis]
97 Mehanna S, Mansour N, Daher CF, Elias MG, Dagher C, Khnayzer RS. Drug-free phototherapy of superficial tumors: White light at the end of the tunnel. J Photochem Photobiol B 2021;224:112324. [PMID: 34619435 DOI: 10.1016/j.jphotobiol.2021.112324] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
98 Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021;177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
99 Kathe C, Michoud F, Schönle P, Rowald A, Brun N, Ravier J, Furfaro I, Paggi V, Kim K, Soloukey S, Asboth L, Hutson TH, Jelescu I, Philippides A, Alwahab N, Gandar J, Huber D, De Zeeuw CI, Barraud Q, Huang Q, Lacour SP, Courtine G. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat Biotechnol 2021. [PMID: 34580478 DOI: 10.1038/s41587-021-01019-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
100 Liang BJ, Lusvarghi S, Ambudkar SV, Huang H. Use of photoimmunoconjugates to characterize ABCB1 in cancer cells. Nanophotonics 2021;10:3049-3061. [DOI: 10.1515/nanoph-2021-0252] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Santos O, Cancino-Bernardi J, Pincela Lins PM, Sampaio D, Pavan T, Zucolotto V. Near-Infrared Photoactive Theragnostic Gold Nanoflowers for Photoacoustic Imaging and Hyperthermia. ACS Appl Bio Mater 2021;4:6780-90. [PMID: 35006978 DOI: 10.1021/acsabm.1c00519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
102 Wang H, Pan J, Meng Y, Liu Q, Shen Y. Advances of Yb:CALGO Laser Crystals. Crystals 2021;11:1131. [DOI: 10.3390/cryst11091131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
103 Kerdoncuff H, Christensen JB, Lassen M. Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes. Opt Express 2021;29:29828-40. [PMID: 34614720 DOI: 10.1364/OE.436325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
104 Pearson S, Feng J, del Campo A. Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo. Adv Funct Mater 2021;31:2105989. [DOI: 10.1002/adfm.202105989] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
105 Ma CH, Yang J, Mueller JL, Huang HC. Intratumoral Photosensitizer Delivery and Photodynamic Therapy. Nano Life 2021;11:2130003. [PMID: 34484435 DOI: 10.1142/s179398442130003x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
106 Suciu M, Porav S, Radu T, Rosu MC, Lazar MD, Macavei S, Socaci C. Photodynamic effect of light emitting diodes on E. coli and human skin cells induced by a graphene-based ternary composite. J Photochem Photobiol B 2021;223:112298. [PMID: 34474299 DOI: 10.1016/j.jphotobiol.2021.112298] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
107 Chen Y, Lin P, Wang T, Tiwari N, Lin S, Wu H, Choi D, Wu W, Choi D, Hsiao Y, Lin Z. Dynamics of Electrically Driven Cholesteric Liquid Crystals by Triboelectrification and Their Application in Self-Powered Information Securing and Vision Correcting. ACS Energy Lett 2021;6:3185-94. [DOI: 10.1021/acsenergylett.1c01619] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
108 Feng CH, Vidal S, Robert P, Bouyer P, Desruelle B, Prevedelli M, Boullet J, Santarelli G, Bertoldi A. High power continuous laser at 461 nm based on a compact and high-efficiency frequency-doubling linear cavity. Opt Express 2021;29:27760-7. [PMID: 34615185 DOI: 10.1364/OE.433179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-Molecule Prodrug Nanoassemblies: An Emerging Nanoplatform for Anticancer Drug Delivery. Small 2021;:e2101460. [PMID: 34342126 DOI: 10.1002/smll.202101460] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
110 Tian L, Hunt B, Bell MAL, Yi J, Smith JT, Ochoa M, Intes X, Durr NJ. Deep Learning in Biomedical Optics. Lasers Surg Med 2021;53:748-75. [PMID: 34015146 DOI: 10.1002/lsm.23414] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
111 Liu B, Zhu H, Zhao D, Nian G, Qu S, Yang W. Hydrogel Coating Enabling Mechanically Friendly, Step‐Index, Functionalized Optical Fiber. Adv Optical Mater 2021;9:2101036. [DOI: 10.1002/adom.202101036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
112 Blair S, Garcia M, Davis T, Zhu Z, Liang Z, Konopka C, Kauffman K, Colanceski R, Ferati I, Kondov B, Stojanoski S, Todorovska MB, Dimitrovska NT, Jakupi N, Miladinova D, Petrusevska G, Kondov G, Dobrucki WL, Nie S, Gruev V. Hexachromatic bioinspired camera for image-guided cancer surgery. Sci Transl Med 2021;13:eaaw7067. [PMID: 33952675 DOI: 10.1126/scitranslmed.aaw7067] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
113 Yamagishi K, Zhou W, Ching T, Huang SY, Hashimoto M. Ultra-Deformable and Tissue-Adhesive Liquid Metal Antennas with High Wireless Powering Efficiency. Adv Mater 2021;33:e2008062. [PMID: 34031936 DOI: 10.1002/adma.202008062] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
114 Zhao Q, Woo CM, Li H, Zhong T, Yu Z, Lai P. Parameter-free optimization algorithm for iterative wavefront shaping. Opt Lett 2021;46:2880-3. [PMID: 34129564 DOI: 10.1364/OL.427215] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
115 Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J Porphyrins Phthalocyanines 2021;25:605-22. [DOI: 10.1142/s1088424621300032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
116 Wang L, Dai C, Jiang L, Tong G, Xiong Y, Khan K, Tang Z, Chen X, Zeng H. Advanced Devices for Tumor Diagnosis and Therapy. Small 2021;17:e2100003. [PMID: 34110694 DOI: 10.1002/smll.202100003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
117 Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. Light Sci Appl 2021;10:124. [PMID: 34108445 DOI: 10.1038/s41377-021-00561-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
118 Ko WK, Lee SJ, Kim SJ, Han GH, Han IB, Hong JB, Sheen SH, Sohn S. Direct Injection of Hydrogels Embedding Gold Nanoparticles for Local Therapy after Spinal Cord Injury. Biomacromolecules 2021;22:2887-901. [PMID: 34097404 DOI: 10.1021/acs.biomac.1c00281] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
119 Zheng G, Xiao W, Wu H, Wu J, Liu X, Qiu J. Near‐Unity and Zero‐Thermal‐Quenching Far‐Red‐Emitting Composite Ceramics via Pressureless Glass Crystallization. Laser & Photonics Reviews 2021;15:2100060. [DOI: 10.1002/lpor.202100060] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
120 Cinquino M, Prontera CT, Pugliese M, Giannuzzi R, Taurino D, Gigli G, Maiorano V. Light-Emitting Textiles: Device Architectures, Working Principles, and Applications. Micromachines (Basel) 2021;12:652. [PMID: 34199399 DOI: 10.3390/mi12060652] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
121 Ding F, Feng J, Zhang X, Sun J, Fan C, Ge Z. Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Adv Drug Deliv Rev 2021;173:141-63. [PMID: 33774116 DOI: 10.1016/j.addr.2021.03.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
122 Zhu M, Zhang H, Ran G, Mangel DN, Yao Y, Zhang R, Tan J, Zhang W, Song J, Sessler JL, Zhang JL. Metal Modulation: An Easy-to-Implement Tactic for Tuning Lanthanide Phototheranostics. J Am Chem Soc 2021;143:7541-52. [PMID: 33973784 DOI: 10.1021/jacs.1c03041] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
123 Kong D, Zhang K, Tian J, Yin L, Sheng X. Biocompatible and Biodegradable Light‐Emitting Materials and Devices. Adv Materials Technologies 2022;7:2100006. [DOI: 10.1002/admt.202100006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
124 Murawski C, Gather MC. Emerging Biomedical Applications of Organic Light‐Emitting Diodes. Advanced Optical Materials 2021;9:2100269. [DOI: 10.1002/adom.202100269] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
125 Michael Ebner, Nabavi E, Shapey J, Xie Y, Liebmann F, Spirig JM, Hoch A, Farshad M, Saeed SR, Bradford R, Yardley I, Ourselin S, Edwards AD, Führnstahl P, Vercauteren T. Intraoperative hyperspectral label-free imaging: from system design to first-in-patient translation. J Phys D Appl Phys 2021;54:294003. [PMID: 34024940 DOI: 10.1088/1361-6463/abfbf6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
126 Schie IW, Placzek F, Knorr F, Cordero E, Wurster LM, Hermann GG, Mogensen K, Hasselager T, Drexler W, Popp J, Leitgeb RA. Morpho-molecular signal correlation between optical coherence tomography and Raman spectroscopy for superior image interpretation and clinical diagnosis. Sci Rep 2021;11:9951. [PMID: 33976274 DOI: 10.1038/s41598-021-89188-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
127 Shabahang S, Clouser F, Shabahang F, Yun S. Single‐Mode, 700%‐Stretchable, Elastic Optical Fibers Made of Thermoplastic Elastomers. Adv Optical Mater 2021;9:2100270. [DOI: 10.1002/adom.202100270] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
128 Topaloglu Avsar N, Balkaya U, Yarali Cevik ZB. Design of Portable Multicolor LED-Based Optical System for the Photobiomodulation Therapy on Wound Healing Process. J Intell Syst Appl 2021. [DOI: 10.54856/jiswa.202105159] [Reference Citation Analysis]
129 Jayasree A, Ivanovski S, Gulati K. ON or OFF: Triggered therapies from anodized nano-engineered titanium implants. Journal of Controlled Release 2021;333:521-35. [DOI: 10.1016/j.jconrel.2021.03.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
130 Canaparo R, Foglietta F, Giuntini F, Francovich A, Serpe L. The bright side of sound: perspectives on the biomedical application of sonoluminescence. Photochem Photobiol Sci 2020;19:1114-21. [PMID: 32685951 DOI: 10.1039/d0pp00133c] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
131 Chander N, Morstein J, Bolten JS, Shemet A, Cullis PR, Trauner D, Witzigmann D. Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release. Small 2021;17:e2008198. [PMID: 33880882 DOI: 10.1002/smll.202008198] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
132 Huang G, Qiu Y, Yang F, Xie J, Chen X, Wang L, Yang H. Magnetothermally Triggered Free-Radical Generation for Deep-Seated Tumor Treatment. Nano Lett 2021;21:2926-31. [PMID: 33769824 DOI: 10.1021/acs.nanolett.1c00009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
133 Rapp TL, DeForest CA. Targeting drug delivery with light: A highly focused approach. Adv Drug Deliv Rev 2021;171:94-107. [PMID: 33486009 DOI: 10.1016/j.addr.2021.01.009] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 18.5] [Reference Citation Analysis]
134 Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. Adv Mater 2021;33:e2004754. [PMID: 33624900 DOI: 10.1002/adma.202004754] [Cited by in Crossref: 69] [Cited by in F6Publishing: 74] [Article Influence: 34.5] [Reference Citation Analysis]
135 Zhang H, Zhao H, Zhao X, Xu C, Franklin D, Vázquez‐guardado A, Bai W, Zhao J, Li K, Monti G, Lu W, Kobeissi A, Tian L, Ning X, Yu X, Mehta S, Chanda D, Huang Y, Xu S, Perez White BE, Rogers JA. Biocompatible Light Guide‐Assisted Wearable Devices for Enhanced UV Light Delivery in Deep Skin. Adv Funct Mater 2021;31:2100576. [DOI: 10.1002/adfm.202100576] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
136 Saeboe AM, Nikiforov AY, Toufanian R, Kays JC, Chern M, Casas JP, Han K, Piryatinski A, Jones D, Dennis AM. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed In Vivo Imaging. Nano Lett 2021;21:3271-9. [PMID: 33755481 DOI: 10.1021/acs.nanolett.1c00600] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
137 Horgan CC, Bergholt MS, Thin MZ, Nagelkerke A, Kennedy R, Kalber TL, Stuckey DJ, Stevens MM. Image-guided Raman spectroscopy probe-tracking for tumor margin delineation. J Biomed Opt 2021;26. [PMID: 33715315 DOI: 10.1117/1.JBO.26.3.036002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
138 Yang C, Bi Y, Cai E, Chen Y, Huang S, Zhang Z, Wang P. Pulse-sheet chemical tomography by counterpropagating stimulated Raman scattering. Optica 2021;8:396. [DOI: 10.1364/optica.414723] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
139 Piktel E, Ościłowska I, Suprewicz Ł, Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Wollny T, Janion M, Parlinska-Wojtan M, Bucki R. ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles. Int J Nanomedicine 2021;16:1993-2011. [PMID: 33727811 DOI: 10.2147/IJN.S277014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
140 Bedlack R, Barkhaus P, Barnes B, Bereman M, Bertorini T, Carter G, Crayle J, Kihuwa-Mani S, Bowser R, Kittrell P, McDermott C, Pattee G, Salmon K, Wicks P. ALSUntangled #60: light therapy. Amyotroph Lateral Scler Frontotemporal Degener 2021;:1-5. [PMID: 33683159 DOI: 10.1080/21678421.2021.1883668] [Reference Citation Analysis]
141 Yoo YJ, Heo S, Kim YJ, Ko JH, Mira ZF, Song YM. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res 2021;14:2904-18. [DOI: 10.1007/s12274-021-3388-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
142 Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021;122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
143 Fernandes KPS, Ferrari RM, Bussadori SK, Franca CM. Vascular Photobiomodulation. Photobiomodulation, Photomedicine, and Laser Surgery 2021;39:143-144. [DOI: 10.1089/photob.2020.4965] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
144 Li S, Chen Y, Zhu W, Yang W, Chen Z, Song J, Song X, Chen X, Yang H. Engineered Nanoscale Vanadium Metallodrugs for Robust Tumor‐Specific Imaging and Therapy. Adv Funct Mater 2021;31:2010337. [DOI: 10.1002/adfm.202010337] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
145 Wang Y, Wang S, Zhu Y, Xu H, He H. Molecular Response of Skin to Micromachining by Femtosecond Laser. Front Phys 2021;9:637101. [DOI: 10.3389/fphy.2021.637101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
146 Huo M, Liu P, Zhang L, Wei C, Wang L, Chen Y, Shi J. Upconversion Nanoparticles Hybridized Cyanobacterial Cells for Near‐Infrared Mediated Photosynthesis and Enhanced Photodynamic Therapy. Adv Funct Mater 2021;31:2010196. [DOI: 10.1002/adfm.202010196] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
147 Mei J, Tian H. Most recent advances on enzyme‐activatable optical probes for bioimaging. Aggregate 2021;2. [DOI: 10.1002/agt2.32] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
148 Wang X, Yuan W, Xu M, Li F. Two-Photon Excitation-Based Imaging Postprocessing Algorithm Model for Background-Free Bioimaging. Anal Chem 2021;93:2551-9. [PMID: 33445876 DOI: 10.1021/acs.analchem.0c04611] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
149 Zhou R, Yan L, Dong X, Zhu S, Chen K, Wu Y, Xiang H, Li L, Zhang G, Gu Z, Zhao Y. Fractionated regimen-suitable immunoradiotherapy sensitizer based on ultrasmall Fe4Se2W18 nanoclusters enable tumor-specific radiosensitization augment and antitumor immunity boost. Nano Today 2021;36:101003. [DOI: 10.1016/j.nantod.2020.101003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
150 Huo S, Zhao P, Shi Z, Zou M, Yang X, Warszawik E, Loznik M, Göstl R, Herrmann A. Mechanochemical bond scission for the activation of drugs. Nat Chem 2021;13:131-9. [PMID: 33514936 DOI: 10.1038/s41557-020-00624-8] [Cited by in Crossref: 90] [Cited by in F6Publishing: 88] [Article Influence: 45.0] [Reference Citation Analysis]
151 Yue F, Piccoli R, Shalaginov MY, Gu T, Richardson KA, Morandotti R, Hu J, Razzari L. Nonlinear Mid‐Infrared Metasurface based on a Phase‐Change Material. Laser & Photonics Reviews 2021;15:2000373. [DOI: 10.1002/lpor.202000373] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
152 Atmaca GY. Measurement of singlet oxygen generation of 9(Hydroxymethyl)anthracene substituted silicon phthalocyanine by sono-photochemical and photochemical studies. Journal of Molecular Structure 2021;1226:129320. [DOI: 10.1016/j.molstruc.2020.129320] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
153 Bai W, Irie M, Liu Z, Luan H, Franklin D, Nandoliya K, Guo H, Zang H, Weng Y, Lu D, Wu D, Wu Y, Song J, Han M, Song E, Yang Y, Chen X, Zhao H, Lu W, Monti G, Stepien I, Kandela I, Haney CR, Wu C, Won SM, Ryu H, Rwei A, Shen H, Kim J, Yoon H, Ouyang W, Liu Y, Suen E, Chen H, Okina J, Liang J, Huang Y, Ameer GA, Zhou W, Rogers JA. Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME Frontiers 2021;2021:1-14. [DOI: 10.34133/2021/8653218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 You J, Bragin A, Liu H, Li L. Preclinical studies of transcranial photobiomodulation in the neurological diseases. Translational Biophotonics 2021;3. [DOI: 10.1002/tbio.202000024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
155 Li X, Fang F, Sun B, Yin C, Tan J, Wan Y, Zhang J, Sun P, Fan Q, Wang P, Li S, Lee C. Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horiz 2021;6:177-85. [DOI: 10.1039/d0nh00672f] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 18.0] [Reference Citation Analysis]
156 Ashour AS, Guo Y, Mohamed WS. Introduction. Thermal Ablation Therapy 2021. [DOI: 10.1016/b978-0-12-819544-4.00002-2] [Reference Citation Analysis]
157 Anju S, Mohanan P. Biomedical applications of transition metal dichalcogenides (TMDCs). Synthetic Metals 2021;271:116610. [DOI: 10.1016/j.synthmet.2020.116610] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
158 Mutlu S. Challenges in neural interface electronics: miniaturization and wireless operation. Somatosensory Feedback for Neuroprosthetics 2021. [DOI: 10.1016/b978-0-12-822828-9.00001-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
159 Yaşa Atmaca G. Investigation of the differences between sono-photochemical and photochemical studies for singlet oxygen generation of indium phthalocyanine. Inorganica Chimica Acta 2021;515:120052. [DOI: 10.1016/j.ica.2020.120052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
160 Ibrahimi D, Mendiola-santibanez JD, Martinez EC, Rodriguez J, Pacheco IT. Cortical Activity at Baseline and During Light Stimulation in Patients With Strabismus and Amblyopia. IEEE Access 2021;9:22430-22446. [DOI: 10.1109/access.2021.3056508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
161 Horgan CC, Bergholt MS, Nagelkerke A, Thin MZ, Pence IJ, Kauscher U, Kalber TL, Stuckey DJ, Stevens MM. Integrated photodynamic Raman theranostic system for cancer diagnosis, treatment, and post-treatment molecular monitoring. Theranostics 2021;11:2006-19. [PMID: 33408795 DOI: 10.7150/thno.53031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
162 Colusso E, Martucci A. An overview of biopolymer-based nanocomposites for optics and electronics. J Mater Chem C 2021;9:5578-93. [DOI: 10.1039/d1tc00607j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
163 Mutlu S, Yasa O, Erin O, Sitti M. Magnetic Resonance Imaging-Compatible Optically Powered Miniature Wireless Modular Lorentz Force Actuators. Adv Sci (Weinh) 2021;8:2002948. [PMID: 33511017 DOI: 10.1002/advs.202002948] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
164 Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. Adv Exp Med Biol 2021;1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
165 Dharsini PP, Selvamani P, Latha S. Current Strategies in Peptide Conjugated Nanoparticles. Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer 2021. [DOI: 10.4018/978-1-7998-5049-6.ch009] [Reference Citation Analysis]
166 Mazzotta A, Carlotti M, Mattoli V. Conformable on-skin devices for thermo-electro-tactile stimulation: materials, design, and fabrication. Mater Adv 2021;2:1787-1820. [DOI: 10.1039/d0ma00817f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
167 Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
168 Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020;8:E618. [PMID: 33339198 DOI: 10.3390/biomedicines8120618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
169 Rodrigues FSC, Campos A, Martins J, Ambrósio AF, Campos EJ. Emerging Trends in Nanomedicine for Improving Ocular Drug Delivery: Light-Responsive Nanoparticles, Mesoporous Silica Nanoparticles, and Contact Lenses. ACS Biomater Sci Eng 2020;6:6587-97. [PMID: 33320633 DOI: 10.1021/acsbiomaterials.0c01347] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
170 Jeon Y, Noh I, Seo YC, Han JH, Park Y, Cho EH, Choi KC. Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics. ACS Nano 2020;14:15688-99. [PMID: 33155466 DOI: 10.1021/acsnano.0c06649] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
171 Lee SY, Pakela JM, Na K, Shi J, McKenna BJ, Simeone DM, Yoon E, Scheiman JM, Mycek MA. Needle-compatible miniaturized optoelectronic sensor for pancreatic cancer detection. Sci Adv 2020;6:eabc1746. [PMID: 33219025 DOI: 10.1126/sciadv.abc1746] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
172 Ozdemir M, Cevik ZBY, Topaloglu N. The Effect of Photobiomodulation with Red and Near-Infrared Wavelengths on Keratinocyte Cells. 2020 Medical Technologies Congress (TIPTEKNO) 2020. [DOI: 10.1109/tiptekno50054.2020.9299214] [Reference Citation Analysis]
173 Song X, Zhu W, Ge X, Li R, Li S, Chen X, Song J, Xie J, Chen X, Yang H. A New Class of NIR‐II Gold Nanocluster‐Based Protein Biolabels for In Vivo Tumor‐Targeted Imaging. Angew Chem 2021;133:1326-32. [DOI: 10.1002/ange.202010870] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
174 Song X, Zhu W, Ge X, Li R, Li S, Chen X, Song J, Xie J, Chen X, Yang H. A New Class of NIR‐II Gold Nanocluster‐Based Protein Biolabels for In Vivo Tumor‐Targeted Imaging. Angew Chem Int Ed 2021;60:1306-12. [DOI: 10.1002/anie.202010870] [Cited by in Crossref: 72] [Cited by in F6Publishing: 79] [Article Influence: 24.0] [Reference Citation Analysis]
175 Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021;10:257-68. [PMID: 33141513 DOI: 10.1002/cam4.3592] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
176 Kumar M, Choi H, Lim J, Park J, Kim S, Seo H. Broadband alternating current photovoltaic effect: An application for high-performance sensing and imaging body aches. Nano Energy 2020;77:105240. [DOI: 10.1016/j.nanoen.2020.105240] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
177 Li Y, Feng P, Wang C, Miao W, Huang H. Black phosphorus nanophototherapeutics with enhanced stability and safety for breast cancer treatment. Chemical Engineering Journal 2020;400:125851. [DOI: 10.1016/j.cej.2020.125851] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
178 Jiang Q, Pan M, Hu J, Sun J, Fan L, Zou Z, Wei J, Yang X, Liu X. Regulation of redox balance using a biocompatible nanoplatform enhances phototherapy efficacy and suppresses tumor metastasis. Chem Sci 2020;12:148-57. [PMID: 34163586 DOI: 10.1039/d0sc04983b] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
179 Parasar B, Chang PV. Engineered Th17 Cell Differentiation Using a Photoactivatable Immune Modulator. J Am Chem Soc 2020;142:18103-8. [PMID: 32975936 DOI: 10.1021/jacs.0c07485] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
180 Yang Y, Zhu X, Bao J, Bai H, Wu A, Qiao Y, Bian Y, Zhao X, Li W, Liu Y. Preparation of SiO2/YPO4:Nd/SiO2 composite microspheres with near-infrared luminescence and surface functionalization. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05053-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
181 Farajikhah S, Runge AFJ, Boumelhem BB, Rukhlenko ID, Stefani A, Sayyar S, Innis PC, Fraser ST, Fleming S, Large MCJ. Thermally drawn biodegradable fibers with tailored topography for biomedical applications. J Biomed Mater Res B Appl Biomater 2021;109:733-43. [PMID: 33073509 DOI: 10.1002/jbm.b.34739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
182 Welleman IM, Hoorens MWH, Feringa BL, Boersma HH, Szymański W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem Sci 2020;11:11672-91. [PMID: 34094410 DOI: 10.1039/d0sc04187d] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 23.7] [Reference Citation Analysis]
183 Lécuyer T, Durand MA, Volatron J, Desmau M, Lai-Kuen R, Corvis Y, Seguin J, Wang G, Alloyeau D, Scherman D, Mignet N, Gazeau F, Richard C. Degradation of ZnGa2O4:Cr3+ luminescent nanoparticles in lysosomal-like medium. Nanoscale 2020;12:1967-74. [PMID: 31909403 DOI: 10.1039/c9nr06867h] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
184 Nakad EA, Chaud J, Morville C, Bolze F, Specht A. Monitoring of uncaging processes by designing photolytical reactions. Photochem Photobiol Sci 2020;19:1122-33. [PMID: 32756690 DOI: 10.1039/d0pp00169d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
185 Geiger S, Michon J, Liu S, Qin J, Ni J, Hu J, Gu T, Lu N. Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics 2020;7:2618-35. [DOI: 10.1021/acsphotonics.0c00983] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
186 Feng J, Zheng Y, Bhusari S, Villiou M, Pearson S, Campo A. Printed Degradable Optical Waveguides for Guiding Light into Tissue. Adv Funct Mater 2020;30:2004327. [DOI: 10.1002/adfm.202004327] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
187 Lee HE, Park JH, Jang D, Shin JH, Im TH, Lee JH, Hong SK, Wang HS, Kwak MS, Peddigari M, Jeong CK, Min Y, Park CH, Choi J, Ryu J, Yoon W, Kim D, Lee KJ, Hwang G. Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy 2020;75:104951. [DOI: 10.1016/j.nanoen.2020.104951] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
188 Shi Z, Wu J, Song Q, Göstl R, Herrmann A. Toward Drug Release Using Polymer Mechanochemical Disulfide Scission. J Am Chem Soc 2020;142:14725-32. [PMID: 32804498 DOI: 10.1021/jacs.0c07077] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 15.0] [Reference Citation Analysis]
189 Yang R, Liao H, Ma W, Li J, Wang S. A Compact High-Speed Image-Based Method for Measuring the Longitudinal Motion of Living Tissues. Sensors (Basel) 2020;20:E4573. [PMID: 32824066 DOI: 10.3390/s20164573] [Reference Citation Analysis]
190 Jeon Y, Choi H, Park K, Choi KC. 70‐4: Distinguished Student Paper: Flexible OLED‐based Photonic Skin for Attachable Phototherapeutics. SID Symposium Digest of Technical Papers 2020;51:1052-1055. [DOI: 10.1002/sdtp.14054] [Reference Citation Analysis]
191 Portone A, Borrego-Varillas R, Ganzer L, Di Corato R, Qualtieri A, Persano L, Camposeo A, Cerullo G, Pisignano D. Conformable Nanowire-in-Nanofiber Hybrids for Low-Threshold Optical Gain in the Ultraviolet. ACS Nano 2020;14:8093-102. [PMID: 32419446 DOI: 10.1021/acsnano.0c00870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
192 Li S, Shan X, Wang Y, Chen Q, Sun J, He Z, Sun B, Luo C. Dimeric prodrug-based nanomedicines for cancer therapy. J Control Release 2020;326:510-22. [PMID: 32721523 DOI: 10.1016/j.jconrel.2020.07.036] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 13.7] [Reference Citation Analysis]
193 Xiao YF, Xiang C, Li S, Mao C, Chen H, Chen JX, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang XH, Guo W, Lee CS. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. Small 2020;16:e2002672. [PMID: 32697430 DOI: 10.1002/smll.202002672] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
194 Yang ZS, Yao Y, Sedgwick AC, Li C, Xia Y, Wang Y, Kang L, Su H, Wang BW, Gao S, Sessler JL, Zhang JL. Rational design of an "all-in-one" phototheranostic. Chem Sci 2020;11:8204-13. [PMID: 34123091 DOI: 10.1039/d0sc03368e] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
195 Upputuri PK, Pramanik M. Photoacoustic imaging in the second near-infrared window: a review. J Biomed Opt 2019;24:1-20. [PMID: 30968648 DOI: 10.1117/1.JBO.24.4.040901] [Cited by in Crossref: 79] [Cited by in F6Publishing: 86] [Article Influence: 26.3] [Reference Citation Analysis]
196 Wang J, Dong J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors (Basel) 2020;20:E3981. [PMID: 32709072 DOI: 10.3390/s20143981] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
197 Dey P, Blakey I, Stone N. Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chem Sci 2020;11:8671-85. [PMID: 34123125 DOI: 10.1039/d0sc01926g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
198 Chen W, Goldys EM, Deng W. Light-induced liposomes for cancer therapeutics. Progress in Lipid Research 2020;79:101052. [DOI: 10.1016/j.plipres.2020.101052] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
199 Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020;158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
200 Fan Y, Ma Q, Xin S, Peng R, Kang H. Quantitative and Qualitative Evaluation of Supercontinuum Laser‐Induced Cutaneous Thermal Injuries and Their Repair With OCT Images. Lasers Surg Med 2021;53:252-62. [DOI: 10.1002/lsm.23287] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
201 Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, Qiao R, Ling D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release 2020;322:566-92. [DOI: 10.1016/j.jconrel.2020.03.051] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]
202 Liu X, Liu J, Lin S, Zhao X. Hydrogel machines. Materials Today 2020;36:102-24. [DOI: 10.1016/j.mattod.2019.12.026] [Cited by in Crossref: 311] [Cited by in F6Publishing: 333] [Article Influence: 103.7] [Reference Citation Analysis]
203 Ghavami Sabouri S. Overcoming the phase-mismatch by fundamental beam modulation. J Opt 2020;22:065502. [DOI: 10.1088/2040-8986/ab8b80] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
204 Yao X, Li M, Li B, Xue C, Cai K, Zhao Y, Luo Z. Tumor-targeted upconverting nanoplatform constructed by host-guest interaction for near-infrared-light-actuated synergistic photodynamic-/chemotherapy. Chemical Engineering Journal 2020;390:124516. [DOI: 10.1016/j.cej.2020.124516] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
205 Li D, Liu C, Yang Y, Wang L, Shen Y. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci Appl 2020;9:84. [PMID: 32411369 DOI: 10.1038/s41377-020-0323-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
206 Mei Z, Gao D, Hu D, Zhou H, Ma T, Huang L, Liu X, Zheng R, Zheng H, Zhao P, Zhou J, Sheng Z. Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods. Biomaterials 2020;251:120092. [PMID: 32388165 DOI: 10.1016/j.biomaterials.2020.120092] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 14.0] [Reference Citation Analysis]
207 Ahadi A. Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression. IUBMB Life 2020;72:884-98. [DOI: 10.1002/iub.2259] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
208 Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020;25:1174-88. [PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013] [Cited by in Crossref: 46] [Cited by in F6Publishing: 52] [Article Influence: 15.3] [Reference Citation Analysis]
209 Basore ET, Xiao W, Liu X, Wu J, Qiu J. Broadband Near‐Infrared Garnet Phosphors with Near‐Unity Internal Quantum Efficiency. Adv Optical Mater 2020;8:2000296. [DOI: 10.1002/adom.202000296] [Cited by in Crossref: 91] [Cited by in F6Publishing: 102] [Article Influence: 30.3] [Reference Citation Analysis]
210 Feng J, Jiang Q, Rogin P, de Oliveira PW, del Campo A. Printed Soft Optical Waveguides of PLA Copolymers for Guiding Light into Tissue. ACS Appl Mater Interfaces 2020;12:20287-94. [DOI: 10.1021/acsami.0c03903] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
211 Rapp TL, DeForest CA. Visible Light-Responsive Dynamic Biomaterials: Going Deeper and Triggering More. Adv Healthc Mater 2020;9:e1901553. [PMID: 32100475 DOI: 10.1002/adhm.201901553] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
212 Dong J, Breitenborn H, Piccoli R, Besteiro LV, You P, Caraffini D, Wang ZM, Govorov AO, Naccache R, Vetrone F, Razzari L, Morandotti R. Terahertz three-dimensional monitoring of nanoparticle-assisted laser tissue soldering. Biomed Opt Express 2020;11:2254-67. [PMID: 32341881 DOI: 10.1364/BOE.389561] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
213 Jeon Y, Choi H, Park K, Choi KC. Flexible organic light‐emitting‐diode‐based photonic skin for attachable phototherapeutics. J Soc Inf Display 2020;28:324-32. [DOI: 10.1002/jsid.882] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
214 Luo L, Sun W, Feng Y, Qin R, Zhang J, Ding D, Shi T, Liu X, Chen X, Chen H. Conjugation of a Scintillator Complex and Gold Nanorods for Dual-Modal Image-Guided Photothermal and X-ray-Induced Photodynamic Therapy of Tumors. ACS Appl Mater Interfaces 2020;12:12591-9. [PMID: 32105438 DOI: 10.1021/acsami.0c01189] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 13.7] [Reference Citation Analysis]
215 Zhao L, Li J, Su Y, Yang L, Chen L, Qiang L, Wang Y, Xiang H, Tham HP, Peng J, Zhao Y. MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Sci Adv 2020;6:eaaz0575. [PMID: 32181355 DOI: 10.1126/sciadv.aaz0575] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
216 Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020;49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Cited by in Crossref: 81] [Cited by in F6Publishing: 83] [Article Influence: 27.0] [Reference Citation Analysis]
217 Kong L, Chen Q, Campbell F, Snaar-Jagalska E, Kros A. Light-Triggered Cancer Cell Specific Targeting and Liposomal Drug Delivery in a Zebrafish Xenograft Model. Adv Healthc Mater 2020;9:e1901489. [PMID: 32052583 DOI: 10.1002/adhm.201901489] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
218 Seckin T, Yuksel B, Seckin S, Ayhan A. ABC of Endometriosis Surgery: Aqua Blue Contrast Technique.. [DOI: 10.1101/2020.02.27.20027888] [Reference Citation Analysis]
219 Kong C, Pilger C, Hachmeister H, Wei X, Cheung TH, Lai CSW, Lee NP, Tsia KK, Wong KKY, Huser T. High-contrast, fast chemical imaging by coherent Raman scattering using a self-synchronized two-colour fibre laser. Light Sci Appl 2020;9:25. [PMID: 32133128 DOI: 10.1038/s41377-020-0259-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
220 Deng H, Zhou Z, Yang W, Lin LS, Wang S, Niu G, Song J, Chen X. Endoplasmic Reticulum Targeting to Amplify Immunogenic Cell Death for Cancer Immunotherapy. Nano Lett 2020;20:1928-33. [PMID: 32073871 DOI: 10.1021/acs.nanolett.9b05210] [Cited by in Crossref: 138] [Cited by in F6Publishing: 152] [Article Influence: 46.0] [Reference Citation Analysis]
221 Wei X, Shen Y, Jing JC, Hemphill AS, Yang C, Xu S, Yang Z, Wang LV. Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. Sci Adv 2020;6:eaay1192. [PMID: 32128401 DOI: 10.1126/sciadv.aay1192] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
222 Ku M, Hwang JC, Oh B, Park J. Smart Sensing Systems Using Wearable Optoelectronics. Advanced Intelligent Systems 2020;2:1900144. [DOI: 10.1002/aisy.201900144] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
223 Cheung WKW, Wu IXY, Sit RWS, Ho RST, Wong CHL, Wong SYS, Chung VCH. Low-level laser therapy for carpal tunnel syndrome: systematic review and network meta-analysis. Physiotherapy 2020;106:24-35. [PMID: 32026843 DOI: 10.1016/j.physio.2019.06.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
224 Upputuri PK, Pramanik M. Recent advances in photoacoustic contrast agents for in vivo imaging. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1618] [Cited by in Crossref: 57] [Cited by in F6Publishing: 64] [Article Influence: 19.0] [Reference Citation Analysis]
225 Kerdoncuff H, Christensen JB, Brasil TB, Novikov VA, Polzik ES, Hald J, Lassen M. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion efficiency. Opt Express 2020;28:3975-84. [PMID: 32122057 DOI: 10.1364/OE.385826] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
226 Kwon S, Hwang YH, Nam M, Chae H, Lee HS, Jeon Y, Lee S, Kim CY, Choi S, Jeong EG, Choi KC. Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications-A Fibertronic Perspective. Adv Mater 2020;32:e1903488. [PMID: 31483540 DOI: 10.1002/adma.201903488] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 17.3] [Reference Citation Analysis]
227 Wu T, Chen X, Gong Z, Li Y, Zhang Y. Waveguiding and focusing in a bio-medium with an optofluidic cell chain. Acta Biomater 2020;103:165-71. [PMID: 31812842 DOI: 10.1016/j.actbio.2019.12.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
228 Liu Z, Li J, Chen W, Liu L, Yu F. Light and sound to trigger the Pandora's box against breast cancer: A combination strategy of sonodynamic, photodynamic and photothermal therapies. Biomaterials 2020;232:119685. [DOI: 10.1016/j.biomaterials.2019.119685] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
229 La Mattina AA, Mariani S, Barillaro G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. Adv Sci (Weinh) 2020;7:1902872. [PMID: 32099766 DOI: 10.1002/advs.201902872] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
230 Depciuch J, Stec M, Kandler M, Baran J, Parlinska-Wojtan M. From spherical to bone-shaped gold nanoparticles-Time factor in the formation of Au NPs, their optical and photothermal properties. Photodiagnosis Photodyn Ther 2020;30:101670. [PMID: 31988022 DOI: 10.1016/j.pdpdt.2020.101670] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
231 Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020;10:1923-47. [PMID: 32042345 DOI: 10.7150/thno.39915] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 14.7] [Reference Citation Analysis]
232 Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat Rev Mater 2020;5:149-65. [PMID: 32728478 DOI: 10.1038/s41578-019-0167-3] [Cited by in Crossref: 227] [Cited by in F6Publishing: 235] [Article Influence: 75.7] [Reference Citation Analysis]
233 Zhang X, Wang F, Sheng J, Sun M. Advances and Application of DNA-functionalized Nanoparticles. CMC 2020;26:7147-65. [DOI: 10.2174/0929867325666180501103620] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
234 Wei X, Shen Y, Jing JC, Hemphill AS, Yang C, Xu S, Yang Z, Wang LV. Real-time frequency-encoded spatiotemporal focusing. Conference on Lasers and Electro-Optics 2020. [DOI: 10.1364/cleo_si.2020.sth1m.2] [Reference Citation Analysis]
235 Li J, Liu C, Hu Y, Ji C, Li S, Yin M. pH-responsive perylenediimide nanoparticles for cancer trimodality imaging and photothermal therapy. Theranostics 2020;10:166-78. [PMID: 31903113 DOI: 10.7150/thno.36999] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 11.3] [Reference Citation Analysis]
236 Edge D, Schødt M, Nielsen MCE. Biophotonic Therapy Induced Photobiomodulation. Technology in Practical Dermatology 2020. [DOI: 10.1007/978-3-030-45351-0_37] [Reference Citation Analysis]
237 Chen F, Amekura H, Jia Y. Lasing Based on Dielectric Waveguides. Springer Series in Optical Sciences 2020. [DOI: 10.1007/978-981-15-4607-5_9] [Reference Citation Analysis]
238 Choi SK. Light sources for photonanotechnology. Photonanotechnology for Therapeutics and Imaging 2020. [DOI: 10.1016/b978-0-12-817840-9.00001-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
239 Yadav S, Shivagan DD, Bapna K, Jaiswal VK, Sharma P, Saha S, Singh M, Garg N, Soni K, Titus SSK, Aswal DK. Physico-Mechanical Metrology. Metrology for Inclusive Growth of India 2020. [DOI: 10.1007/978-981-15-8872-3_8] [Reference Citation Analysis]
240 Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RFB. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst 2020;145:2070-105. [DOI: 10.1039/c9an01811e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
241 Guan Q, Zhou L, Zhou L, Li M, Qin G, Li W, Li Y, Dong Y. A carbon nanomaterial derived from a nanoscale covalent organic framework for photothermal therapy in the NIR-II biowindow. Chem Commun 2020;56:7793-6. [DOI: 10.1039/d0cc00861c] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
242 Feng J, Xu Z, Luo D, Liu X. Multiplexed Imaging with Coordination Nanoparticles for Cancer Diagnosis and Therapy. ACS Appl Bio Mater 2020;3:713-20. [DOI: 10.1021/acsabm.9b01038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
243 Tetsu Y, Kido Y, Hao M, Takeoka S, Maruyama T, Fujie T. Graphene/Au Hybrid Antenna Coil Exfoliated with Multi‐Stacked Graphene Flakes for Ultra‐Thin Biomedical Devices. Adv Electron Mater 2020;6:1901143. [DOI: 10.1002/aelm.201901143] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
244 Zheng Z, Ren X, Zhu K, Ouyang D, Wang J, Guo C, Du G, Pei J, Lue Q, Ruan S. Fundamental and harmonic mode-locked h-shaped pulse generation using a figure-of-9 thulium-doped fiber laser. Opt Express 2019;27:37172-9. [PMID: 31878502 DOI: 10.1364/OE.27.037172] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
245 Jeon Y, Choi HR, Kwon JH, Choi S, Nam KM, Park KC, Choi KC. Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine. Light Sci Appl 2019;8:114. [PMID: 31839934 DOI: 10.1038/s41377-019-0221-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 10.3] [Reference Citation Analysis]
246 Kumar Rajendran N, George BP, Chandran R, Tynga IM, Houreld N, Abrahamse H. The Influence of Light on Reactive Oxygen Species and NF-кB in Disease Progression. Antioxidants (Basel) 2019;8:E640. [PMID: 31842333 DOI: 10.3390/antiox8120640] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
247 Noor N, Mutalik S, Younas MW, Chan CY, Thakur S, Wang F, Yao MZ, Mou Q, Leung PH. Durable Antimicrobial Behaviour from Silver-Graphene Coated Medical Textile Composites. Polymers (Basel) 2019;11:E2000. [PMID: 31816952 DOI: 10.3390/polym11122000] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
248 Wang Z, Wang N, Cheng S, Xu K, Deng Z, Chen S, Xu Z, Xie K, Tse M, Shi P, Hirao H, Ko C, Zhu G. Phorbiplatin, a Highly Potent Pt(IV) Antitumor Prodrug That Can Be Controllably Activated by Red Light. Chem 2019;5:3151-65. [DOI: 10.1016/j.chempr.2019.08.021] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 14.5] [Reference Citation Analysis]
249 Thorat ND, Tofail SAM, von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews 2019;6:041306. [DOI: 10.1063/1.5049467] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
250 Vorobev AY, Moskalensky AE. Long-wavelength photoremovable protecting groups: On the way to in vivo application. Comput Struct Biotechnol J 2020;18:27-34. [PMID: 31890141 DOI: 10.1016/j.csbj.2019.11.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 9.5] [Reference Citation Analysis]
251 Li X, Liu L, Li S, Wan Y, Chen JX, Tian S, Huang Z, Xiao YF, Cui X, Xiang C, Tan Q, Zhang XH, Guo W, Liang XJ, Lee CS. Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano 2019;13:12901-11. [PMID: 31682416 DOI: 10.1021/acsnano.9b05383] [Cited by in Crossref: 116] [Cited by in F6Publishing: 121] [Article Influence: 29.0] [Reference Citation Analysis]
252 Chang B, Qiu H, Zhao H, Yang X, Wang Y, Ji T, Zhang Y, Quan Q, Li Y, Zeng J, Meng H, Gu Y. The Effects of Photobiomodulation on MC3T3-E1 Cells via 630 nm and 810 nm Light-Emitting Diode. Med Sci Monit 2019;25:8744-52. [PMID: 31743330 DOI: 10.12659/MSM.920396] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
253 Smith JT, Yao R, Sinsuebphon N, Rudkouskaya A, Un N, Mazurkiewicz J, Barroso M, Yan P, Intes X. Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proc Natl Acad Sci U S A 2019;116:24019-30. [PMID: 31719196 DOI: 10.1073/pnas.1912707116] [Cited by in Crossref: 59] [Cited by in F6Publishing: 64] [Article Influence: 14.8] [Reference Citation Analysis]
254 Umar M, Min K, Kim S, Kim S. Random lasing and amplified spontaneous emission from silk inverse opals: Optical gain enhancement via protein scatterers. Sci Rep 2019;9:16266. [PMID: 31700045 DOI: 10.1038/s41598-019-52706-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
255 Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020;5:100035. [PMID: 32211603 DOI: 10.1016/j.mtbio.2019.100035] [Cited by in Crossref: 114] [Cited by in F6Publishing: 120] [Article Influence: 28.5] [Reference Citation Analysis]
256 Zhang S, Li M, Xia W, Fan J, Wang J, Li Y, Li Y, Wang H, Dong C, Ma D, Guo J, Peng X. Imaging and Inhibiting: A Dual Function Molecular Flare for Cancer Cells. Anal Chem 2019;91:13501-7. [PMID: 31571476 DOI: 10.1021/acs.analchem.9b02558] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
257 Xu B, Peng Z, Wu Z, Zhang XA, Wang Y. Quantitative infrared spectroscopy of environmentally sensitive and rough materials. Rev Sci Instrum 2019;90:113102. [PMID: 31779386 DOI: 10.1063/1.5117234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
258 Zhao T, Desjardins AE, Ourselin S, Vercauteren T, Xia W. Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics 2019;16:100146. [PMID: 31871889 DOI: 10.1016/j.pacs.2019.100146] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 15.0] [Reference Citation Analysis]
259 Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng 2020;4:159-71. [DOI: 10.1038/s41551-019-0462-8] [Cited by in Crossref: 106] [Cited by in F6Publishing: 112] [Article Influence: 26.5] [Reference Citation Analysis]
260 Inglut CT, Gaitan B, Najafali D, Lopez IA, Connolly NP, Orsila S, Perttilä R, Woodworth GF, Chen Y, Huang HC. Predictors and Limitations of the Penetration Depth of Photodynamic Effects in the Rodent Brain. Photochem Photobiol 2020;96:301-9. [PMID: 31441057 DOI: 10.1111/php.13155] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
261 Gong Z, Xiang Z, OuYang X, Zhang J, Lau N, Zhou J, Chan CC. Wearable Fiber Optic Technology Based on Smart Textile: A Review. Materials (Basel) 2019;12:E3311. [PMID: 31614542 DOI: 10.3390/ma12203311] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 13.0] [Reference Citation Analysis]
262 Lunova M, Smolková B, Uzhytchak M, Janoušková KŽ, Jirsa M, Egorova D, Kulikov A, Kubinová Š, Dejneka A, Lunov O. Light-induced modulation of the mitochondrial respiratory chain activity: possibilities and limitations. Cell Mol Life Sci 2020;77:2815-38. [DOI: 10.1007/s00018-019-03321-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
263 Lu D, Liu TL, Chang JK, Peng D, Zhang Y, Shin J, Hang T, Bai W, Yang Q, Rogers JA. Transient Light-Emitting Diodes Constructed from Semiconductors and Transparent Conductors that Biodegrade Under Physiological Conditions. Adv Mater 2019;31:e1902739. [PMID: 31489737 DOI: 10.1002/adma.201902739] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
264 Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang Thi TT. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int J Mol Sci 2019;20:E4706. [PMID: 31547569 DOI: 10.3390/ijms20194706] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
265 Liu C, Guo X, Ruan C, Hu H, Jiang BP, Liang H, Shen XC. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy. Acta Biomater 2019;96:281-94. [PMID: 31319202 DOI: 10.1016/j.actbio.2019.07.024] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
266 Deng H, Lin L, Wang S, Yu G, Zhou Z, Liu Y, Niu G, Song J, Chen X. X-ray-Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. Adv Mater 2019;31:e1903443. [PMID: 31379091 DOI: 10.1002/adma.201903443] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
267 Xiong Q, Lim Y, Li D, Pu K, Liang L, Duan H. Photoactive Nanocarriers for Controlled Delivery. Adv Funct Mater 2019;30:1903896. [DOI: 10.1002/adfm.201903896] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
268 Hosseinzadeh M, Salmani S, Ara MHM. Interferometric optical testing to discriminate benign and malignant brain tumors. J Photochem Photobiol B 2019;199:111590. [PMID: 31445095 DOI: 10.1016/j.jphotobiol.2019.111590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
269 Bertens CJF, Zhang S, Erckens RJ, van den Biggelaar FJHM, Berendschot TTJM, Webers CAB, Nuijts RMMA, Gijs M. Confocal Raman spectroscopy: Evaluation of a non-invasive technique for the detection of topically applied ketorolac tromethamine in vitro and in vivo. Int J Pharm 2019;570:118641. [PMID: 31446026 DOI: 10.1016/j.ijpharm.2019.118641] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
270 Cao Z, Li B, Sun L, Li L, Xu ZP, Gu Z. 2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine. Small Methods 2020;4:1900343. [DOI: 10.1002/smtd.201900343] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 16.0] [Reference Citation Analysis]
271 Tang Y, Pei F, Lu X, Fan Q, Huang W. Recent Advances on Activatable NIR‐II Fluorescence Probes for Biomedical Imaging. Adv Optical Mater 2019;7:1900917. [DOI: 10.1002/adom.201900917] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 19.0] [Reference Citation Analysis]
272 Bai W, Shin J, Fu R, Kandela I, Lu D, Ni X, Park Y, Liu Z, Hang T, Wu D, Liu Y, Haney CR, Stepien I, Yang Q, Zhao J, Nandoliya KR, Zhang H, Sheng X, Yin L, MacRenaris K, Brikha A, Aird F, Pezhouh M, Hornick J, Zhou W, Rogers JA. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat Biomed Eng 2019;3:644-54. [PMID: 31391594 DOI: 10.1038/s41551-019-0435-y] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 16.5] [Reference Citation Analysis]
273 Liu Y, Xu Y, Zhang Z, Huo Y, Chen D, Ma W, Sun K, Tonga GY, Zhou G, Kohane DS, Tao K. A Simple, Yet Multifunctional, Nanoformulation for Eradicating Tumors and Preventing Recurrence with Safely Low Administration Dose. Nano Lett 2019;19:5515-23. [PMID: 31362507 DOI: 10.1021/acs.nanolett.9b02053] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
274 Song J, Zhang L, Yi H, Huang J, Zhang N, Zhong Y, Hao L, Ke Yang, Wang Z, Wang D, Yang Z. NIR-responsive nanoplatform for pre/intraoperative image-guided carcinoma surgery and photothermal ablation of residual tumor tissue. Nanomedicine: Nanotechnology, Biology and Medicine 2019;20:102020. [DOI: 10.1016/j.nano.2019.102020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
275 Krasnikov I, Seteikin A, Roth B. Advances in the simulation of light-tissue interactions in biomedical engineering. Biomed Eng Lett 2019;9:327-37. [PMID: 31456892 DOI: 10.1007/s13534-019-00123-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
276 Davoodzadeh N, Cano-velázquez MS, Jonak CR, Halaney DL, Binder DK, Hernández-cordero JA, Aguilar G. Theranostic cranial implant for hyperspectral light delivery and microcirculation imaging without scalp removal.. [DOI: 10.1101/720599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
277 Lynnyk A, Smolková B, Uzhytchak M, Egorova D, Kulikov A, Lunova M, Kubinová Š, Dejneka A, Lunov O. Laser irradiation induces mitochondrial dysfunction in hepatic cells. Medical Laser Applications and Laser-Tissue Interactions IX 2019. [DOI: 10.1117/12.2527110] [Reference Citation Analysis]
278 Xu X, Xie S, Zhang Y, Peng H. The Rise of Fiber Electronics. Angew Chem 2019;131:13778-88. [DOI: 10.1002/ange.201902425] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
279 Xu X, Xie S, Zhang Y, Peng H. The Rise of Fiber Electronics. Angew Chem Int Ed Engl 2019;58:13643-53. [PMID: 30986329 DOI: 10.1002/anie.201902425] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 13.8] [Reference Citation Analysis]
280 Gil CJ, Tomov ML, Theus AS, Cetnar A, Mahmoudi M, Serpooshan V. In Vivo Tracking of Tissue Engineered Constructs. Micromachines (Basel) 2019;10:E474. [PMID: 31315207 DOI: 10.3390/mi10070474] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
281 Lapshina N, Jeffet J, Rosenman G, Ebenstein Y, Ellenbogen T. Single Fluorescent Peptide Nanodots. ACS Photonics 2019;6:1626-31. [DOI: 10.1021/acsphotonics.9b00685] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
282 Bhuckory S, Kays JC, Dennis AM. In Vivo Biosensing Using Resonance Energy Transfer. Biosensors (Basel) 2019;9:E76. [PMID: 31163706 DOI: 10.3390/bios9020076] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
283 Cavigli L, Centi S, Borri C, Tortoli P, Panettieri I, Streit I, Ciofini D, Magni G, Rossi F, Siano S, Ratto F, Pini R. 1064-nm-resonant gold nanorods for photoacoustic theranostics within permissible exposure limits. J Biophotonics 2019;12:e201900082. [PMID: 31155855 DOI: 10.1002/jbio.201900082] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
284 Kong C, Pilger C, Hachmeister H, Wei X, Tsia KK, Huser T, Wong KKY. High-Contrast Coherent Raman Scattering Imaging using a Self-Synchronized Dual-Color Fiber Laser. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 2019. [DOI: 10.1109/cleoe-eqec.2019.8872376] [Reference Citation Analysis]
285 Han X, Chen J, Chu J, Liang C, Ma Q, Fan Q, Liu Z, Wang C. Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody. Journal of Controlled Release 2019;304:233-41. [DOI: 10.1016/j.jconrel.2019.05.008] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 11.0] [Reference Citation Analysis]
286 Thang DC, Wang Z, Lu X, Xing B. Precise cell behaviors manipulation through light-responsive nano-regulators: recent advance and perspective. Theranostics 2019;9:3308-40. [PMID: 31244956 DOI: 10.7150/thno.33888] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
287 Zhang D, Zhang C, Lan S, Huang Y, Liu J, Li J, Liu X, Yang H. Near‐Infrared Light Activated Thermosensitive Ion Channel to Remotely Control Transgene System for Thrombolysis Therapy. Small 2019;15:1901176. [DOI: 10.1002/smll.201901176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
288 Petruzzi M, Nardi GM, Cocco F, Della Vella F, Grassi R, Grassi FR. Polarized Polychromatic Noncoherent Light (Bioptron Light) as Adjunctive Treatment in Chronic Oral Mucosal Pain: A Pilot Study. Photobiomodul Photomed Laser Surg 2019;37:227-32. [PMID: 31050959 DOI: 10.1089/photob.2018.4576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
289 Zhang Y, Bo S, Feng T, Qin X, Wan Y, Jiang S, Li C, Lin J, Wang T, Zhou X, Jiang ZX, Huang P. A Versatile Theranostic Nanoemulsion for Architecture-Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy. Adv Mater 2019;31:e1806444. [PMID: 30907469 DOI: 10.1002/adma.201806444] [Cited by in Crossref: 90] [Cited by in F6Publishing: 96] [Article Influence: 22.5] [Reference Citation Analysis]
290 Fernandez‐villamarin M, Brooks L, Mendes PM. The Role of Photochemical Reactions in the Development of Advanced Soft Materials for Biomedical Applications. Adv Optical Mater 2019;7:1900215. [DOI: 10.1002/adom.201900215] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
291 Li M, Luo Z, Peng Z, Cai K. Cascade-amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1555. [PMID: 31016872 DOI: 10.1002/wnan.1555] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
292 Riefolo F, Matera C, Garrido-charles A, Gomila AMJ, Sortino R, Agnetta L, Claro E, Masgrau R, Holzgrabe U, Batlle M, Decker M, Guasch E, Gorostiza P. Optical Control of Cardiac Function with a Photoswitchable Muscarinic Agonist. J Am Chem Soc 2019;141:7628-36. [DOI: 10.1021/jacs.9b03505] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
293 Song J, Zhang N, Zhang L, Yi H, Liu Y, Li Y, Li X, Wu M, Hao L, Yang Z, Wang Z. IR780-loaded folate-targeted nanoparticles for near-infrared fluorescence image-guided surgery and photothermal therapy in ovarian cancer. Int J Nanomedicine 2019;14:2757-72. [PMID: 31118609 DOI: 10.2147/IJN.S203108] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
294 Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019;48:2053-108. [PMID: 30259015 DOI: 10.1039/c8cs00618k] [Cited by in Crossref: 1334] [Cited by in F6Publishing: 1406] [Article Influence: 333.5] [Reference Citation Analysis]
295 Jiang Y, Parameswaran R, Li X, Carvalho-de-Souza JL, Gao X, Meng L, Bezanilla F, Shepherd GMG, Tian B. Nongenetic optical neuromodulation with silicon-based materials. Nat Protoc 2019;14:1339-76. [PMID: 30980031 DOI: 10.1038/s41596-019-0135-9] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
296 Sun Y, Liang Y, Dai W, He B, Zhang H, Wang X, Wang J, Huang S, Zhang Q. Peptide–Drug Conjugate-Based Nanocombination Actualizes Breast Cancer Treatment by Maytansinoid and Photothermia with the Assistance of Fluorescent and Photoacoustic Images. Nano Lett 2019;19:3229-37. [DOI: 10.1021/acs.nanolett.9b00770] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
297 Apter B, Lapshina N, Handelman A, Rosenman G. Light waveguiding in bioinspired peptide nanostructures. J Pept Sci 2019;25:e3164. [PMID: 30900328 DOI: 10.1002/psc.3164] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
298 Han S, Park YJ, Park EJ, Kim Y. T98G Cell Death Induced by Photothermal Treatment with Hollow Gold Nanoshell-Coupled Silica Microrods Prepared from Escherichia Coli. ACS Appl Mater Interfaces 2019;11:8831-7. [PMID: 30763070 DOI: 10.1021/acsami.8b21199] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
299 Davoodzadeh N, Cano-velázquez MS, Halaney DL, Jonak CR, Binder DK, Aguilar G. Evaluation of a transparent cranial implant for multi-wavelength intrinsic optical signal imaging. Neural Imaging and Sensing 2019 2019. [DOI: 10.1117/12.2511035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
300 Niu D, Jiang W, Ye G, Lei B, Luo F, Liu H, Lu B. Photothermally triggered soft robot with adaptive local deformations and versatile bending modes. Smart Mater Struct 2019;28:02LT01. [DOI: 10.1088/1361-665x/aad8f3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
301 Smith JT, Yao R, Sinsuebphon N, Rudkouskaya A, Mazurkiewicz J, Barroso M, Yan P, Intes X. Ultra-fast fit-free analysis of complex fluorescence lifetime imaging via deep learning.. [DOI: 10.1101/523928] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
302 Samadi A, Klingberg H, Jauffred L, Kjær A, Bendix PM, Oddershede LB. Platinum nanoparticles: a non-toxic, effective and thermally stable alternative plasmonic material for cancer therapy and bioengineering. Nanoscale 2018;10:9097-107. [PMID: 29718060 DOI: 10.1039/c8nr02275e] [Cited by in Crossref: 65] [Cited by in F6Publishing: 71] [Article Influence: 16.3] [Reference Citation Analysis]
303 Rao C, Verma NC, Nandi CK. Unveiling the Hydrogen Bonding Network of Intracellular Water by Fluorescence Lifetime Imaging Microscopy. J Phys Chem C 2019;123:2673-7. [DOI: 10.1021/acs.jpcc.8b12439] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
304 Wang Y, Sun Z, Chen Z, Wu Y, Gu Y, Lin S, Wang Y. In Vivo Photoacoustic/Single-Photon Emission Computed Tomography Imaging for Dynamic Monitoring of Aggregation-Enhanced Photothermal Nanoagents. Anal Chem 2019;91:2128-34. [DOI: 10.1021/acs.analchem.8b04585] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
305 Nijhawan G, Nijhawan SS, Sethi M. Hyperthermia Treatments. Noble Metal-Metal Oxide Hybrid Nanoparticles 2019. [DOI: 10.1016/b978-0-12-814134-2.00012-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
306 Yang Y, Lyu M, Li J, Zhu D, Yuan Y, Liu W. Ultra-small bimetallic iron–palladium (FePd) nanoparticle loaded macrophages for targeted tumor photothermal therapy in NIR-II biowindows and magnetic resonance imaging. RSC Adv 2019;9:33378-87. [DOI: 10.1039/c9ra05649a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
307 Zhou R, Zhu S, Gong L, Fu Y, Gu Z, Zhao Y. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. J Mater Chem B 2019;7:2588-607. [DOI: 10.1039/c8tb03240h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
308 Zhou R, Wang H, Yang Y, Zhang C, Dong X, Du J, Yan L, Zhang G, Gu Z, Zhao Y. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials 2019;189:11-22. [DOI: 10.1016/j.biomaterials.2018.10.016] [Cited by in Crossref: 92] [Cited by in F6Publishing: 101] [Article Influence: 23.0] [Reference Citation Analysis]
309 Talib AJ, Fisher A, Voronine DV, Sinyukov AM, Bustamante Lopez SC, Ambardar S, Meissner KE, Scully MO, Sokolov AV. Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis. Analyst 2019;144:4362-70. [DOI: 10.1039/c9an00757a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
310 Amiri O, Moura NMM, Faustino MAF, Cavaleiro JAS, Rakib EM, Neves MGPMS. Synthetic access to new porphyrinoids from 2-nitro-5,10,15,20-tetraphenylporphyrin and an arylacetonitrile. Monatsh Chem 2019;150:67-75. [DOI: 10.1007/s00706-018-2283-y] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
311 Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horiz 2019;4:378-87. [DOI: 10.1039/c8nh00417j] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 15.0] [Reference Citation Analysis]
312 Fang Z, Zhao F, Zhang Y, Ding W, Zhang L, Liu M, Xu W, Thapa KB, Huang W, Ju Q. Intentional anion incorporation to rationally modulate the size, shape and optical properties of lanthanide oxide nanocrystals. Nanoscale 2019;11:5633-9. [DOI: 10.1039/c8nr10472g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
313 Jeong H, Choi E, Ellis E, Lee T. Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B 2019;7:3480-96. [DOI: 10.1039/c9tb00557a] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 18.0] [Reference Citation Analysis]
314 Jing X, Xu Y, Liu D, Wu Y, Zhou N, Wang D, Yan K, Meng L. Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. Nanoscale 2019;11:15508-18. [DOI: 10.1039/c9nr04768a] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 12.3] [Reference Citation Analysis]
315 Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. Adv Mater 2019;31:e1802244. [PMID: 30156333 DOI: 10.1002/adma.201802244] [Cited by in Crossref: 139] [Cited by in F6Publishing: 150] [Article Influence: 34.8] [Reference Citation Analysis]
316 Gong L, Gu Z. Transition Metal Dichalcogenides for Biomedical Applications. Two Dimensional Transition Metal Dichalcogenides 2019. [DOI: 10.1007/978-981-13-9045-6_8] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
317 Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018;10:E2. [PMID: 30586923 DOI: 10.3390/jfb10010002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
318 Wang P, Shi Y, Zhang S, Huang X, Zhang J, Zhang Y, Si W, Dong X. Hydrogen Peroxide Responsive Iron-Based Nanoplatform for Multimodal Imaging-Guided Cancer Therapy. Small 2019;15:e1803791. [PMID: 30569479 DOI: 10.1002/smll.201803791] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 8.6] [Reference Citation Analysis]
319 Coskun AF, Topkaya SN, Yetisen AK, Cetin AE. Portable Multiplex Optical Assays. Advanced Optical Materials 2019;7:1801109. [DOI: 10.1002/adom.201801109] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
320 Hosseinzadeh M, Salmani S, Majles Ara MH, Mohajer S. The simple optical methods for early diagnosis of selected benign and malignant brain tumors of human. J Nonlinear Optic Phys Mat 2018;27:1850033. [DOI: 10.1142/s0218863518500339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
321 Huang XW, Wei JJ, Zhang MY, Zhang XL, Yin XF, Lu CH, Song JB, Bai SM, Yang HH. Water-Based Black Phosphorus Hybrid Nanosheets as a Moldable Platform for Wound Healing Applications. ACS Appl Mater Interfaces 2018;10:35495-502. [PMID: 30251823 DOI: 10.1021/acsami.8b12523] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 9.4] [Reference Citation Analysis]
322 Zhou M, Zhang S, Wang L, Zhang B. Ultrafast photoinduced charge transfer character in ofloxacin singlet decay. Chemical Physics Letters 2018;710:1-5. [DOI: 10.1016/j.cplett.2018.08.048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
323 Huang S, Liu W, Huang J, Wang X, Yang C, Bohra H, Liu Q, Wang M. Theranostic Colloidal Nanoparticles of Pyrrolopyrrole Cyanine Derivatives for Simultaneous Near-Infrared Fluorescence Cancer Imaging and Photothermal Therapy. ACS Appl Bio Mater 2018;1:1109-17. [DOI: 10.1021/acsabm.8b00321] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
324 Chao Y, Liang C, Yang Y, Wang G, Maiti D, Tian L, Wang F, Pan W, Wu S, Yang K, Liu Z. Highly Effective Radioisotope Cancer Therapy with a Non-Therapeutic Isotope Delivered and Sensitized by Nanoscale Coordination Polymers. ACS Nano 2018;12:7519-28. [PMID: 30047272 DOI: 10.1021/acsnano.8b02400] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 8.6] [Reference Citation Analysis]
325 Wang F, Chen C, Chen Y, Wang P, Chen C, Geng D, Li L, Song T. Magnetically targeted photothemal cancer therapy in vivo with bacterial magnetic nanoparticles. Colloids Surf B Biointerfaces 2018;172:308-14. [PMID: 30176510 DOI: 10.1016/j.colsurfb.2018.08.051] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
326 Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, Li X, Piper JA, Zhang F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nature Nanotech 2018;13:941-6. [DOI: 10.1038/s41565-018-0221-0] [Cited by in Crossref: 437] [Cited by in F6Publishing: 445] [Article Influence: 87.4] [Reference Citation Analysis]
327 Hwang MH, Son HG, Lee JW, Yoo CM, Shin JH, Nam HG, Lim HJ, Baek SM, Park JH, Kim JH, Choi H. Photobiomodulation of extracellular matrix enzymes in human nucleus pulposus cells as a potential treatment for intervertebral disk degeneration. Sci Rep 2018;8:11654. [PMID: 30076336 DOI: 10.1038/s41598-018-30185-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
328 Sheng X. Heterogeneously Integrated Optoelectronic Devices for Implantable Neural Interfaces. 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama) 2018. [DOI: 10.23919/piers.2018.8597836] [Reference Citation Analysis]
329 Guo X, Ding Z, Deng S, Wen C, Shen X, Jiang B, Liang H. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 2018;134:519-30. [DOI: 10.1016/j.carbon.2018.04.001] [Cited by in Crossref: 71] [Cited by in F6Publishing: 77] [Article Influence: 14.2] [Reference Citation Analysis]
330 Bai W, Yang H, Ma Y, Chen H, Shin J, Liu Y, Yang Q, Kandela I, Liu Z, Kang SK, Wei C, Haney CR, Brikha A, Ge X, Feng X, Braun PV, Huang Y, Zhou W, Rogers JA. Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon. Adv Mater 2018;30:e1801584. [PMID: 29944186 DOI: 10.1002/adma.201801584] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
331 Nazempour R, Zhang Q, Fu R, Sheng X. Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. Materials (Basel) 2018;11:E1283. [PMID: 30044416 DOI: 10.3390/ma11081283] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 11.2] [Reference Citation Analysis]
332 Meng F, Wang J, Ping Q, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. ACS Nano 2018;12:6458-68. [PMID: 29920064 DOI: 10.1021/acsnano.8b02881] [Cited by in Crossref: 87] [Cited by in F6Publishing: 93] [Article Influence: 17.4] [Reference Citation Analysis]
333 Zhang Z, Yuan Y, Liu Z, Chen H, Chen D, Fang X, Zheng J, Qin W, Wu C. Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs. ACS Appl Mater Interfaces 2018;10:26928-35. [DOI: 10.1021/acsami.8b08735] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
334 Wu Y, Chen Z, Zhang P, Zhou L, Jiang T, Chen H, Gong P, Dimitrov DS, Cai L, Zhao Q. Recombinant-fully-human-antibody decorated highly-stable far-red AIEdots for in vivo HER-2 receptor-targeted imaging. Chem Commun (Camb) 2018;54:7314-7. [PMID: 29904764 DOI: 10.1039/c8cc03037e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
335 Apter B, Lapshina N, Handelman A, Fainberg BD, Rosenman G. Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips. Small 2018;14:e1801147. [PMID: 30027685 DOI: 10.1002/smll.201801147] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
336 Yamagishi K, Kirino I, Takahashi I, Amano H, Takeoka S, Morimoto Y, Fujie T. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat Biomed Eng 2019;3:27-36. [DOI: 10.1038/s41551-018-0261-7] [Cited by in Crossref: 98] [Cited by in F6Publishing: 103] [Article Influence: 19.6] [Reference Citation Analysis]
337 Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules 2018;23:E1704. [PMID: 30002333 DOI: 10.3390/molecules23071704] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 12.8] [Reference Citation Analysis]
338 Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018;24:11245-54. [PMID: 29633378 DOI: 10.1002/chem.201801205] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
339 Shabahang S, Kim S, Yun SH. Light-Guiding Biomaterials for Biomedical Applications. Adv Funct Mater 2018;28:1706635. [PMID: 31435205 DOI: 10.1002/adfm.201706635] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 9.6] [Reference Citation Analysis]
340 Ding H, Lu L, Shi Z, Wang D, Li L, Li X, Ren Y, Liu C, Cheng D, Kim H, Giebink NC, Wang X, Yin L, Zhao L, Luo M, Sheng X. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc Natl Acad Sci U S A 2018;115:6632-7. [PMID: 29891705 DOI: 10.1073/pnas.1802064115] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 10.4] [Reference Citation Analysis]
341 Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev 2018;47:3574-620. [PMID: 29479622 DOI: 10.1039/c7cs00877e] [Cited by in Crossref: 256] [Cited by in F6Publishing: 262] [Article Influence: 51.2] [Reference Citation Analysis]
342 Rand D, Jakešová M, Lubin G, Vėbraitė I, David-Pur M, Đerek V, Cramer T, Sariciftci NS, Hanein Y, Głowacki ED. Direct Electrical Neurostimulation with Organic Pigment Photocapacitors. Adv Mater 2018;30:e1707292. [PMID: 29717514 DOI: 10.1002/adma.201707292] [Cited by in Crossref: 83] [Cited by in F6Publishing: 83] [Article Influence: 16.6] [Reference Citation Analysis]
343 Schulze HG, Rangan S, Piret JM, Blades MW, Turner RFB. Developing Fully Automated Quality Control Methods for Preprocessing Raman Spectra of Biomedical and Biological Samples. Appl Spectrosc 2018;72:1322-40. [DOI: 10.1177/0003702818778031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
344 Xu H, Yin L, Liu C, Sheng X, Zhao N. Recent Advances in Biointegrated Optoelectronic Devices. Adv Mater 2018;:e1800156. [PMID: 29806115 DOI: 10.1002/adma.201800156] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 9.8] [Reference Citation Analysis]
345 McHugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, Langer R, Jaklenec A. Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. Adv Mater 2018;30:e1706356. [PMID: 29468747 DOI: 10.1002/adma.201706356] [Cited by in Crossref: 167] [Cited by in F6Publishing: 168] [Article Influence: 33.4] [Reference Citation Analysis]
346 Liu Y, Xu Y, Geng X, Huo Y, Chen D, Sun K, Zhou G, Chen B, Tao K. Synergistic Targeting and Efficient Photodynamic Therapy Based on Graphene Oxide Quantum Dot-Upconversion Nanocrystal Hybrid Nanoparticles. Small 2018;14:1800293. [DOI: 10.1002/smll.201800293] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
347 Garcia M, Edmiston C, York T, Marinov R, Mondal S, Zhu N, Sudlow GP, Akers WJ, Margenthaler J, Achilefu S, Liang R, Zayed MA, Pepino MY, Gruev V. Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery. Optica 2018;5:413-22. [PMID: 30465019 DOI: 10.1364/OPTICA.5.000413] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
348 Zhou J, Jiang Y, Hou S, Upputuri PK, Wu D, Li J, Wang P, Zhen X, Pramanik M, Pu K, Duan H. Compact Plasmonic Blackbody for Cancer Theranosis in the Near-Infrared II Window. ACS Nano 2018;12:2643-51. [PMID: 29438610 DOI: 10.1021/acsnano.7b08725] [Cited by in Crossref: 218] [Cited by in F6Publishing: 228] [Article Influence: 43.6] [Reference Citation Analysis]
349 Song L, Li P, Yang W, Lin X, Liang H, Chen X, Liu G, Li J, Yang H. Low-Dose X-ray Activation of W(VI)-Doped Persistent Luminescence Nanoparticles for Deep-Tissue Photodynamic Therapy. Adv Funct Mater 2018;28:1707496. [DOI: 10.1002/adfm.201707496] [Cited by in Crossref: 130] [Cited by in F6Publishing: 135] [Article Influence: 26.0] [Reference Citation Analysis]
350 Hwang MH, Son HG, Lee JW, Yoo CM, Shin JH, Nam HG, Lim HJ, Baek SM, Park JH, Kim JH, Choi H. Phototherapy suppresses inflammation in human nucleus pulposus cells for intervertebral disc degeneration. Lasers Med Sci 2018;33:1055-64. [DOI: 10.1007/s10103-018-2470-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
351 Strobbia P, Odion R, Vo-dinh T. Spectroscopic Chemical Sensing and Imaging: From Plants to Animals and Humans. Chemosensors 2018;6:11. [DOI: 10.3390/chemosensors6010011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
352 Dennis AM, Saeboe AM, Kays JC, Mahler AH. Pushing indium phosphide quantum dot emission deeper into the near infrared. Colloidal Nanoparticles for Biomedical Applications XIII 2018. [DOI: 10.1117/12.2295370] [Reference Citation Analysis]
353 Handelman A, Lapshina N, Apter B, Rosenman G. Peptide Integrated Optics. Adv Mater 2018;30. [PMID: 29226468 DOI: 10.1002/adma.201705776] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
354 Bansal A, Yang F, Xi T, Zhang Y, Ho JS. In vivo wireless photonic photodynamic therapy. Proc Natl Acad Sci U S A 2018;115:1469-74. [PMID: 29378941 DOI: 10.1073/pnas.1717552115] [Cited by in Crossref: 98] [Cited by in F6Publishing: 104] [Article Influence: 19.6] [Reference Citation Analysis]
355 Avram D, Tiseanu C. Thermometry properties of Er, Yb-Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm). Methods Appl Fluoresc 2018;6:025004. [PMID: 29199643 DOI: 10.1088/2050-6120/aa9ef9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
356 Noimark S, Colchester RJ, Poduval RK, Maneas E, Alles EJ, Zhao T, Zhang EZ, Ashworth M, Tsolaki E, Chester AH, Latif N, Bertazzo S, David AL, Ourselin S, Beard PC, Parkin IP, Papakonstantinou I, Desjardins AE. Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Adv Funct Mater 2018;28:1704919. [DOI: 10.1002/adfm.201704919] [Cited by in Crossref: 54] [Cited by in F6Publishing: 22] [Article Influence: 10.8] [Reference Citation Analysis]
357 Carpenter DJ, Sajisevi MB, Chapurin N, Brown CS, Cheng T, Palmer GM, Stevenson DS, Rao CL, Hall RP, Woodard CR. Noninvasive optical spectroscopy for identification of non-melanoma skin cancer: Pilot study. Lasers Surg Med 2018;50:246-52. [PMID: 29331035 DOI: 10.1002/lsm.22786] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
358 Kankala RK, Wang S, Chen A, Zhang YS. Self-Assembled Nanogels: From Particles to Scaffolds and Membranes. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00002-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
359 Lee YH, Kweon OY, Kim H, Yoo JH, Han SG, Oh JH. Recent advances in organic sensors for health self-monitoring systems. J Mater Chem C 2018;6:8569-612. [DOI: 10.1039/c8tc02230e] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 15.0] [Reference Citation Analysis]
360 Luthman AS. Summary and Rationale. Springer Theses 2018. [DOI: 10.1007/978-3-319-98255-7_1] [Reference Citation Analysis]
361 Handelman A, Apter B, Lapshina N, Rosenman G. Bioinspired Peptide-Based Photonic Integrated Devices. Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF) 2018. [DOI: 10.1364/noma.2018.now4d.3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
362 Iyer R, Wolf J, Zhukova D, Padanilam D, Nguyen KT. Nanomaterial Based Photo-Triggered Drug Delivery Strategies for Cancer Theranostics. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00012-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
363 Luthman AS. Wide-Field fHSI with a Linescan SRDA. Springer Theses 2018. [DOI: 10.1007/978-3-319-98255-7_3] [Reference Citation Analysis]
364 Geng W, Wang L, Jiang N, Cao J, Xiao Y, Wei H, Yetisen AK, Yang X, Su B. Single cells in nanoshells for the functionalization of living cells. Nanoscale 2018;10:3112-29. [DOI: 10.1039/c7nr08556g] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 9.2] [Reference Citation Analysis]
365 Fu R, Luo W, Nazempour R, Tan D, Ding H, Zhang K, Yin L, Guan J, Sheng X. Implantable and Biodegradable Poly( l -lactic acid) Fibers for Optical Neural Interfaces. Advanced Optical Materials 2018;6:1700941. [DOI: 10.1002/adom.201700941] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 9.7] [Reference Citation Analysis]
366 Chen Z, Rank E, Meiburger KM, Sinz C, Hodul A, Zhang E, Hoover E, Minneman M, Ensher J, Beard PC, Kittler H, Leitgeb RA, Drexler W, Liu M. Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging. Sci Rep 2017;7:17975. [PMID: 29269886 DOI: 10.1038/s41598-017-18331-9] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 6.2] [Reference Citation Analysis]
367 Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation. Front Neurosci 2017;11:663. [PMID: 29311765 DOI: 10.3389/fnins.2017.00663] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 9.7] [Reference Citation Analysis]
368 Kilin V, Mas C, Constant S, Wolf JP, Bonacina L. Health state dependent multiphoton induced autofluorescence in human 3D in vitro lung cancer model. Sci Rep 2017;7:16233. [PMID: 29176571 DOI: 10.1038/s41598-017-16628-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
369 Li L, Liu C, Su Y, Bai J, Wu J, Han Y, Hou Y, Qi S, Zhao Y, Ding H, Yan Y, Yin L, Wang P, Luo Y, Sheng X. Heterogeneous Integration of Microscale GaN Light-Emitting Diodes and Their Electrical, Optical, and Thermal Characteristics on Flexible Substrates. Adv Mater Technol 2018;3:1700239. [DOI: 10.1002/admt.201700239] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
370 Raff AB, Seiler TG, Apiou-Sbirlea G. Bridging medicine and biomedical technology: enhance translation of fundamental research to patient care. Biomed Opt Express 2017;8:5368-73. [PMID: 29296473 DOI: 10.1364/BOE.8.005368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
371 [DOI: 10.1109/ssci.2017.8285449] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
372 Sivasubramanian K, Periyasamy V, Pramanik M. Hand-held Clinical Photoacoustic Imaging System for Real-time Non-invasive Small Animal Imaging. J Vis Exp 2017. [PMID: 29155745 DOI: 10.3791/56649] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
373 Humar M, Dobravec A, Zhao X, Yun SH. Biomaterial microlasers implantable in the cornea, skin, and blood. Optica 2017;4:1080-5. [PMID: 30333986 DOI: 10.1364/OPTICA.4.001080] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 9.0] [Reference Citation Analysis]
374 Kwok SJJ, Kim M, Lin HH, Seiler TG, Beck E, Shao P, Kochevar IE, Seiler T, Yun SH. Flexible Optical Waveguides for Uniform Periscleral Cross-Linking. Invest Ophthalmol Vis Sci 2017;58:2596-602. [PMID: 28494493 DOI: 10.1167/iovs.17-21559] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
375 Lee LC, Leung K, Lo KK. Recent development of luminescent rhenium( i ) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017;46:16357-80. [DOI: 10.1039/c7dt03465b] [Cited by in Crossref: 114] [Cited by in F6Publishing: 117] [Article Influence: 19.0] [Reference Citation Analysis]
376 Chin AL, Zhong Y, Tong R. Emerging strategies in near-infrared light triggered drug delivery using organic nanomaterials. Biomater Sci 2017;5:1491-9. [DOI: 10.1039/c7bm00348j] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
377 [DOI: 10.1101/2020.07.01.182113] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Reference Citation Analysis]