BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H. Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity 2017;3:14. [PMID: 28649636 DOI: 10.1038/s41526-017-0019-7] [Cited by in Crossref: 55] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Poon C. Factors implicating the validity and interpretation of mechanobiology studies in simulated microgravity environments. Engineering Reports 2020;2. [DOI: 10.1002/eng2.12242] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
2 Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021;11:829. [PMID: 34440577 DOI: 10.3390/life11080829] [Reference Citation Analysis]
3 Tascher G, Brioche T, Maes P, Chopard A, O'Gorman D, Gauquelin-Koch G, Blanc S, Bertile F. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space. J Proteome Res 2017;16:2623-38. [PMID: 28590761 DOI: 10.1021/acs.jproteome.7b00201] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
4 Lei X, Cao Y, Ma B, Zhang Y, Ning L, Qian J, Zhang L, Qu Y, Zhang T, Li D, Chen Q, Shi J, Zhang X, Ma C, Zhang Y, Duan E. Development of mouse preimplantation embryos in space. Natl Sci Rev 2020;7:1437-46. [PMID: 34691539 DOI: 10.1093/nsr/nwaa062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
5 An L, Li Y, Fan Y, He N, Ran F, Qu H, Wang Y, Zhao X, Ye C, Jiang Y, Fang X, Hang H. The Trends in Global Gene Expression in Mouse Embryonic Stem Cells During Spaceflight. Front Genet 2019;10:768. [PMID: 31552089 DOI: 10.3389/fgene.2019.00768] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Barker R, Costes SV, Miller J, Gebre SG, Lombardino J, Gilroy S. Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures. NPJ Microgravity 2021;7:15. [PMID: 33976230 DOI: 10.1038/s41526-021-00143-x] [Reference Citation Analysis]
7 Hu Z, Zhang M, Wang Z, Song J, Jiang W, Li L, Hu X. An observational study on the clinical features of esophageal cancer followed by multiple primary cancers. Future Oncol 2019;15:601-10. [PMID: 30477336 DOI: 10.2217/fon-2018-0621] [Reference Citation Analysis]
8 Bevelacqua JJ, Welsh J, Mortazavi SMJ. Comment on "Dexamethasone Inhibits Spheroid Formation of Thyroid Cancer Cells Exposed to Simulated Microgravity". Cells 2020;9:E1738. [PMID: 32708131 DOI: 10.3390/cells9071738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Moreno-Villanueva M, Zhang Y, Feiveson A, Mistretta B, Pan Y, Chatterjee S, Wu W, Clanton R, Nelman-Gonzalez M, Krieger S, Gunaratne P, Crucian B, Wu H. Single-Cell RNA-Sequencing Identifies Activation of TP53 and STAT1 Pathways in Human T Lymphocyte Subpopulations in Response to Ex Vivo Radiation Exposure. Int J Mol Sci 2019;20:E2316. [PMID: 31083348 DOI: 10.3390/ijms20092316] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
10 Fukazawa T, Tanimoto K, Shrestha L, Imura T, Takahashi S, Sueda T, Hirohashi N, Hiyama E, Yuge L. Simulated microgravity enhances CDDP-induced apoptosis signal via p53-independent mechanisms in cancer cells. PLoS One 2019;14:e0219363. [PMID: 31323026 DOI: 10.1371/journal.pone.0219363] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
11 Shanmugarajan S, Zhang Y, Moreno-Villanueva M, Clanton R, Rohde LH, Ramesh GT, Sibonga JD, Wu H. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion. Int J Mol Sci 2017;18:E2443. [PMID: 29156538 DOI: 10.3390/ijms18112443] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
12 Barrila J, Sarker SF, Hansmeier N, Yang S, Buss K, Briones N, Park J, Davis RR, Forsyth RJ, Ott CM, Sato K, Kosnik C, Yang A, Shimoda C, Rayl N, Ly D, Landenberger A, Wilson SD, Yamazaki N, Steel J, Montano C, Halden RU, Cannon T, Castro-Wallace SL, Nickerson CA. Evaluating the effect of spaceflight on the host-pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 2021;7:9. [PMID: 33750813 DOI: 10.1038/s41526-021-00136-w] [Reference Citation Analysis]
13 Chen Y, Xue F, Russo A, Wan Y. Proteomic Analysis of Extracellular Vesicles Derived from MDA-MB-231 Cells in Microgravity. Protein J 2021;40:108-18. [PMID: 33387250 DOI: 10.1007/s10930-020-09949-2] [Reference Citation Analysis]
14 Yamanouchi S, Rhone J, Mao JH, Fujiwara K, Saganti PB, Takahashi A, Hada M. Simultaneous Exposure of Cultured Human Lymphoblastic Cells to Simulated Microgravity and Radiation Increases Chromosome Aberrations. Life (Basel) 2020;10:E187. [PMID: 32927618 DOI: 10.3390/life10090187] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". Biomed Res Int 2020;2020:4703286. [PMID: 32337251 DOI: 10.1155/2020/4703286] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
16 Cortés-Sánchez JL, Callant J, Krüger M, Sahana J, Kraus A, Baselet B, Infanger M, Baatout S, Grimm D. Cancer Studies under Space Conditions: Finding Answers Abroad. Biomedicines 2021;10:25. [PMID: 35052703 DOI: 10.3390/biomedicines10010025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Chi Y, Wang X, Li F, Zhang Z, Tan P. Aerospace Technology Improves Fermentation Potential of Microorganisms. Front Microbiol 2022;13:896556. [DOI: 10.3389/fmicb.2022.896556] [Reference Citation Analysis]
18 Zaimenko NV, Ivanytska BO, Rositska NV, Didyk NP, Liu D, Pyzyk M, Slaski J. Physiological responses of orchids to prolonged clinorotation. Biosys divers 2022;29:367-73. [DOI: 10.15421/012146] [Reference Citation Analysis]
19 Montague TG, Almansoori A, Gleason EJ, Copeland DS, Foley K, Kraves S, Alvarez Saavedra E. Gene expression studies using a miniaturized thermal cycler system on board the International Space Station. PLoS One 2018;13:e0205852. [PMID: 30379894 DOI: 10.1371/journal.pone.0205852] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
20 Stahl-Rommel S, Li D, Sung M, Li R, Vijayakumar A, Atabay KD, Bushkin GG, Castro CL, Foley KD, Copeland DS, Castro-Wallace SL, Alvarez Saavedra E, Gleason EJ, Kraves S. A CRISPR-based assay for the study of eukaryotic DNA repair onboard the International Space Station. PLoS One 2021;16:e0253403. [PMID: 34191829 DOI: 10.1371/journal.pone.0253403] [Reference Citation Analysis]
21 Szocik K, Braddock M. Why Human Enhancement is Necessary for Successful Human Deep-space Missions. The New Bioethics 2019;25:295-317. [DOI: 10.1080/20502877.2019.1667559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Marvasi M, Monici M, Pantalone D, Cavalieri D. Exploitation of Skin Microbiota in Wound Healing: Perspectives During Space Missions. Front Bioeng Biotechnol 2022;10:873384. [DOI: 10.3389/fbioe.2022.873384] [Reference Citation Analysis]
23 Barthel J, Sarigul-klijn N. A review of radiation shielding needs and concepts for space voyages beyond Earth's magnetic influence. Progress in Aerospace Sciences 2019;110:100553. [DOI: 10.1016/j.paerosci.2019.100553] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Beheshti A, McDonald JT, Miller J, Grabham P, Costes SV. GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen Species. Int J Mol Sci 2019;20:E661. [PMID: 30717456 DOI: 10.3390/ijms20030661] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
25 Genchi GG, Degl'Innocenti A, Martinelli C, Battaglini M, De Pasquale D, Prato M, Marras S, Pugliese G, Drago F, Mariani A, Balsamo M, Zolesi V, Ciofani G. Cerium Oxide Nanoparticle Administration to Skeletal Muscle Cells under Different Gravity and Radiation Conditions. ACS Appl Mater Interfaces 2021;13:40200-13. [PMID: 34410709 DOI: 10.1021/acsami.1c14176] [Reference Citation Analysis]
26 Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020;21:E6603. [PMID: 32917057 DOI: 10.3390/ijms21186603] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Tan S, Pei W, Huang H, Zhou G, Hu W. Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells. NPJ Microgravity 2020;6:34. [PMID: 33298974 DOI: 10.1038/s41526-020-00123-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Moreno-villanueva M, Wu H. Radiation and microgravity – Associated stress factors and carcinogensis. REACH 2019;13:100027. [DOI: 10.1016/j.reach.2019.100027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Depes D, Lee J, Bobkova E, Jezkova L, Falkova I, Bestvater F, Pagacova E, Kopecna O, Zadneprianetc M, Bacikova A, Kulikova E, Smirnova E, Bulanova T, Boreyko A, Krasavin E, Hausmann M, Falk M. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur Phys J D 2018;72. [DOI: 10.1140/epjd/e2018-90148-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
30 Rosenstein AH, Walker VK. Fidelity of a Bacterial DNA Polymerase in Microgravity, a Model for Human Health in Space. Front Cell Dev Biol 2021;9:702849. [PMID: 34912795 DOI: 10.3389/fcell.2021.702849] [Reference Citation Analysis]
31 Prasad B, Richter P, Vadakedath N, Mancinelli R, Krüger M, Strauch SM, Grimm D, Darriet P, Chapel JP, Cohen J, Lebert M. Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020;43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
32 Feiveson A, George K, Shavers M, Moreno-Villanueva M, Zhang Y, Babiak-Vazquez A, Crucian B, Semones E, Wu H. Predicting chromosome damage in astronauts participating in international space station missions. Sci Rep 2021;11:5293. [PMID: 33674665 DOI: 10.1038/s41598-021-84242-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Mehner C, Krishnan S, Chou J, Freeman ML, Freeman WD, Patel T, Turnbull MT. Real versus simulated galactic cosmic radiation for investigating cancer risk in the hematopoietic system - are we comparing apples to apples? Life Sci Space Res (Amst) 2021;29:8-14. [PMID: 33888292 DOI: 10.1016/j.lssr.2021.01.001] [Reference Citation Analysis]
34 Szocik K, Abood S, Impey C, Shelhamer M, Haqq-misra J, Persson E, Oviedo L, Capova KA, Braddock M, Rappaport MB, Corbally C. Visions of a Martian future. Futures 2020;117:102514. [DOI: 10.1016/j.futures.2020.102514] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
35 Calvaruso M, Militello C, Minafra L, La Regina V, Torrisi F, Pucci G, Cammarata FP, Bravatà V, Forte GI, Russo G. Biological and Mechanical Characterization of the Random Positioning Machine (RPM) for Microgravity Simulations. Life (Basel) 2021;11:1190. [PMID: 34833068 DOI: 10.3390/life11111190] [Reference Citation Analysis]
36 McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020;12:E381. [PMID: 32045996 DOI: 10.3390/cancers12020381] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
37 Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021;9:750775. [PMID: 34778261 DOI: 10.3389/fcell.2021.750775] [Reference Citation Analysis]
38 Mortazavi SMJ. Acquired Antibiotic Resistance in Escherichia coli Exposed to Simulated Microgravity: Possible Role of Other Space Stressors and Adaptive Responses. mBio 2019;10:e00165-19. [PMID: 30914503 DOI: 10.1128/mBio.00165-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Zeng D, Cui J, Yin Y, Dai C, Zhao H, Song C, Guan S, Cheng D, Sun Y, Lu W. Combining Proteomics and Metabolomics to Analyze the Effects of Spaceflight on Rice Progeny. Front Plant Sci 2022;13:900143. [DOI: 10.3389/fpls.2022.900143] [Reference Citation Analysis]
40 Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-aleman YM, Rivero-jiménez RA, Bencomo-hernandez AA, Ventura-carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs 2022;20:299. [DOI: 10.3390/md20050299] [Reference Citation Analysis]
41 Xu Y, Pei W, Hu W. A Current Overview of the Biological Effects of Combined Space Environmental Factors in Mammals. Front Cell Dev Biol 2022;10:861006. [DOI: 10.3389/fcell.2022.861006] [Reference Citation Analysis]
42 Senatore G, Mastroleo F, Leys N, Mauriello G. Effect of microgravity & space radiation on microbes. Future Microbiol 2018;13:831-47. [PMID: 29745771 DOI: 10.2217/fmb-2017-0251] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
43 Mehta SK, Szpara ML, Rooney BV, Diak DM, Shipley MM, Renner DW, Krieger SS, Nelman-gonzalez MA, Zwart SR, Smith SM, Crucian BE. Dermatitis during Spaceflight Associated with HSV-1 Reactivation. Viruses 2022;14:789. [DOI: 10.3390/v14040789] [Reference Citation Analysis]
44 Guo J, Zeitlin C, Wimmer-schweingruber RF, Hassler DM, Ehresmann B, Rafkin S, Freiherr von Forstner JL, Khaksarighiri S, Liu W, Wang Y. Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements. Astron Astrophys Rev 2021;29. [DOI: 10.1007/s00159-021-00136-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Blokhinа TM, Yashkina EI, Belyaeva AG, Perevezentsev AA, Shtemberg AS, Osipov AN. Long-Term Persistence of Increased Number of γH2AX+ Peripheral Blood Lymphocytes in Monkeys Exposed to Negative Factors of Space Flights: Ionizing Radiation and Simulated Hypogravity. Bull Exp Biol Med 2021;172:81-4. [PMID: 34791560 DOI: 10.1007/s10517-021-05336-8] [Reference Citation Analysis]
46 Zaimenko NV, Ivanytska BO, Rositska NV, Didyk NP, Liu D, Pyzyk M, Slaski J. Physiological responses of orchids to prolonged clinorotation. Biosys divers 2022;29:367-73. [DOI: 10.15421/10.15421/012146] [Reference Citation Analysis]
47 Giri J, Moll G. MSCs in Space: Mesenchymal Stromal Cell Therapeutics as Enabling Technology for Long-Distance Manned Space Travel. Curr Stem Cell Rep. [DOI: 10.1007/s40778-022-00207-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
48 Barravecchia I, De Cesari C, Forcato M, Scebba F, Pyankova OV, Bridger JM, Foster HA, Signore G, Borghini A, Andreassi M, Andreazzoli M, Bicciato S, Pè ME, Angeloni D. Microgravity and space radiation inhibit autophagy in human capillary endothelial cells, through either opposite or synergistic effects on specific molecular pathways. Cell Mol Life Sci 2021. [PMID: 34936031 DOI: 10.1007/s00018-021-04025-z] [Reference Citation Analysis]
49 Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, Bolst D, Bordage M, Breton V, Brown JM, Francis Z, Ivanchenko V, Meylan S, Murakami K, Okada S, Petrovic I, Ristic-fira A, Santin G, Sarramia D, Sasaki T, Shin W, Tang N, Tran HN, Villagrasa C, Emfietzoglou D, Nieminen P, Guatelli S, Incerti S. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4-DNA. Physica Medica 2019;62:152-7. [DOI: 10.1016/j.ejmp.2019.04.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
50 Fu H, Su F, Zhu J, Zheng X, Ge C. Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. Life Sci Space Res (Amst) 2020;24:1-8. [PMID: 31987473 DOI: 10.1016/j.lssr.2019.10.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
51 Topal U, Zamur C. Microgravity, Stem Cells, and Cancer: A New Hope for Cancer Treatment. Stem Cells Int 2021;2021:5566872. [PMID: 34007284 DOI: 10.1155/2021/5566872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Nakajima S, Nagata M, Ikehata A. Mechanism for enhancing the growth of mung bean seedlings under simulated microgravity. NPJ Microgravity 2021;7:26. [PMID: 34267213 DOI: 10.1038/s41526-021-00156-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Purgason A, Zhang Y, Hamilton SR, Gridley DS, Sodipe A, Jejelowo O, Ramesh GT, Moreno-villanueva M, Wu H. Apoptosis and expression of apoptosis-related genes in mouse intestinal tissue after whole-body proton exposure. Mol Cell Biochem 2018;442:155-68. [DOI: 10.1007/s11010-017-3200-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
54 Drago-ferrante R, Di Fiore R, Karouia F, Subbannayya Y, Das S, Aydogan Mathyk B, Arif S, Guevara-cerdán AP, Seylani A, Galsinh AS, Kukulska W, Borg J, Suleiman S, Porterfield DM, Camera A, Christenson LK, Ronca AE, Steller JG, Beheshti A, Calleja-agius J. Extraterrestrial Gynecology: Could Spaceflight Increase the Risk of Developing Cancer in Female Astronauts? An Updated Review. IJMS 2022;23:7465. [DOI: 10.3390/ijms23137465] [Reference Citation Analysis]
55 Yang C, Deng Y, Ren H, Wang R, Li X. A multi-channel polymerase chain reaction lab-on-a-chip and its application in spaceflight experiment for the study of gene mutation. Acta Astronautica 2020;166:590-8. [DOI: 10.1016/j.actaastro.2018.11.049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Zhao L, Bao C, Wang W, Mi D. New evidence and insight for abnormalities in early embryonic development after short-term spaceflight onboard the Chinese SJ-10 satellite. Life Sci Space Res (Amst) 2020;27:107-10. [PMID: 34756224 DOI: 10.1016/j.lssr.2020.08.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Bisserier M, Saffran N, Brojakowska A, Sebastian A, Evans AC, Coleman MA, Walsh K, Mills PJ, Garikipati VNS, Arakelyan A, Hadri L, Goukassian DA. Emerging Role of Exosomal Long Non-coding RNAs in Spaceflight-Associated Risks in Astronauts. Front Genet 2022;12:812188. [DOI: 10.3389/fgene.2021.812188] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Hada M, Ikeda H, Rhone JR, Beitman AJ, Plante I, Souda H, Yoshida Y, Held KD, Fujiwara K, Saganti PB, Takahashi A. Increased Chromosome Aberrations in Cells Exposed Simultaneously to Simulated Microgravity and Radiation. Int J Mol Sci 2018;20:E43. [PMID: 30583489 DOI: 10.3390/ijms20010043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
59 Ikeda H, Muratani M, Hidema J, Hada M, Fujiwara K, Souda H, Yoshida Y, Takahashi A. Expression Profile of Cell Cycle-Related Genes in Human Fibroblasts Exposed Simultaneously to Radiation and Simulated Microgravity. Int J Mol Sci 2019;20:E4791. [PMID: 31561588 DOI: 10.3390/ijms20194791] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
60 Raber J, Holden S, Sudhakar R, Hall R, Glaeser B, Lenarczyk M, Rockwell K, Nawarawong N, Sterrett J, Perez R, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen CM, Willey JS, Bobe G, Baker J. Effects of 5-Ion Beam Irradiation and Hindlimb Unloading on Metabolic Pathways in Plasma and Brain of Behaviorally Tested WAG/Rij Rats. Front Physiol 2021;12:746509. [PMID: 34646164 DOI: 10.3389/fphys.2021.746509] [Reference Citation Analysis]
61 Beheshti A, Ray S, Fogle H, Berrios D, Costes SV. A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response. PLoS One 2018;13:e0199621. [PMID: 30044882 DOI: 10.1371/journal.pone.0199621] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
62 Kuznetsova EA, Sirota NP, Mitroshina IY, Pikalov VA, Smirnova EN, Rozanova OM, Glukhov SI, Sirota TV, Zaichkina SI. DNA damage in blood leukocytes from mice irradiated with accelerated carbon ions with an energy of 450 MeV/nucleon. International Journal of Radiation Biology 2020;96:1245-53. [DOI: 10.1080/09553002.2020.1807640] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
63 Takahashi A, Ikeda H, Yoshida Y. Role of High-Linear Energy Transfer Radiobiology in Space Radiation Exposure Risks. Int J Part Ther 2018;5:151-9. [PMID: 31773027 DOI: 10.14338/IJPT-18-00013.1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
64 Ma L, Kong F, Gong Y, Wang Q, Liu J, Sui L. Combined Effects of Proton Radiation and Simulated Microgravity on the Cell Viability and ALP Activity of Murine Osteoblast Cells. Front Public Health 2021;9:759236. [PMID: 34917576 DOI: 10.3389/fpubh.2021.759236] [Reference Citation Analysis]