BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang X, Xiang X, Nie J, Peng D, Yang F, Wu Z, Jiang H, Xu Z, Zheng Q. Microscale Schottky superlubric generator with high direct-current density and ultralong life. Nat Commun 2021;12:2268. [PMID: 33859180 DOI: 10.1038/s41467-021-22371-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Liu L, Wang K, Liu Y. Interlayer superlubricity of layered Metal-organic frameworks and its heterojunctions enabled by highly oriented crystalline films. Chemical Engineering Journal 2022;450:138249. [DOI: 10.1016/j.cej.2022.138249] [Reference Citation Analysis]
2 Lin S, Lin Wang Z. The tribovoltaic effect. Materials Today 2022. [DOI: 10.1016/j.mattod.2022.11.005] [Reference Citation Analysis]
3 Huang Y, Liu D, Gao X, Zhu J, Zhang Y, Zhang M. Flexible Liquid‐Based Continuous Direct‐Current Tribovoltaic Generators Enable Self‐Powered Multi‐Modal Sensing. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202209484] [Reference Citation Analysis]
4 Zhao Z, Liu D, Li Y, Wang ZL, Wang J. Direct-current triboelectric nanogenerator based on electrostatic breakdown effect. Nano Energy 2022;102:107745. [DOI: 10.1016/j.nanoen.2022.107745] [Reference Citation Analysis]
5 Shen R, Lu Y, Yu X, Ge Q, Zhong H, Lin S. Broadband Insulator-Based Dynamic Diode with Ultrafast Hot Carriers Process. Research 2022;2022:1-8. [DOI: 10.34133/2022/9878352] [Reference Citation Analysis]
6 Qiao W, Zhao Z, Zhou L, Liu D, Li S, Yang P, Li X, Liu J, Wang J, Wang ZL. Simultaneously Enhancing Direct‐Current Density and Lifetime of Tribovotaic Nanogenerator via Interface Lubrication. Adv Funct Materials. [DOI: 10.1002/adfm.202208544] [Reference Citation Analysis]
7 Lyu X, Ciampi S. Improving the performances of direct-current triboelectric nanogenerators with surface chemistry. Current Opinion in Colloid & Interface Science 2022. [DOI: 10.1016/j.cocis.2022.101627] [Reference Citation Analysis]
8 Huang Y, Liu D, Zhu T, Zhang Y, Fan L, Liu J, Zhang M. A mechanically tunable electromagnetic wave harvester and dual-modal detector based on quasi-static van der Waals heterojunction. Nano Energy 2022;99:107399. [DOI: 10.1016/j.nanoen.2022.107399] [Reference Citation Analysis]
9 Yang D, Zhang L, Luo N, Liu Y, Sun W, Peng J, Feng M, Feng Y, Wang H, Wang D. Tribological-behaviour-controlled direct-current triboelectric nanogenerator based on the tribovoltaic effect under high contact pressure. Nano Energy 2022;99:107370. [DOI: 10.1016/j.nanoen.2022.107370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Lu Y, Shen R, Yu X, Yuan D, Zheng H, Yan Y, Liu C, Yang Z, Feng L, Li L, Lin S. Hot Carrier Transport and Carrier Multiplication Induced High Performance Vertical Graphene/Silicon Dynamic Diode Generator. Adv Sci (Weinh) 2022;:e2200642. [PMID: 35607294 DOI: 10.1002/advs.202200642] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Olson KP, Mizzi CA, Marks LD. Band Bending and Ratcheting Explain Triboelectricity in a Flexoelectric Contact Diode. Nano Lett 2022. [PMID: 35521939 DOI: 10.1021/acs.nanolett.2c00107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Zhang Z, Wang Z, Chen Y, Feng Y, Dong S, Zhou H, Wang ZL, Zhang C. Semiconductor Contact-Electrification-Dominated Tribovoltaic Effect for Ultrahigh Power Generation. Adv Mater 2022;34:e2200146. [PMID: 35291054 DOI: 10.1002/adma.202200146] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Zhang L, Cai H, Xu L, Ji L, Wang D, Zheng Y, Feng Y, Sui X, Guo Y, Guo W, Zhou F, Liu W, Wang ZL. Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter 2022. [DOI: 10.1016/j.matt.2022.02.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Luo X, Liu L, Wang Y, Li J, Berbille A, Zhu L, Wang ZL. Tribovoltaic Nanogenerators Based on MXene–Silicon Heterojunctions for Highly Stable Self‐Powered Speed, Displacement, Tension, Oscillation Angle, and Vibration Sensors. Adv Funct Materials 2022;32:2113149. [DOI: 10.1002/adfm.202113149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Wang K, Wang J, Ma M. Negative or Positive? Loading Area Dependent Correlation Between Friction and Normal Load in Structural Superlubricity. Front Chem 2022;9:807630. [DOI: 10.3389/fchem.2021.807630] [Reference Citation Analysis]
16 Feng S, Xu Z. Robustness of structural superlubricity beyond rigid models. Friction. [DOI: 10.1007/s40544-021-0548-7] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Peng D, Wang J, Jiang H, Zhao S, Wu Z, Tian K, Ma M, Zheng Q. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions. Natl Sci Rev 2022;9:nwab109. [PMID: 35070329 DOI: 10.1093/nsr/nwab109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Benner M, Yang R, Lin L, Liu M, Li H, Liu J. Mechanism of In-Plane and Out-of-Plane Tribovoltaic Direct-Current Transport with a Metal/Oxide/Metal Dynamic Heterojunction. ACS Appl Mater Interfaces 2022;14:2968-78. [PMID: 34990542 DOI: 10.1021/acsami.1c22438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
19 Wang Z, Zhang Z, Chen Y, Gong L, Dong S, Zhou H, Lin Y, Lv Y, Liu G, Zhang C. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect. Energy Environ Sci . [DOI: 10.1039/d2ee00180b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
20 Hod O, Urbakh M. Sliding on the edge. Nat Mater 2022;21:12-4. [PMID: 34949867 DOI: 10.1038/s41563-021-01112-1] [Reference Citation Analysis]
21 Zheng M, Lin S, Zhu L, Tang Z, Wang ZL. Effects of Temperature on the Tribovoltaic Effect at Liquid‐Solid Interfaces. Adv Materials Inter 2022;9:2101757. [DOI: 10.1002/admi.202101757] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Ferrari PF, Kim S, van der Zande AM. Dissipation from Interlayer Friction in Graphene Nanoelectromechanical Resonators. Nano Lett 2021;21:8058-65. [PMID: 34559536 DOI: 10.1021/acs.nanolett.1c02369] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
23 Zhang Y, Zhang D, Wang Y, Liu Q, Li Q, Dong M. Atomic-Scale Friction of Black and Violet Phosphorus Crystals: Implications for Phosphorus-Based Devices and Lubricants. ACS Appl Nano Mater 2021;4:9932-7. [DOI: 10.1021/acsanm.1c02593] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zheng H, Shen R, Zhong H, Lu Y, Yu X, Lin S. Dynamic Schottky Diode Direct‐Current Generator under Extremely Low Temperature. Adv Funct Materials 2021;31:2105325. [DOI: 10.1002/adfm.202105325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
25 Yu X, Zheng H, Lu Y, Shen R, Yan Y, Hao Z, Yang Y, Lin S. Wind driven semiconductor electricity generator with high direct current output based on a dynamic Schottky junction. RSC Adv 2021;11:19106-12. [PMID: 35478643 DOI: 10.1039/d1ra02308j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]