BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Babinchak WM, Dumm BK, Venus S, Boyko S, Putnam AA, Jankowsky E, Surewicz WK. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat Commun 2020;11:5574. [PMID: 33149109 DOI: 10.1038/s41467-020-19211-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Vendruscolo M, Fuxreiter M. Protein condensation diseases: therapeutic opportunities. Nat Commun 2022;13:5550. [PMID: 36138006 DOI: 10.1038/s41467-022-32940-7] [Reference Citation Analysis]
2 Ren J, Zhang Z, Zong Z, Zhang L, Zhou F. Emerging Implications of Phase Separation in Cancer. Adv Sci (Weinh) 2022;:e2202855. [PMID: 36117111 DOI: 10.1002/advs.202202855] [Reference Citation Analysis]
3 Ren C, Shan Y, Zhang P, Ding H, Ma Y. Uncovering the molecular mechanism for dual effect of ATP on phase separation in FUS solution. Sci Adv 2022;8:eabo7885. [DOI: 10.1126/sciadv.abo7885] [Reference Citation Analysis]
4 Conti BA, Oppikofer M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol Sci 2022:S0165-6147(22)00154-7. [PMID: 36028355 DOI: 10.1016/j.tips.2022.07.001] [Reference Citation Analysis]
5 Xu B, Chen J, Liu Y. Curcumin Interacts with α-Synuclein Condensates To Inhibit Amyloid Aggregation under Phase Separation. ACS Omega. [DOI: 10.1021/acsomega.2c03534] [Reference Citation Analysis]
6 Banani SF, Afeyan LK, Hawken SW, Henninger JE, Dall'Agnese A, Clark VE, Platt JM, Oksuz O, Hannett NM, Sagi I, Lee TI, Young RA. Genetic variation associated with condensate dysregulation in disease. Dev Cell 2022;57:1776-1788.e8. [PMID: 35809564 DOI: 10.1016/j.devcel.2022.06.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
7 Liu J, Zhang T, Liu X, Lam JWY, Tang BZ, Chau Y. Molecular logic operations from complex coacervation with aggregation-induced emission characteristics. Mater Horiz 2022. [PMID: 35856292 DOI: 10.1039/d2mh00537a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022. [PMID: 35790708 DOI: 10.1007/s13311-022-01260-5] [Reference Citation Analysis]
9 Kilgore HR, Young RA. Learning the chemical grammar of biomolecular condensates. Nat Chem Biol 2022. [PMID: 35761089 DOI: 10.1038/s41589-022-01046-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Li F, Lin Y, Qiao Y. Regulating FUS Liquid-Liquid Phase Separation via Specific Metal Recognition. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2763-8] [Reference Citation Analysis]
11 Xu B, Mo X, Chen J, Yu H, Liu Y. Myricetin Inhibits α-Synuclein Amyloid Aggregation by Delaying the Liquid-to-Solid Phase Transition. Chembiochem 2022;:e202200216. [PMID: 35657723 DOI: 10.1002/cbic.202200216] [Reference Citation Analysis]
12 Wu X, Qiu H, Zhang M. Interactions between membraneless condensates and membranous organelles at the presynapse: a phase separation view of synaptic vesicle cycle. J Mol Biol 2022;:167629. [PMID: 35595170 DOI: 10.1016/j.jmb.2022.167629] [Reference Citation Analysis]
13 Sanchez A, Buck-Koehntop BA, Miller KM. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Bioessays 2022;:e2200015. [PMID: 35532219 DOI: 10.1002/bies.202200015] [Reference Citation Analysis]
14 Van Lindt J, Lazar T, Pakravan D, Demulder M, Meszaros A, Van Den Bosch L, Maes D, Tompa P. F/YGG-motif is an intrinsically disordered nucleic-acid binding motif. RNA Biology 2022;19:622-35. [DOI: 10.1080/15476286.2022.2066336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Patel CK, Singh S, Saini B, Mukherjee TK. Macromolecular Crowding-Induced Unusual Liquid–Liquid Phase Separation of Human Serum Albumin via Soft Protein–Protein Interactions. J Phys Chem Lett . [DOI: 10.1021/acs.jpclett.2c00307] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Gao YY, Zhong T, Wang LQ, Zhang N, Zeng Y, Hu JY, Dang HB, Chen J, Liang Y. Zinc enhances liquid-liquid phase separation of Tau protein and aggravates mitochondrial damages in cells. Int J Biol Macromol 2022;209:703-15. [PMID: 35405154 DOI: 10.1016/j.ijbiomac.2022.04.034] [Reference Citation Analysis]
17 Han Y, Ye H, Li P, Zeng Y, Yang J, Gao M, Su Z, Huang Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. Int J Biol Macromol 2022;208:1072-81. [PMID: 35381286 DOI: 10.1016/j.ijbiomac.2022.03.215] [Reference Citation Analysis]
18 Ye H, Han Y, Li P, Su Z, Huang Y. The Role of Post-Translational Modifications on the Structure and Function of Tau Protein. J Mol Neurosci 2022. [PMID: 35325356 DOI: 10.1007/s12031-022-02002-0] [Reference Citation Analysis]
19 Boyko S, Surewicz WK. Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 2022:S0962-8924(22)00026-5. [PMID: 35181198 DOI: 10.1016/j.tcb.2022.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Pyne P, Mitra RK. Excipients Do Regulate Phase Separation in Lysozyme and Thus Also Its Hydration. J Phys Chem Lett . [DOI: 10.1021/acs.jpclett.1c03449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Saraiva MA, Florêncio MH. Buffering capacity is determinant for restoring early α-synuclein aggregation. Biophysical Chemistry 2022. [DOI: 10.1016/j.bpc.2022.106760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Li P, Zeng X, Li S, Xiang X, Chen P, Li Y, Liu BF. Rapid Determination of Phase Diagrams for Biomolecular Liquid-Liquid Phase Separation with Microfluidics. Anal Chem 2021. [PMID: 34936324 DOI: 10.1021/acs.analchem.1c02700] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Shao W, Zeng ST, Yu ZY, Tang GX, Chen SB, Huang ZS, Chen XC, Tan JH. Tracking Stress Granule Dynamics in Live Cells and In Vivo with a Small Molecule. Anal Chem 2021;93:16297-301. [PMID: 34843219 DOI: 10.1021/acs.analchem.1c03577] [Reference Citation Analysis]
24 Xu B, Huang S, Liu Y, Wan C, Gu Y, Wang D, Yu H. Manganese promotes α-synuclein amyloid aggregation through the induction of protein phase transition. J Biol Chem 2021;298:101469. [PMID: 34871547 DOI: 10.1016/j.jbc.2021.101469] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
25 Dai B, Zhong T, Chen ZX, Chen W, Zhang N, Liu XL, Wang LQ, Chen J, Liang Y. Myricetin slows liquid-liquid phase separation of Tau and activates ATG5-dependent autophagy to suppress Tau toxicity. J Biol Chem 2021;297:101222. [PMID: 34560101 DOI: 10.1016/j.jbc.2021.101222] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
26 Rao PPN, Shakeri A, Zhao Y, Calon F. Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. Eur J Med Chem 2021;225:113753. [PMID: 34388383 DOI: 10.1016/j.ejmech.2021.113753] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Zhang JZ, Mehta S, Zhang J. Liquid-liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends Pharmacol Sci 2021:S0165-6147(21)00138-3. [PMID: 34373114 DOI: 10.1016/j.tips.2021.07.003] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
28 Francois-Moutal L, Scott DD, Khanna M. Direct targeting of TDP-43, from small molecules to biologics: the therapeutic landscape. RSC Chem Biol 2021;2:1158-66. [PMID: 34458829 DOI: 10.1039/d1cb00110h] [Reference Citation Analysis]
29 Sprunger ML, Jackrel ME. Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules 2021;11:1014. [PMID: 34356638 DOI: 10.3390/biom11071014] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
30 Wiedner HJ, Giudice J. It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 2021;28:465-73. [PMID: 34099940 DOI: 10.1038/s41594-021-00601-w] [Cited by in F6Publishing: 20] [Reference Citation Analysis]
31 Tsoi PS, Quan MD, Choi KJ, Dao KM, Ferreon JC, Ferreon ACM. Electrostatic modulation of hnRNPA1 low-complexity domain liquid-liquid phase separation and aggregation. Protein Sci 2021;30:1408-17. [PMID: 33982369 DOI: 10.1002/pro.4108] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
32 Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021;12:7334-49. [PMID: 34163823 DOI: 10.1039/d1sc01739j] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
33 Biesaga M, Frigolé-Vivas M, Salvatella X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Curr Opin Chem Biol 2021;62:90-100. [PMID: 33812316 DOI: 10.1016/j.cbpa.2021.02.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
34 Portz B, Lee BL, Shorter J. FUS and TDP-43 Phases in Health and Disease. Trends Biochem Sci 2021;46:550-63. [PMID: 33446423 DOI: 10.1016/j.tibs.2020.12.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]