BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell JD, Boultwood C, Collins R, Conroy MC, Crabtree N, Doherty N, Frangi AF, Harvey NC, Leeson P, Miller KL, Neubauer S, Petersen SE, Sellors J, Sheard S, Smith SM, Sudlow CLM, Matthews PM, Allen NE. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun 2020;11:2624. [PMID: 32457287 DOI: 10.1038/s41467-020-15948-9] [Cited by in Crossref: 139] [Cited by in F6Publishing: 145] [Article Influence: 69.5] [Reference Citation Analysis]
Number Citing Articles
1 Cecelja M, Ruijsink B, Puyol‐antón E, Li Y, Godwin H, King AP, Razavi R, Chowienczyk P. Aortic Distensibility Measured by Automated Analysis of Magnetic Resonance Imaging Predicts Adverse Cardiovascular Events in UK Biobank. JAHA 2022. [DOI: 10.1161/jaha.122.026361] [Reference Citation Analysis]
2 Haddad E, Pizzagalli F, Zhu AH, Bhatt RR, Islam T, Ba Gari I, Dixon D, Thomopoulos SI, Thompson PM, Jahanshad N. Multisite test–retest reliability and compatibility of brain metrics derived from FreeSurfer versions 7.1, 6.0, and 5.3. Human Brain Mapping 2022. [DOI: 10.1002/hbm.26147] [Reference Citation Analysis]
3 Conroy MC, Lacey B, Bešević J, Omiyale W, Feng Q, Effingham M, Sellers J, Sheard S, Pancholi M, Gregory G, Busby J, Collins R, Allen NE. UK Biobank: a globally important resource for cancer research. Br J Cancer 2022. [DOI: 10.1038/s41416-022-02053-5] [Reference Citation Analysis]
4 Pirruccello JP, Lin H, Khurshid S, Nekoui M, Weng L, Ramachandran VS, Isselbacher EM, Benjamin EJ, Lubitz SA, Lindsay ME, Ellinor PT. Development of a Prediction Model for Ascending Aortic Diameter Among Asymptomatic Individuals. JAMA 2022;328:1935. [DOI: 10.1001/jama.2022.19701] [Reference Citation Analysis]
5 Kart T, Fischer M, Winzeck S, Glocker B, Bai W, Bülow R, Emmel C, Friedrich L, Kauczor H, Keil T, Kröncke T, Mayer P, Niendorf T, Peters A, Pischon T, Schaarschmidt BM, Schmidt B, Schulze MB, Umutle L, Völzke H, Küstner T, Bamberg F, Schölkopf B, Rueckert D, Gatidis S. Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studies. Sci Rep 2022;12:18733. [DOI: 10.1038/s41598-022-23632-9] [Reference Citation Analysis]
6 Madore B, Hess AT, van Niekerk AMJ, Hoinkiss DC, Hucker P, Zaitsev M, Afacan O, Günther M. External Hardware and Sensors, for Improved MRI. Magnetic Resonance Imaging 2022. [DOI: 10.1002/jmri.28472] [Reference Citation Analysis]
7 Sherry AP, Willis SA, Yates T, Johnson W, Razieh C, Sargeant JA, Malaikah S, Stensel DJ, Aithal GP, King JA. Physical activity is inversely associated with hepatic fibro-inflammation: A population-based cohort study using UK Biobank data. JHEP Rep 2023;5:100622. [PMID: 36440257 DOI: 10.1016/j.jhepr.2022.100622] [Reference Citation Analysis]
8 Griffanti L, Gillis G, Clare O'donoghue M, Blane J, Pretorius PM, Mitchell R, Aikin N, Lindsay K, Campbell J, Semple J, Alfaro-almagro F, Smith SM, Miller KL, Martos L, Raymont V, Mackay CE. Adapting UK Biobank imaging for use in a routine memory clinic setting: the Oxford Brain Health Clinic. NeuroImage: Clinical 2022. [DOI: 10.1016/j.nicl.2022.103273] [Reference Citation Analysis]
9 Fürtjes AE, Cole JH, Couvy-duchesne B, Ritchie SJ. A Quantified Comparison of Cortical Atlases on the Basis of Trait Morphometricity. Cortex 2022. [DOI: 10.1016/j.cortex.2022.11.001] [Reference Citation Analysis]
10 Bayer JMM, Thompson PM, Ching CRK, Liu M, Chen A, Panzenhagen AC, Jahanshad N, Marquand A, Schmaal L, Sämann PG. Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses. Front Neurol 2022;13. [DOI: 10.3389/fneur.2022.923988] [Reference Citation Analysis]
11 Sveinbjornsson G, Ulfarsson MO, Thorolfsdottir RB, Jonsson BA, Einarsson E, Gunnlaugsson G, Rognvaldsson S, Arnar DO, Baldvinsson M, Bjarnason RG, Eiriksdottir T, Erikstrup C, Ferkingstad E, Halldorsson GH, Helgason H, Helgadottir A, Hindhede L, Hjorleifsson G, Jones D, Knowlton KU, Lund SH, Melsted P, Norland K, Olafsson I, Olafsson S, Oskarsson GR, Ostrowski SR, Pedersen OB, Snaebjarnarson AS, Sigurdsson E, Steinthorsdottir V, Schwinn M, Thorgeirsson G, Thorleifsson G, Jonsdottir I, Bundgaard H, Nadauld L, Bjornsson ES, Rulifson IC, Rafnar T, Norddahl GL, Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Holm H, Stefansson K, DBDS Genomic consortium. Multiomics study of nonalcoholic fatty liver disease. Nat Genet 2022. [DOI: 10.1038/s41588-022-01199-5] [Reference Citation Analysis]
12 Zhang X, Shang X, Seth I, Huang Y, Wang Y, Liang Y, Du Z, Wu G, Hu Y, Liu S, Hu Y, He M, Zhu Z, Yang X, Yu H. Association of Visual Health With Depressive Symptoms and Brain Imaging Phenotypes Among Middle-Aged and Older Adults. JAMA Netw Open 2022;5:e2235017. [PMID: 36201210 DOI: 10.1001/jamanetworkopen.2022.35017] [Reference Citation Analysis]
13 Duff E, Zelaya F, Almagro FA, Miller KL, Martin N, Nichols TE, Taschler B, Griffanti L, Arthofer C, Douaud G, Wang C, Okell TW, Bethlehem RAI, Eickel K, Günther M, Menon DK, Williams G, Facer B, Lythgoe DJ, Dell’acqua F, Wood GK, Williams SCR, Houston G, Keller SS, Holden C, Hartmann M, George L, Breen G, Michael BD, Jezzard P, Smith SM, Bullmore ET, on behalf of the COVID-CNS Consortium. Reliability of multi-site UK Biobank MRI brain phenotypes for the assessment of neuropsychiatric complications of SARS-CoV-2 infection: The COVID-CNS travelling heads study. PLoS ONE 2022;17:e0273704. [DOI: 10.1371/journal.pone.0273704] [Reference Citation Analysis]
14 Li X, Liang H. Project, toolkit, and database of neuroinformatics ecosystem: A summary of previous studies on “Frontiers in Neuroinformatics”. Front Neuroinform 2022;16:902452. [DOI: 10.3389/fninf.2022.902452] [Reference Citation Analysis]
15 Parikh NS, Kamel H, Zhang C, Gupta A, Cohen DE, de Leon MJ, Gottesman RF, Iadecola C. Association of liver fibrosis with cognitive test performance and brain imaging parameters in the UK Biobank study. Alzheimers Dement 2022. [PMID: 36149265 DOI: 10.1002/alz.12795] [Reference Citation Analysis]
16 Mulugeta A, Navale SS, Lumsden AL, Llewellyn DJ, Hyppönen E. Healthy Lifestyle, Genetic Risk and Brain Health: A Gene-Environment Interaction Study in the UK Biobank. Nutrients 2022;14:3907. [DOI: 10.3390/nu14193907] [Reference Citation Analysis]
17 Rickmann A, Senapati J, Kovalenko O, Peters A, Bamberg F, Wachinger C. AbdomenNet: deep neural network for abdominal organ segmentation in epidemiologic imaging studies. BMC Med Imaging 2022;22. [DOI: 10.1186/s12880-022-00893-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. [DOI: 10.1038/s41591-022-01981-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Muzambi R, Bhaskaran K, Rentsch CT, Smeeth L, Brayne C, Garfield V, Williams DM, Chaturvedi N, Warren-gash C. Are infections associated with cognitive decline and neuroimaging outcomes? A historical cohort study using data from the UK Biobank study linked to electronic health records. Transl Psychiatry 2022;12. [DOI: 10.1038/s41398-022-02145-z] [Reference Citation Analysis]
20 Huang W, Fu A, Shu N. DCP: a pipeline toolbox for diffusion connectome.. [DOI: 10.21203/rs.3.rs-2013806/v1] [Reference Citation Analysis]
21 Asaturyan HA, Basty N, Thanaj M, Whitcher B, Thomas EL, Bell JD. Improving the accuracy of fatty liver index to reflect liver fat content with predictive regression modelling. PLoS ONE 2022;17:e0273171. [DOI: 10.1371/journal.pone.0273171] [Reference Citation Analysis]
22 Kumaria A, Noah A, Kirkman MA. Does covid-19 impair endogenous neurogenesis? J Clin Neurosci 2022;105:79-85. [PMID: 36113246 DOI: 10.1016/j.jocn.2022.09.006] [Reference Citation Analysis]
23 Iraji A, Fu Z, Faghiri A, Duda M, Chen J, Rachakonda S, Deramus T, Kochunov P, Adhikari BM, Belger A, Ford J, Mathalon D, Pearlson G, Potkin S, Preda A, Turner J, van Erp T, Bustillo JR, Yang K, Ishizuka K, Sawa A, Hutchison K, Osuch EA, Theberge J, Abbott C, Mueller B, Zhi D, Zhuo C, Liu S, Xu Y, Salman M, Liu J, Du Y, Sui J, Adali T, Calhoun V. Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in 100k+ Resting-State fMRI Datasets.. [DOI: 10.1101/2022.09.03.506487] [Reference Citation Analysis]
24 Mur J, Marioni RE, Russ TC, Muniz-terrera G, Cox SR. Anticholinergic burden in middle and older age is associated with lower cognitive function, but not with brain atrophy.. [DOI: 10.1101/2022.09.04.22279576] [Reference Citation Analysis]
25 Griffanti L, Gillis G, O’donoghue MC, Blane J, Pretorius PM, Mitchell R, Aikin N, Lindsay K, Campbell J, Semple J, Alfaro-almagro F, Smith SM, Miller KL, Martos L, Raymont V, Mackay CE. Adapting UK Biobank imaging for use in a routine memory clinic setting: the Oxford Brain Health Clinic.. [DOI: 10.1101/2022.08.31.22279212] [Reference Citation Analysis]
26 Akbari P, Sosina OA, Bovijn J, Landheer K, Nielsen JB, Kim M, Aykul S, De T, Haas ME, Hindy G, Lin N, Dinsmore IR, Luo JZ, Hectors S, Geraghty B, Germino M, Panagis L, Parasoglou P, Walls JR, Halasz G, Atwal GS, Jones M, LeBlanc MG, Still CD, Carey DJ, Giontella A, Orho-Melander M, Berumen J, Kuri-Morales P, Alegre-Díaz J, Torres JM, Emberson JR, Collins R, Rader DJ, Zambrowicz B, Murphy AJ, Balasubramanian S, Overton JD, Reid JG, Shuldiner AR, Cantor M, Abecasis GR, Ferreira MAR, Sleeman MW, Gusarova V, Altarejos J, Harris C, Economides AN, Idone V, Karalis K, Della Gatta G, Mirshahi T, Yancopoulos GD, Melander O, Marchini J, Tapia-Conyer R, Locke AE, Baras A, Verweij N, Lotta LA; Regeneron Genetics Center., DiscovEHR Collaboration. Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes. Nat Commun 2022;13:4844. [PMID: 35999217 DOI: 10.1038/s41467-022-32398-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Thanaj M, Basty N, Cule M, Sorokin EP, Whitcher B, Bell JD, Thomas EL. Liver Shape is Associated with Disease and Anthropometric Traits.. [DOI: 10.1101/2022.08.18.22278951] [Reference Citation Analysis]
28 An U, Pazokitoroudi A, Alvarez M, Huang L, Bacanu S, Schork AJ, Kendler K, Pajukanta P, Flint J, Zaitlen N, Cai N, Dahl A, Sankararaman S. Deep Learning-based Phenotype Imputation on Population-scale Biobank Data Increases Genetic Discoveries.. [DOI: 10.1101/2022.08.15.503991] [Reference Citation Analysis]
29 Leeson P, Nanayakkara S, Lamata P. Editorial: Translating artificial intelligence into clinical use within cardiology. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.995234] [Reference Citation Analysis]
30 Francis CM, Futschik ME, Huang J, Bai W, Sargurupremraj M, Teumer A, Breteler MMB, Petretto E, Ho ASR, Amouyel P, Engelter ST, Bülow R, Völker U, Völzke H, Dörr M, Imtiaz MA, Aziz NA, Lohner V, Ware JS, Debette S, Elliott P, Dehghan A, Matthews PM. Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities. Nat Commun 2022;13:4505. [PMID: 35922433 DOI: 10.1038/s41467-022-32219-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Klarqvist MDR, Agrawal S, Diamant N, Ellinor PT, Philippakis A, Ng K, Batra P, Khera AV. Silhouette images enable estimation of body fat distribution and associated cardiometabolic risk. NPJ Digit Med 2022;5:105. [PMID: 35896726 DOI: 10.1038/s41746-022-00654-1] [Reference Citation Analysis]
32 Li X, Liang H, Li L. A data cube modeling method for longitudinal cohort study. WEB 2022. [DOI: 10.3233/web-220018] [Reference Citation Analysis]
33 Faber BG, Frysz M, Hartley AE, Ebsim R, Boer CG, Saunders FR, Gregory JS, Aspden RM, Harvey NC, Southam L, Giles W, Maitre CL, Wilkinson JM, van Meurs JB, Zeggini E, Cootes T, Lindner C, Kemp JP, Smith GD, Tobias JH. Investigation of the genetic architecture of cam morphology, and its relationship with hip osteoarthritis, using alpha angle as a proxy measure.. [DOI: 10.1101/2022.07.22.22277884] [Reference Citation Analysis]
34 Vukadinovic M, Kwan AC, Yuan V, Salerno M, Lee DC, Albert CM, Cheng S, Li D, Ouyang D, Clarke SL. Deep learning enabled analysis of cardiac sphericity.. [DOI: 10.1101/2022.07.20.22277861] [Reference Citation Analysis]
35 Faber BG, Ebsim R, Saunders FR, Frysz M, Davey Smith G, Cootes T, Tobias JH, Lindner C. Deriving alpha angle from anterior-posterior dual-energy x-ray absorptiometry scans: an automated and validated approach. Wellcome Open Res 2021;6:60. [DOI: 10.12688/wellcomeopenres.16656.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Bešević J, Lacey B, Conroy M, Omiyale W, Feng Q, Collins R, Allen N. New Horizons: the value of UK Biobank to research on endocrine and metabolic disorders. J Clin Endocrinol Metab 2022:dgac407. [PMID: 35793237 DOI: 10.1210/clinem/dgac407] [Reference Citation Analysis]
37 Verdi S, Kia SM, Yong K, Tosun D, Schott JM, Marquand AF, Cole JH, the Alzheimer’s Disease Neuroimaging Initiative. Revealing Individual Neuroanatomical Heterogeneity in Alzheimer’s Disease.. [DOI: 10.1101/2022.06.30.22277053] [Reference Citation Analysis]
38 Livingstone KM, Milte C, Bowe SJ, Duckham RL, Ward J, Keske MA, Mcevoy M, Brayner B, Abbott G. Associations between three diet quality indices, genetic risk and body composition: A prospective cohort study. Clinical Nutrition 2022. [DOI: 10.1016/j.clnu.2022.07.005] [Reference Citation Analysis]
39 Agrawal S, Wang M, Klarqvist MDR, Smith K, Shin J, Dashti H, Diamant N, Choi SH, Jurgens SJ, Ellinor PT, Philippakis A, Claussnitzer M, Ng K, Udler MS, Batra P, Khera AV. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat Commun 2022;13:3771. [PMID: 35773277 DOI: 10.1038/s41467-022-30931-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Duan K, Chen J, Fu Z, Silva RF, Calhoun VD, Dell’orco M, Perrone-bizzozero NI, Du Y, Jiang W, Liu J. Sparse Parallel Independent Component Analysis and Its Application to Identify Stable and Replicable Imaging-genomic Association Patterns in UK Biobank.. [DOI: 10.1101/2022.06.27.22276981] [Reference Citation Analysis]
41 Sun BB, Chiou J, Traylor M, Benner C, Hsu Y, Richardson TG, Surendran P, Mahajan A, Robins C, Vasquez-grinnell SG, Hou L, Kvikstad EM, Burren OS, Cule M, Davitte J, Ferber KL, Gillies CE, Hedman ÅK, Hu S, Lin T, Mikkilineni R, Pendergrass RK, Pickering C, Prins B, Raj A, Robinson J, Sethi A, Ward LD, Welsh S, Willis CM, Burkitt-gray L, Black MH, Fauman EB, Howson JMM, Kang HM, Mccarthy MI, Melamud E, Nioi P, Petrovski S, Scott RA, Smith EN, Szalma S, Waterworth DM, Mitnaul LJ, Szustakowski JD, Gibson BW, Miller MR, Whelan CD, Alnylam Human Genetics, AstraZeneca Genomics Initiative, Biogen Biobank Team, Bristol Myers Squibb, Genentech Human Genetics, GlaxoSmithKline Genomic Sciences, Pfizer Integrative Biology, Population Analytics of Janssen Data Sciences, Regeneron Genetics Center. Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants.. [DOI: 10.1101/2022.06.17.496443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Gao P, Dong HM, Liu SM, Fan XR, Jiang C, Wang YS, Margulies D, Li HF, Zuo XN. A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping. Sci Data 2022;9:286. [PMID: 35680932 DOI: 10.1038/s41597-022-01413-3] [Reference Citation Analysis]
43 Kung CSJ, Pudney SE, Shields MA. Economic gradients in loneliness, social isolation and social support: Evidence from the UK Biobank. Soc Sci Med 2022;306:115122. [PMID: 35751988 DOI: 10.1016/j.socscimed.2022.115122] [Reference Citation Analysis]
44 Sorokin EP, Basty N, Whitcher B, Liu Y, Bell JD, Cohen RL, Cule M, Thomas EL. Analysis of MRI-derived spleen iron in the UK Biobank identifies genetic variation linked to iron homeostasis and hemolysis. Am J Hum Genet 2022;109:1092-104. [PMID: 35568031 DOI: 10.1016/j.ajhg.2022.04.013] [Reference Citation Analysis]
45 Tai XY, Veldsman M, Lyall DM, Littlejohns TJ, Langa KM, Husain M, Ranson J, Llewellyn DJ. Cardiometabolic multimorbidity, genetic risk, and dementia: a prospective cohort study. The Lancet Healthy Longevity 2022;3:e428-e436. [DOI: 10.1016/s2666-7568(22)00117-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Vandenput L, Johansson H, McCloskey EV, Liu E, Åkesson KE, Anderson FA, Azagra R, Bager CL, Beaudart C, Bischoff-Ferrari HA, Biver E, Bruyère O, Cauley JA, Center JR, Chapurlat R, Christiansen C, Cooper C, Crandall CJ, Cummings SR, da Silva JAP, Dawson-Hughes B, Diez-Perez A, Dufour AB, Eisman JA, Elders PJM, Ferrari S, Fujita Y, Fujiwara S, Glüer CC, Goldshtein I, Goltzman D, Gudnason V, Hall J, Hans D, Hoff M, Hollick RJ, Huisman M, Iki M, Ish-Shalom S, Jones G, Karlsson MK, Khosla S, Kiel DP, Koh WP, Koromani F, Kotowicz MA, Kröger H, Kwok T, Lamy O, Langhammer A, Larijani B, Lippuner K, Mellström D, Merlijn T, Nordström A, Nordström P, O'Neill TW, Obermayer-Pietsch B, Ohlsson C, Orwoll ES, Pasco JA, Rivadeneira F, Schei B, Schott AM, Shiroma EJ, Siggeirsdottir K, Simonsick EM, Sornay-Rendu E, Sund R, Swart KMA, Szulc P, Tamaki J, Torgerson DJ, van Schoor NM, van Staa TP, Vila J, Wareham NJ, Wright NC, Yoshimura N, Zillikens MC, Zwart M, Harvey NC, Lorentzon M, Leslie WD, Kanis JA. Update of the fracture risk prediction tool FRAX: a systematic review of potential cohorts and analysis plan. Osteoporos Int 2022. [PMID: 35639106 DOI: 10.1007/s00198-022-06435-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Wackerhagen C, Veer IM, van Leeuwen JMC, Reppmann Z, Riepenhausen A, Bögemann SA, Mor N, Puhlmann LM, Uściƚko A, Zerban M, Yuen KSL, Köber G, Pooseh S, Weermeijer J, Marciniak MA, Arias-vásquez A, Binder H, de Raedt W, Kleim B, Myin-germeys I, Roelofs K, Timmer J, Tüscher O, Hendler T, Hermans EJ, Kalisch R, Kobylińska D, Walter H. Study protocol description: Dynamic Modelling of Resilience - Observational Study (DynaM-OBS) (Preprint).. [DOI: 10.2196/preprints.39817] [Reference Citation Analysis]
48 Kweon H, Aydogan G, Dagher A, Bzdok D, Ruff CC, Nave G, Farah MJ, Koellinger PD. Human brain anatomy reflects separable genetic and environmental components of socioeconomic status. Sci Adv 2022;8:eabm2923. [PMID: 35584223 DOI: 10.1126/sciadv.abm2923] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Perez-Cornago A, Dunneram Y, Watts EL, Key TJ, Travis RC. Adiposity and risk of prostate cancer death: a prospective analysis in UK Biobank and meta-analysis of published studies. BMC Med 2022;20:143. [PMID: 35509091 DOI: 10.1186/s12916-022-02336-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Bragg F, Trichia E, Aguilar-Ramirez D, Bešević J, Lewington S, Emberson J. Predictive value of circulating NMR metabolic biomarkers for type 2 diabetes risk in the UK Biobank study. BMC Med 2022;20:159. [PMID: 35501852 DOI: 10.1186/s12916-022-02354-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
51 Acosta JN, Both CP, Rivier C, Szejko N, Leasure AC, Gill TM, Payabvash S, Sheth KN, Falcone GJ. Analysis of Clinical Traits Associated With Cardiovascular Health, Genomic Profiles, and Neuroimaging Markers of Brain Health in Adults Without Stroke or Dementia. JAMA Netw Open 2022;5:e2215328. [PMID: 35622359 DOI: 10.1001/jamanetworkopen.2022.15328] [Reference Citation Analysis]
52 Langner T, Martínez Mora A, Strand R, Ahlström H, Kullberg J. MIMIR: Deep Regression for Automated Analysis of UK Biobank MRI Scans. Radiol Artif Intell 2022;4:e210178. [PMID: 35652115 DOI: 10.1148/ryai.210178] [Reference Citation Analysis]
53 Acosta JN, Falcone GJ, Rajpurkar P. The Need for Medical Artificial Intelligence That Incorporates Prior Images. Radiology 2022;:212830. [PMID: 35438563 DOI: 10.1148/radiol.212830] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Haddad E, Pizzagalli F, Zhu AH, Bhatt RR, Islam T, Gari IB, Dixon D, Thomopoulos SI, Thompson PM, Jahanshad N. Multisite Test-Retest Reliability and Compatibility of Brain Metrics derived from FreeSurfer Versions 7.1, 6.0, and 5.3.. [DOI: 10.1101/2022.04.13.488251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Harshfield EL, Markus HS. Metabolic associations with stroke, dementia, and imaging markers of cerebral small vessel disease: a comprehensive metabolomics study.. [DOI: 10.1101/2022.03.24.22272911] [Reference Citation Analysis]
56 Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL, Hendrickson TJ, Malone SM, Kandala S, Feczko E, Miranda-Dominguez O, Graham AM, Earl EA, Perrone AJ, Cordova M, Doyle O, Moore LA, Conan GM, Uriarte J, Snider K, Lynch BJ, Wilgenbusch JC, Pengo T, Tam A, Chen J, Newbold DJ, Zheng A, Seider NA, Van AN, Metoki A, Chauvin RJ, Laumann TO, Greene DJ, Petersen SE, Garavan H, Thompson WK, Nichols TE, Yeo BTT, Barch DM, Luna B, Fair DA, Dosenbach NUF. Reproducible brain-wide association studies require thousands of individuals. Nature 2022. [PMID: 35296861 DOI: 10.1038/s41586-022-04492-9] [Cited by in Crossref: 157] [Cited by in F6Publishing: 186] [Article Influence: 157.0] [Reference Citation Analysis]
57 Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jørgensen AM, Dashti H, Stefek A, McGonagle E, Strobel S, Laber S, Agrawal S, Westcott GP, Kar A, Veregge ML, Gulko A, Srinivasan H, Kramer Z, De Filippis E, Merkel E, Ducie J, Boyd CG, Gourash W, Courcoulas A, Lin SJ, Lee BT, Morris D, Tobias A, Khera AV, Claussnitzer M, Pers TH, Giordano A, Ashenberg O, Regev A, Tsai LT, Rosen ED. A single-cell atlas of human and mouse white adipose tissue. Nature 2022. [PMID: 35296864 DOI: 10.1038/s41586-022-04518-2] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 48.0] [Reference Citation Analysis]
58 Xu N, Lagrow TJ, Anumba N, Lee A, Zhang X, Yousefi B, Bassil Y, Clavijo GP, Khalilzad Sharghi V, Maltbie E, Meyer-baese L, Nezafati M, Pan W, Keilholz S. Functional Connectivity of the Brain Across Rodents and Humans. Front Neurosci 2022;16:816331. [DOI: 10.3389/fnins.2022.816331] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
59 Whitcher B, Thanaj M, Cule M, Liu Y, Basty N, Sorokin EP, Bell JD, Thomas EL. Precision MRI phenotyping enables detection of small changes in body composition for longitudinal cohorts. Sci Rep 2022;12:3748. [PMID: 35260612 DOI: 10.1038/s41598-022-07556-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
60 Molz B, Herbik A, Baseler HA, de Best PB, Vernon RW, Raz N, Gouws AD, Ahmadi K, Lowndes R, McLean RJ, Gottlob I, Kohl S, Choritz L, Maguire J, Kanowski M, Käsmann-Kellner B, Wieland I, Banin E, Levin N, Hoffmann MB, Morland AB. Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia. Neuroimage Clin 2022;33:102925. [PMID: 34959047 DOI: 10.1016/j.nicl.2021.102925] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
61 Amunts K, DeFelipe J, Pennartz C, Destexhe A, Migliore M, Ryvlin P, Furber S, Knoll A, Bitsch L, Bjaalie JG, Ioannidis Y, Lippert T, Sanchez-Vives MV, Goebel R, Jirsa V. Linking Brain Structure, Activity, and Cognitive Function through Computation. eNeuro 2022;9:ENEURO. [PMID: 35217544 DOI: 10.1523/ENEURO.0316-21.2022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
62 Rae CL, Farley M, Jeffery KJ, Urai AE. Climate crisis and ecological emergency: Why they concern (neuro)scientists, and what we can do. Brain and Neuroscience Advances 2022;6:239821282210754. [DOI: 10.1177/23982128221075430] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
63 Carrión-castillo A, Paz-alonso PM, Carreiras M. Brain structure, phenotypic and genetic correlates of reading abilities.. [DOI: 10.1101/2022.02.24.481767] [Reference Citation Analysis]
64 Schulz M, Bzdok D, Haufe S, Haynes J, Ritter K. Performance reserves in brain-imaging-based phenotype prediction.. [DOI: 10.1101/2022.02.23.481601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Basty N, Sorokin EP, Thanaj M, Srinivasan R, Whitcher B, Bell JD, Cule M, Thomas EL. Abdominal Imaging Associates Body Composition with COVID-19 Severity.. [DOI: 10.1101/2022.02.22.22270091] [Reference Citation Analysis]
66 Du J, Pan Y, Jiang J, Lam BCP, Thalamuthu A, Chen R, Tsang IW, Sachdev PS, Wen W. White matter brain age as a biomarker of cerebrovascular burden in the ageing brain.. [DOI: 10.1101/2022.02.06.22270484] [Reference Citation Analysis]
67 Triay Bagur A, Aljabar P, Ridgway GR, Brady M, Bulte DP. Pancreas MRI Segmentation Into Head, Body, and Tail Enables Regional Quantitative Analysis of Heterogeneous Disease. J Magn Reson Imaging 2022. [PMID: 35128748 DOI: 10.1002/jmri.28098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Alemán-Gómez Y, Arribas-Gil A, Desco M, Elías A, Romo J. Depthgram: Visualizing outliers in high-dimensional functional data with application to fMRI data exploration. Stat Med 2022. [PMID: 35118686 DOI: 10.1002/sim.9342] [Reference Citation Analysis]
69 Yang H, Hu X. Financial risk forecast analysis based on deep learning considering the data collection from different sources. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT) 2022. [DOI: 10.1109/icssit53264.2022.9716328] [Reference Citation Analysis]
70 Klarqvist MDR, Agrawal S, Diamant N, Ellinor PT, Philippakis A, Ng K, Batra P, Khera AV. Estimating body fat distribution – a driver of cardiometabolic health – from silhouette images.. [DOI: 10.1101/2022.01.14.22269328] [Reference Citation Analysis]
71 Gabelloni M, Faggioni L, Borgheresi R, Restante G, Shortrede J, Tumminello L, Scapicchio C, Coppola F, Cioni D, Gómez-Rico I, Martí-Bonmatí L, Neri E. Bridging gaps between images and data: a systematic update on imaging biobanks. Eur Radiol 2022. [PMID: 35001159 DOI: 10.1007/s00330-021-08431-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Abdulkareem M, Aung N, Petersen SE. Biobanks and Artificial Intelligence. Artificial Intelligence in Cardiothoracic Imaging 2022. [DOI: 10.1007/978-3-030-92087-6_8] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Ebsim R, Faber BG, Saunders F, Frysz M, Gregory J, Harvey NC, Tobias JH, Lindner C, Cootes TF. Automatic Segmentation of Hip Osteophytes in DXA Scans Using U-Nets. Lecture Notes in Computer Science 2022. [DOI: 10.1007/978-3-031-16443-9_1] [Reference Citation Analysis]
74 Ma Z, Reich DS, Dembling S, Duyn JH, Koretsky AP. Outlier detection in multimodal MRI identifies rare individual phenotypes among more than 15,000 brains. Hum Brain Mapp 2021. [PMID: 34957633 DOI: 10.1002/hbm.25756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Faber BG, Ebsim R, Saunders FR, Frysz M, Lindner C, Gregory JS, Aspden RM, Harvey NC, Davey Smith G, Cootes T, Tobias JH. A novel semi-automated classifier of hip osteoarthritis on DXA images shows expected relationships with clinical outcomes in UK Biobank. Rheumatology (Oxford) 2021:keab927. [PMID: 34919677 DOI: 10.1093/rheumatology/keab927] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
76 Haas ME, Pirruccello JP, Friedman SN, Wang M, Emdin CA, Ajmera VH, Simon TG, Homburger JR, Guo X, Budoff M, Corey KE, Zhou AY, Philippakis A, Ellinor PT, Loomba R, Batra P, Khera AV. Machine learning enables new insights into genetic contributions to liver fat accumulation. Cell Genom 2021;1:100066. [PMID: 34957434 DOI: 10.1016/j.xgen.2021.100066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
77 Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC, Curtiss SW, Oostenveld R, Larson-Prior LJ, Schoffelen JM, Hodge MR, Cler EA, Marcus DM, Barch DM, Yacoub E, Smith SM, Ugurbil K, Van Essen DC. The Human Connectome Project: A retrospective. Neuroimage 2021;244:118543. [PMID: 34508893 DOI: 10.1016/j.neuroimage.2021.118543] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 27.0] [Reference Citation Analysis]
78 Laird AR. Large, open datasets for human connectomics research: Considerations for reproducible and responsible data use. Neuroimage 2021;244:118579. [PMID: 34536537 DOI: 10.1016/j.neuroimage.2021.118579] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
79 Sorokin EP, Basty N, Whitcher B, Liu Y, Bell JD, Cohen RL, Cule M, Thomas EL. Analysis of MRI-derived spleen iron in the UK Biobank identifies genetic variation linked to iron homeostasis and erythrocyte morphology.. [DOI: 10.1101/2021.11.16.21266431] [Reference Citation Analysis]
80 Ghodsian N, Abner E, Emdin CA, Gobeil É, Taba N, Haas ME, Perrot N, Manikpurage HD, Gagnon É, Bourgault J, St-Amand A, Couture C, Mitchell PL, Bossé Y, Mathieu P, Vohl MC, Tchernof A, Thériault S, Khera AV, Esko T, Arsenault BJ. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Rep Med 2021;2:100437. [PMID: 34841290 DOI: 10.1016/j.xcrm.2021.100437] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
81 Emont MP, Jacobs C, Essene AL, Pant D, Tenen D, Colleluori G, Di Vincenzo A, Jørgensen AM, Dashti H, Stefek A, Mcgonagle E, Strobel S, Laber S, Agrawal S, Westcott GP, Kar A, Veregge ML, Gulko A, Srinivasan H, Kramer Z, De Filippis E, Merkel E, Ducie J, Boyd CG, Gourash W, Courcoulas A, Lin SJ, Lee BT, Morris D, Tobias A, Khera AV, Claussnitzer M, Pers TH, Giordano A, Ashenberg O, Regev A, Tsai LT, Rosen ED. A single cell atlas of human and mouse white adipose tissue.. [DOI: 10.1101/2021.11.09.466968] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Bai W, Raman B, Petersen SE, Neubauer S, Raisi-estabragh Z, Aung N, Harvey NC, Allen N, Collins R, Matthews PM. Longitudinal Changes of Cardiac and Aortic Imaging Phenotypes Following COVID-19 in the UK Biobank Cohort.. [DOI: 10.1101/2021.11.04.21265918] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 O’dushlaine C, Germino M, Verweij N, Nielsen JB, Yadav A, Benner C, Backman JD, Lin N, R. Abecasis G, Baras A, Ferreira MA, Lotta LA, Walls JR, Parasoglou P, Marchini JL. Genome-wide association study of liver fat, iron, and extracellular fluid fraction in the UK Biobank.. [DOI: 10.1101/2021.10.25.21265127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Malik R, Beaufort N, Frerich S, Gesierich B, Georgakis MK, Rannikmäe K, Ferguson AC, Haffner C, Traylor M, Ehrmann M, Sudlow CLM, Dichgans M. Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities. Brain 2021;144:2670-82. [PMID: 34626176 DOI: 10.1093/brain/awab253] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
85 Markiewicz CJ, Gorgolewski KJ, Feingold F, Blair R, Halchenko YO, Miller E, Hardcastle N, Wexler J, Esteban O, Goncavles M, Jwa A, Poldrack R. The OpenNeuro resource for sharing of neuroscience data. Elife 2021;10:e71774. [PMID: 34658334 DOI: 10.7554/eLife.71774] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 27.0] [Reference Citation Analysis]
86 Bragg F, Trichia E, Aguilar-ramirez D, Bešević J, Lewington S, Emberson J. Predictive value of circulating NMR metabolic biomarkers for type 2 diabetes risk in the UK Biobank study.. [DOI: 10.1101/2021.10.11.21264833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Duff E, Zelaya F, Almagro FA, Miller KL, Martin N, Nichols TE, Taschler B, Griffanti L, Arthofer C, Wang C, Bethlehem RA, Eickel K, Günther M, Menon DK, Williams G, Facer B, Wood GK, Lythgoe DJ, Dell’acqua F, Williams SC, Houston G, Keller S, Breen G, Michael BD, Jezzard P, Smith SM, Bullmore ET. Reliability of multi-modal MRI-derived brain phenotypes for multi-site assessment of neuropsychiatric complications of SARS-CoV-2 infection.. [DOI: 10.1101/2021.10.13.21264967] [Reference Citation Analysis]
88 Canoy D, Harvey NC, Prieto-Alhambra D, Cooper C, Meyer HE, Åsvold BO, Nazarzadeh M, Rahimi K. Elevated blood pressure, antihypertensive medications and bone health in the population: revisiting old hypotheses and exploring future research directions. Osteoporos Int 2021. [PMID: 34642814 DOI: 10.1007/s00198-021-06190-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Mutz J, Roscoe CJ, Lewis CM. Exploring health in the UK Biobank: associations with sociodemographic characteristics, psychosocial factors, lifestyle and environmental exposures. BMC Med 2021;19:240. [PMID: 34629060 DOI: 10.1186/s12916-021-02097-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
90 van Rooij D, Schweren L, Shi H, Hartman CA, Buitelaar JK. Cortical and Subcortical Brain Volumes Partially Mediate the Association between Dietary Composition and Behavioral Disinhibition: A UK Biobank Study. Nutrients 2021;13:3542. [PMID: 34684543 DOI: 10.3390/nu13103542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Langner T, Gustafsson FK, Avelin B, Strand R, Ahlström H, Kullberg J. Uncertainty-aware body composition analysis with deep regression ensembles on UK Biobank MRI. Comput Med Imaging Graph 2021;93:101994. [PMID: 34624770 DOI: 10.1016/j.compmedimag.2021.101994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Perez-cornago A, Dunneram Y, Watts EL, Key TJ, Travis RC. Adiposity and risk of prostate cancer death: a prospective analysis in UK Biobank and meta-analysis of published studies.. [DOI: 10.1101/2021.10.05.21264556] [Reference Citation Analysis]
93 de Marvao A, McGurk KA, Zheng SL, Thanaj M, Bai W, Duan J, Biffi C, Mazzarotto F, Statton B, Dawes TJW, Savioli N, Halliday BP, Xu X, Buchan RJ, Baksi AJ, Quinlan M, Tokarczuk P, Tayal U, Francis C, Whiffin N, Theotokis PI, Zhang X, Jang M, Berry A, Pantazis A, Barton PJR, Rueckert D, Prasad SK, Walsh R, Ho CY, Cook SA, Ware JS, O'Regan DP. Phenotypic Expression and Outcomes in Individuals With Rare Genetic Variants of Hypertrophic Cardiomyopathy. J Am Coll Cardiol 2021;78:1097-110. [PMID: 34503678 DOI: 10.1016/j.jacc.2021.07.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
94 Hsu W, Baumgartner C, Deserno TM; Section Editors of the IMIA Yearbook Section on Sensors, Signals, and Imaging Informatics. Notable Papers and New Directions in Sensors, Signals, and Imaging Informatics. Yearb Med Inform 2021;30:150-8. [PMID: 34479386 DOI: 10.1055/s-0041-1726526] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
95 Francis CM, Futschik ME, Huang J, Bai W, Sargurupremraj M, Petretto E, Ho AS, Amouyel P, Engelter ST, Ware JS, Debette S, Elliott P, Dehghan A, Matthews PM. GENOME-WIDE ASSOCIATIONS OF AORTIC DISTENSIBILITY SUGGEST CAUSAL RELATIONSHIPS WITH AORTIC ANEURYSMS AND BRAIN WHITE MATTER HYPERINTENSITIES.. [DOI: 10.1101/2021.09.01.21262202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Bottani S, Burgos N, Maire A, Wild A, Ströer S, Dormont D, Colliot O; APPRIMAGE Study Group. Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse. Med Image Anal 2021;75:102219. [PMID: 34773767 DOI: 10.1016/j.media.2021.102219] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Whitcher B, Thanaj M, Cule M, Liu Y, Basty N, Sorokin EP, Bell JD, Thomas EL. Precision MRI Phenotyping Enables Detection of Small Changes in Body Composition for Longitudinal Cohorts.. [DOI: 10.1101/2021.08.29.21262790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Agrawal S, Wang M, Klarqvist MDR, Shin J, Dashti H, Diamant N, Choi SH, Jurgens SJ, Ellinor PT, Philippakis A, Ng K, Claussnitzer M, Batra P, Khera AV. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots.. [DOI: 10.1101/2021.08.24.21262564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
99 Faber BG, Ebsim R, Saunders FR, Frysz M, Lindner C, Gregory JS, Aspden RM, Harvey NC, Smith GD, Cootes T, Tobias JH. Osteophyte size and location on hip DXA scans are associated with hip pain: Findings from a cross sectional study in UK Biobank. Bone 2021;153:116146. [PMID: 34389476 DOI: 10.1016/j.bone.2021.116146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
100 Caleyachetty R, Littlejohns T, Lacey B, Bešević J, Conroy M, Collins R, Allen N. United Kingdom Biobank (UK Biobank): JACC Focus Seminar 6/8. J Am Coll Cardiol 2021;78:56-65. [PMID: 34210415 DOI: 10.1016/j.jacc.2021.03.342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
101 Hepp T, Blum D, Armanious K, Schölkopf B, Stern D, Yang B, Gatidis S. Uncertainty estimation and explainability in deep learning-based age estimation of the human brain: Results from the German National Cohort MRI study. Comput Med Imaging Graph 2021;92:101967. [PMID: 34392229 DOI: 10.1016/j.compmedimag.2021.101967] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
102 Kweon H, Aydogan G, Dagher A, Bzdok D, Ruff CC, Nave G, Farah MJ, Koellinger PD. Human brain anatomy reflects separable genetic and environmental components of socioeconomic status.. [DOI: 10.1101/2021.07.28.454131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
103 van Wijnen AJ, Abdel MP. Toward a Genetic Crystal Ball for Patients with Rotator Cuff Disease: Commentary on an article by Elizabeth L. Yanik, PhD, ScM, et al.: "Identification of a Novel Genetic Marker for Risk of Degenerative Rotator Cuff Disease Surgery in the UK Biobank". J Bone Joint Surg Am 2021;103:e55. [PMID: 34260443 DOI: 10.2106/JBJS.21.00434] [Reference Citation Analysis]
104 Kaul M, Rubinstein I. Population-Based Magnetic Resonance Imaging: Earlier Detection of Hypertensive Cerebral Small Vessel Disease? Hypertension 2021;78:540-2. [PMID: 34232679 DOI: 10.1161/HYPERTENSIONAHA.121.17606] [Reference Citation Analysis]
105 Markiewicz CJ, Gorgolewski KJ, Feingold F, Blair R, Halchenko YO, Miller E, Hardcastle N, Wexler J, Esteban O, Goncalves M, Jwa A, Poldrack RA. OpenNeuro: An open resource for sharing of neuroimaging data.. [DOI: 10.1101/2021.06.28.450168] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
106 Livingstone KM, Tan MH, Abbott G, Duckham RL, Croft L, Ward J, McEvoy M, Keske MA, Austin C, Bowe SJ. Discovery Genome-Wide Association Study of Body Composition in 4,386 Adults From the UK Biobank's Pilot Imaging Enhancement Study. Front Endocrinol (Lausanne) 2021;12:692677. [PMID: 34239500 DOI: 10.3389/fendo.2021.692677] [Reference Citation Analysis]
107 Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, Lange F, Andersson JLR, Griffanti L, Duff E, Jbabdi S, Taschler B, Winkler A, Nichols TE, Collins R, Matthews PM, Allen N, Miller KL, Smith SM. Brain imaging before and after COVID-19 in UK Biobank. medRxiv 2021:2021. [PMID: 34189535 DOI: 10.1101/2021.06.11.21258690] [Cited by in Crossref: 54] [Cited by in F6Publishing: 60] [Article Influence: 54.0] [Reference Citation Analysis]
108 Liu Y, Basty N, Whitcher B, Bell JD, Sorokin EP, van Bruggen N, Thomas EL, Cule M. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. Elife 2021;10:e65554. [PMID: 34128465 DOI: 10.7554/eLife.65554] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 29.0] [Reference Citation Analysis]
109 Flores AM, Demsas F, Leeper NJ, Ross EG. Leveraging Machine Learning and Artificial Intelligence to Improve Peripheral Artery Disease Detection, Treatment, and Outcomes. Circ Res 2021;128:1833-50. [PMID: 34110911 DOI: 10.1161/CIRCRESAHA.121.318224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
110 Antoniades C, Asselbergs FW, Vardas P. The year in cardiovascular medicine 2020: digital health and innovation. Eur Heart J 2021;42:732-9. [PMID: 33388767 DOI: 10.1093/eurheartj/ehaa1065] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
111 Madan CR. Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics 2021. [PMID: 33974213 DOI: 10.1007/s12021-021-09519-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
112 Agrawal S, Klarqvist MDR, Diamant N, Stanley TL, Ellinor PT, Mehta NN, Philippakis A, Ng K, Claussnitzer M, Grinspoon SK, Batra P, Khera AV. Association of machine learning-derived measures of body fat distribution with cardiometabolic diseases in >40,000 individuals.. [DOI: 10.1101/2021.05.07.21256854] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
113 Ma Z, Reich DS, Dembling S, Duyn JH, Koretsky AP. Outlier detection in multimodal MRI identifies rare individual phenotypes among 20,000 brains.. [DOI: 10.1101/2021.05.10.441017] [Reference Citation Analysis]
114 Antoniades C, Asselbergs FW, Vardas P. The year in cardiovascular medicine 2020: digital health and innovation. Russ J Cardiol 2021;26:4425. [DOI: 10.15829/1560-4071-2021-4425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
115 Moreau CA, Ching CR, Kumar K, Jacquemont S, Bearden CE. Structural and functional brain alterations revealed by neuroimaging in CNV carriers. Curr Opin Genet Dev 2021;68:88-98. [PMID: 33812299 DOI: 10.1016/j.gde.2021.03.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
116 Malik R, Beaufort N, Frerich S, Gesierich B, Georgakis MK, Rannikmäe K, Ferguson AC, Haffner C, Traylor M, Ehrmann M, Sudlow CL, Dichgans M. Whole-exome sequencing in 16,511 individuals reveals a role of the HTRA1 protease and its substrate EGFL8 in brain white matter hyperintensities.. [DOI: 10.1101/2021.03.26.21253954] [Reference Citation Analysis]
117 Faber BG, Ebsim R, Saunders FR, Frysz M, Davey Smith G, Cootes T, Tobias JH, Lindner C. Deriving alpha angle from anterior-posterior dual-energy x-ray absorptiometry scans: an automated and validated approach. Wellcome Open Res 2021;6:60. [DOI: 10.12688/wellcomeopenres.16656.1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
118 Zabihi M, Kia SM, Wolfers T, de Boer S, Fraza C, Soheili-nezhad S, Dinga R, Llera Arenas A, Bzdok D, Beckmann CF, Marquand A. Explanatory latent representation of heterogeneous spatial maps of task-fMRI in large-scale datasets.. [DOI: 10.1101/2021.03.10.434856] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Zhang W, Vidaurre D, Bijsterbosch JD. Mental health explains individual deviations from normative range in cognition-associated brain states.. [DOI: 10.1101/2021.03.12.435017] [Reference Citation Analysis]
120 Johnston JA, Nelson DR, Bhatnagar P, Curtis SE, Chen Y, MacKrell JG. Prevalence and cardiometabolic correlates of ketohexokinase gene variants among UK Biobank participants. PLoS One 2021;16:e0247683. [PMID: 33621267 DOI: 10.1371/journal.pone.0247683] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
121 Mulugeta A, Lumsden A, Hyppönen E. Unlocking the causal link of metabolically different adiposity subtypes with brain volumes and the risks of dementia and stroke: A Mendelian randomization study. Neurobiol Aging 2021;102:161-9. [PMID: 33770530 DOI: 10.1016/j.neurobiolaging.2021.02.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
122 Sønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon-Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa-Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo-Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga JJ, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin-Brevet S, Martínez K, Mather KA, Mathias SR, McDonald-McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez-Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas-Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez-Bourgon J, Vila-Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, Thompson PM, Bearden CE, Andreassen OA; ENIGMA-CNV Working Group., ENIGMA 22q11.2 Deletion Syndrome Working Group. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp 2021. [PMID: 33615640 DOI: 10.1002/hbm.25354] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
123 Garfield V, Farmaki AE, Eastwood SV, Mathur R, Rentsch CT, Bhaskaran K, Smeeth L, Chaturvedi N. HbA1c and brain health across the entire glycaemic spectrum. Diabetes Obes Metab 2021;23:1140-9. [PMID: 33464682 DOI: 10.1111/dom.14321] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
124 Graham M, Hallowell N, Solberg B, Haukkala A, Holliday J, Kerasidou A, Littlejohns T, Ormondroyd E, Skolbekken JA, Vornanen M; Northern European Returning Results Network. Taking it to the bank: the ethical management of individual findings arising in secondary research. J Med Ethics 2021:medethics-2020-106941. [PMID: 33441306 DOI: 10.1136/medethics-2020-106941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
125 Owler J, Bagur AT, Marriage S, Arya Z, Aljabar P, Mcgonigle J, Brady SM, Bulte D. Pancreas Volumetry in UK Biobank: Comparison of Models and Inference at Scale. Medical Image Understanding and Analysis 2021. [DOI: 10.1007/978-3-030-80432-9_21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
126 Jain KK. Development of Personalized Medicine. Textbook of Personalized Medicine 2021. [DOI: 10.1007/978-3-030-62080-6_22] [Reference Citation Analysis]
127 Bagur AT, Aljabar P, Arya Z, Mcgonigle J, Brady SM, Bulte D. Slice-to-Volume Registration Enables Automated Pancreas MRI Quantification in UK Biobank. Medical Image Understanding and Analysis 2021. [DOI: 10.1007/978-3-030-80432-9_17] [Reference Citation Analysis]
128 Thanaj M, Basty N, Liu Y, Cule M, Sorokin EP, Louise Thomas E, Bell JD, Whitcher B. Mass Univariate Regression Analysis for Three-Dimensional Liver Image-Derived Phenotypes. Medical Image Understanding and Analysis 2021. [DOI: 10.1007/978-3-030-80432-9_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Ghodsian N, Abner E, Emdin CA, Gobeil É, Taba N, Haas ME, Perrot N, Manikpurage HD, Gagnon É, Bourgault J, St-amand A, Couture C, Mitchell PL, Bossé Y, Mathieu P, Vohl M, Tchernof A, Thériault S, Khera AV, Esko T, Arsenault B. Electronic Health Record-Based Genome-Wide Meta-Analysis Provides New Insights on the Genetic Architecture of Non-Alcoholic Fatty Liver Disease. SSRN Journal. [DOI: 10.2139/ssrn.3865274] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Powell R, De Lucia Rolfe E, Day FR, Perry JR, Griffin SJ, Forouhi NG, Brage S, Wareham NJ, Langenberg C, Ong KK. Development and validation of total and regional body composition prediction equations from anthropometry and single frequency segmental bioelectrical impedance with DEXA.. [DOI: 10.1101/2020.12.16.20248330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
131 Quidé Y, Tozzi L, Corcoran M, Cannon DM, Dauvermann MR. The Impact of Childhood Trauma on Developing Bipolar Disorder: Current Understanding and Ensuring Continued Progress. Neuropsychiatr Dis Treat 2020;16:3095-115. [PMID: 33364762 DOI: 10.2147/NDT.S285540] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
132 Medland SE, Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Thomopoulos SI, Stein JL, Franke B, Martin NG, Thompson PM; ENIGMA Genetics Working Group. Ten years of enhancing neuro-imaging genetics through meta-analysis: An overview from the ENIGMA Genetics Working Group. Hum Brain Mapp 2020. [PMID: 33300665 DOI: 10.1002/hbm.25311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
133 Chambers T, Escott-price V, Legge S, Baker E, Singh KD, Walters JT, Caseras X, Anney RJ. Identifying genetic variants associated with cerebellar volume in 33,265 individuals from the UK-Biobank.. [DOI: 10.1101/2020.11.24.393249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
134 Fitzpatrick JA, Basty N, Cule M, Liu Y, Bell JD, Thomas EL, Whitcher B. Large-scale analysis of iliopsoas muscle volumes in the UK Biobank. Sci Rep 2020;10:20215. [PMID: 33214629 DOI: 10.1038/s41598-020-77351-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
135 Haas ME, Pirruccello JP, Friedman SN, Emdin CA, Ajmera VH, Simon TG, Homburger JR, Guo X, Budoff M, Corey KE, Zhou AY, Philippakis A, Ellinor PT, Loomba R, Batra P, Khera AV. Machine learning enables new insights into clinical significance of and genetic contributions to liver fat accumulation.. [DOI: 10.1101/2020.09.03.20187195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
136 Liu Y, Basty N, Whitcher B, Bell JD, Sorokin E, van Bruggen N, Thomas EL, Cule M. Genetic architecture of 11 abdominal organ traits derived from abdominal MRI using deep learning.. [DOI: 10.1101/2020.07.14.187070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]