BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: de Wispelaere M, Du G, Donovan KA, Zhang T, Eleuteri NA, Yuan JC, Kalabathula J, Nowak RP, Fischer ES, Gray NS, Yang PL. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat Commun 2019;10:3468. [PMID: 31371704 DOI: 10.1038/s41467-019-11429-w] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 15.3] [Reference Citation Analysis]
Number Citing Articles
1 Hahn F, Hamilton ST, Wangen C, Wild M, Kicuntod J, Brückner N, Follett JEL, Herrmann L, Kheimar A, Kaufer BB, Rawlinson WD, Tsogoeva SB, Marschall M. Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. Int J Mol Sci 2021;22:12858. [PMID: 34884662 DOI: 10.3390/ijms222312858] [Reference Citation Analysis]
2 Ma S, Ji J, Tong Y, Zhu Y, Dou J, Zhang X, Xu S, Zhu T, Xu X, You Q, Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.022] [Reference Citation Analysis]
3 Desantis J, Mercorelli B, Celegato M, Croci F, Bazzacco A, Baroni M, Siragusa L, Cruciani G, Loregian A, Goracci L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur J Med Chem 2021;226:113814. [PMID: 34534839 DOI: 10.1016/j.ejmech.2021.113814] [Reference Citation Analysis]
4 Li K, Crews CM. PROTACs: past, present and future. Chem Soc Rev 2022;51:5214-36. [PMID: 35671157 DOI: 10.1039/d2cs00193d] [Reference Citation Analysis]
5 Ito T, Handa H. Molecular mechanisms of thalidomide and its derivatives. Proc Jpn Acad Ser B Phys Biol Sci 2020;96:189-203. [PMID: 32522938 DOI: 10.2183/pjab.96.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
6 Zhuang C, Pannecouque C, De Clercq E, Chen F. Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years. Acta Pharm Sin B 2020;10:961-78. [PMID: 32642405 DOI: 10.1016/j.apsb.2019.11.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
7 Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. Chinese Chemical Letters 2020;31:1695-708. [DOI: 10.1016/j.cclet.2020.03.028] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 17.5] [Reference Citation Analysis]
8 Jeelan Basha N, Basavarajaiah SM, Shyamsunder K. Therapeutic potential of pyrrole and pyrrolidine analogs: an update. Mol Divers. [DOI: 10.1007/s11030-022-10387-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Xi J, Zhang R, Chen K, Yao L, Li M, Jiang R, Li X, Fan L. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorganic Chemistry 2022;125:105848. [DOI: 10.1016/j.bioorg.2022.105848] [Reference Citation Analysis]
10 Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Prey for the Proteasome: Targeted Protein Degradation-A Medicinal Chemist's Perspective. Angew Chem Int Ed Engl 2020;59:15448-66. [PMID: 32428344 DOI: 10.1002/anie.202004310] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 11.5] [Reference Citation Analysis]
11 Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Eur J Med Chem 2020;206:112711. [PMID: 32810751 DOI: 10.1016/j.ejmech.2020.112711] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 19.0] [Reference Citation Analysis]
12 Powell CE, Du G, Bushman JW, He Z, Zhang T, Fischer ES, Gray NS. Selective degradation-inducing probes for studying cereblon (CRBN) biology. RSC Med Chem 2021;12:1381-90. [PMID: 34458741 DOI: 10.1039/d0md00382d] [Reference Citation Analysis]
13 Hua L, Zhang Q, Zhu X, Wang R, You Q, Wang L. Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. J Med Chem 2022;65:8091-112. [PMID: 35686733 DOI: 10.1021/acs.jmedchem.2c00316] [Reference Citation Analysis]
14 Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 2022. [PMID: 35042991 DOI: 10.1038/s41573-021-00371-6] [Cited by in Crossref: 53] [Cited by in F6Publishing: 32] [Article Influence: 53.0] [Reference Citation Analysis]
15 Zhao L, Zhao J, Zhong K, Tong A, Jia D. Targeted protein degradation: mechanisms, strategies and application. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00966-4] [Reference Citation Analysis]
16 Jang J, To C, De Clercq DJH, Park E, Ponthier CM, Shin BH, Mushajiang M, Nowak RP, Fischer ES, Eck MJ, Jänne PA, Gray NS. Mutant‐Selective Allosteric EGFR Degraders are Effective Against a Broad Range of Drug‐Resistant Mutations. Angew Chem 2020;132:14589-97. [DOI: 10.1002/ange.202003500] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019;4:64. [PMID: 31885879 DOI: 10.1038/s41392-019-0101-6] [Cited by in Crossref: 123] [Cited by in F6Publishing: 116] [Article Influence: 41.0] [Reference Citation Analysis]
18 Jang J, To C, De Clercq DJH, Park E, Ponthier CM, Shin BH, Mushajiang M, Nowak RP, Fischer ES, Eck MJ, Jänne PA, Gray NS. Mutant-Selective Allosteric EGFR Degraders are Effective Against a Broad Range of Drug-Resistant Mutations. Angew Chem Int Ed Engl 2020;59:14481-9. [PMID: 32510788 DOI: 10.1002/anie.202003500] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
19 Powell M, Blaskovich MAT, Hansford KA. Targeted Protein Degradation: The New Frontier of Antimicrobial Discovery? ACS Infect Dis 2021;7:2050-67. [PMID: 34259518 DOI: 10.1021/acsinfecdis.1c00203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Shaheer M, Singh R, Sobhia ME. Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2. J Biomol Struct Dyn 2021;:1-13. [PMID: 34328382 DOI: 10.1080/07391102.2021.1953601] [Reference Citation Analysis]
21 Kiruthika S, Bhat R, Dash R, Rathore AS, Vivekanandan P, Jayaram B. A novel piperazine derivative that targets hepatitis B surface antigen effectively inhibits tenofovir resistant hepatitis B virus. Sci Rep 2021;11:11723. [PMID: 34083665 DOI: 10.1038/s41598-021-91196-1] [Reference Citation Analysis]
22 Bartoloni S, Leone S, Acconcia F. Unexpected Impact of a Hepatitis C Virus Inhibitor on 17β-Estradiol Signaling in Breast Cancer. Int J Mol Sci 2020;21:E3418. [PMID: 32408555 DOI: 10.3390/ijms21103418] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wang C, Zheng C, Wang H, Zhang L, Liu Z, Xu P. The state of the art of PROTAC technologies for drug discovery. European Journal of Medicinal Chemistry 2022;235:114290. [DOI: 10.1016/j.ejmech.2022.114290] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhou Y, Zheng R, Liu S, Disoma C, Du A, Li S, Chen Z, Dong Z, Zhang Y, Li S, Liu P, Razzaq A, Chen X, Liao Y, Tao S, Liu Y, Xu L, Zhang Q, Peng J, Deng X, Li S, Jiang T, Xia Z. Host E3 ligase HUWE1 attenuates the proapoptotic activity of the MERS-CoV accessory protein ORF3 by promoting its ubiquitin-dependent degradation. J Biol Chem 2022;298:101584. [PMID: 35032548 DOI: 10.1016/j.jbc.2022.101584] [Reference Citation Analysis]
26 Grimster NP. Covalent PROTACs: the best of both worlds? RSC Med Chem 2021;12:1452-8. [PMID: 34671730 DOI: 10.1039/d1md00191d] [Reference Citation Analysis]
27 Wang C, Zhang Y, Xing D, Zhang R. PROTACs technology for targeting non-oncoproteins: Advances and perspectives. Bioorg Chem 2021;114:105109. [PMID: 34175722 DOI: 10.1016/j.bioorg.2021.105109] [Reference Citation Analysis]
28 Xia SW, Wang ZM, Sun SM, Su Y, Li ZH, Shao JJ, Tan SZ, Chen AP, Wang SJ, Zhang ZL, Zhang F, Zheng SZ. Endoplasmic reticulum stress and protein degradation in chronic liver disease. Pharmacol Res 2020;161:105218. [PMID: 33007418 DOI: 10.1016/j.phrs.2020.105218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
29 Modell AE, Lai S, Nguyen TM, Choudhary A. Bifunctional modalities for repurposing protein function. Cell Chem Biol 2021;28:1081-9. [PMID: 34270935 DOI: 10.1016/j.chembiol.2021.06.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Troup RI, Fallan C, Baud MGJ. Current strategies for the design of PROTAC linkers: a critical review. Exploration of Targeted Anti-tumor Therapy 2020;1. [DOI: 10.37349/etat.2020.00018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Luh LM, Scheib U, Juenemann K, Wortmann L, Brands M, Cromm PM. Beute für das Proteasom: Gezielter Proteinabbau aus medizinalchemischer Perspektive. Angew Chem 2020;132:15576-95. [DOI: 10.1002/ange.202004310] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Zeng S, Huang W, Zheng X, Liyan Cheng, Zhang Z, Wang J, Shen Z. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur J Med Chem 2021;210:112981. [PMID: 33160761 DOI: 10.1016/j.ejmech.2020.112981] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
33 Gabizon R, London N. The rise of covalent proteolysis targeting chimeras. Curr Opin Chem Biol 2021;62:24-33. [PMID: 33549806 DOI: 10.1016/j.cbpa.2020.12.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
34 Gasic I, Groendyke BJ, Nowak RP, Yuan JC, Kalabathula J, Fischer ES, Gray NS, Mitchison TJ. Tubulin Resists Degradation by Cereblon-Recruiting PROTACs. Cells 2020;9:E1083. [PMID: 32349222 DOI: 10.3390/cells9051083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
35 Bery N, Miller A, Rabbitts T. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat Commun 2020;11:3233. [PMID: 32591521 DOI: 10.1038/s41467-020-17022-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
36 Li H, Wang S, Ma W, Cheng B, Yi Y, Ma X, Xiao S, Zhang L, Zhou D. Discovery of Pentacyclic Triterpenoid PROTACs as a Class of Effective Hemagglutinin Protein Degraders. J Med Chem 2022. [PMID: 35579113 DOI: 10.1021/acs.jmedchem.1c02013] [Reference Citation Analysis]
37 Zhao J, Wang J, Pang X, Liu Z, Li Q, Yi D, Zhang Y, Fang X, Zhang T, Zhou R, Zhang T, Guo Z, Liu W, Li X, Liang C, Deng T, Guo F, Yu L, Cen S. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat Commun 2022;13:2079. [PMID: 35440123 DOI: 10.1038/s41467-022-29690-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Yin L, Hu Q. Chimera induced protein degradation: PROTACs and beyond. Eur J Med Chem 2020;206:112494. [PMID: 32890974 DOI: 10.1016/j.ejmech.2020.112494] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Dowarah J, Marak BN, Yadav UCS, Singh VP. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem 2021;114:105016. [PMID: 34144277 DOI: 10.1016/j.bioorg.2021.105016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Li S, Li S, Disoma C, Zheng R, Zhou M, Razzaq A, Liu P, Zhou Y, Dong Z, Du A, Peng J, Hu L, Huang J, Feng P, Jiang T, Xia Z. SARS‐CoV‐2: Mechanism of infection and emerging technologies for future prospects. Rev Med Virol 2021;31. [DOI: 10.1002/rmv.2168] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
41 Wang C, Zhang Y, Wu Y, Xing D. Developments of CRBN-based PROTACs as potential therapeutic agents. Eur J Med Chem 2021;225:113749. [PMID: 34411892 DOI: 10.1016/j.ejmech.2021.113749] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Sosič I, Bricelj A, Steinebach C. E3 ligase ligand chemistries: from building blocks to protein degraders. Chem Soc Rev 2022. [PMID: 35393989 DOI: 10.1039/d2cs00148a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Izert MA, Klimecka MM, Górna MW. Applications of Bacterial Degrons and Degraders - Toward Targeted Protein Degradation in Bacteria. Front Mol Biosci 2021;8:669762. [PMID: 34026843 DOI: 10.3389/fmolb.2021.669762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Bricelj A, Steinebach C, Kuchta R, Gütschow M, Sosič I. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Front Chem 2021;9:707317. [PMID: 34291038 DOI: 10.3389/fchem.2021.707317] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
45 Verma R, Mohl D, Deshaies RJ. Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Mol Cell 2020;77:446-60. [PMID: 32004468 DOI: 10.1016/j.molcel.2020.01.010] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 33.0] [Reference Citation Analysis]
46 Fischer PD, Papadopoulos E, Dempersmier JM, Wang ZF, Nowak RP, Donovan KA, Kalabathula J, Gorgulla C, Junghanns PPM, Kabha E, Dimitrakakis N, Petrov OI, Mitsiades C, Ducho C, Gelev V, Fischer ES, Wagner G, Arthanari H. A biphenyl inhibitor of eIF4E targeting an internal binding site enables the design of cell-permeable PROTAC-degraders. Eur J Med Chem 2021;219:113435. [PMID: 33892272 DOI: 10.1016/j.ejmech.2021.113435] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Gopal P, Dick T. Targeted protein degradation in antibacterial drug discovery? Prog Biophys Mol Biol 2020;152:10-4. [PMID: 31738980 DOI: 10.1016/j.pbiomolbio.2019.11.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
48 Prescott NA, Bram Y, Schwartz RE, David Y. Targeting Hepatitis B Virus Covalently Closed Circular DNA and Hepatitis B Virus X Protein: Recent Advances and New Approaches. ACS Infect Dis 2019;5:1657-67. [PMID: 31525994 DOI: 10.1021/acsinfecdis.9b00249] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
49 Xu S, Ding D, Zhang X, Sun L, Kang D, Huang B, Liu X, Zhan P. Newly Emerging Strategies in Antiviral Drug Discovery: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Anniversary. Molecules 2022;27:850. [PMID: 35164129 DOI: 10.3390/molecules27030850] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Sugasti-Salazar M, Llamas-González YY, Campos D, González-Santamaría J. Inhibition of p38 Mitogen-Activated Protein Kinase Impairs Mayaro Virus Replication in Human Dermal Fibroblasts and HeLa Cells. Viruses 2021;13:1156. [PMID: 34204188 DOI: 10.3390/v13061156] [Reference Citation Analysis]
51 Wei F, Kang D, Cherukupalli S, Zalloum WA, Zhang T, Liu X, Zhan P. Discovery and optimizing polycyclic pyridone compounds as anti-HBV agents. Expert Opin Ther Pat 2020;30:715-21. [PMID: 32746660 DOI: 10.1080/13543776.2020.1801641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Drummond ML, Henry A, Li H, Williams CI. Improved Accuracy for Modeling PROTAC-Mediated Ternary Complex Formation and Targeted Protein Degradation via New In Silico Methodologies. J Chem Inf Model 2020;60:5234-54. [PMID: 32969649 DOI: 10.1021/acs.jcim.0c00897] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
53 Desantis J, Goracci L. Proteolysis targeting chimeras in antiviral research. Future Med Chem 2022. [PMID: 35134309 DOI: 10.4155/fmc-2022-0005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021;50:4514-40. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
55 Verma R. Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy. Adv Exp Med Biol 2021;1322:339-57. [PMID: 34258747 DOI: 10.1007/978-981-16-0267-2_13] [Reference Citation Analysis]
56 Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. Prog Med Chem 2021;60:67-190. [PMID: 34147206 DOI: 10.1016/bs.pmch.2021.01.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Omar AM, Elfaky MA, Arold ST, Soror SH, Khayat MT, Asfour HZ, Bamane FH, El-Araby ME. 1H-Imidazole-2,5-Dicarboxamides as NS4A Peptidomimetics: Identification of a New Approach to Inhibit HCV-NS3 Protease. Biomolecules 2020;10:E479. [PMID: 32245218 DOI: 10.3390/biom10030479] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Grohmann C, Marapana DS, Ebert G. Targeted protein degradation at the host-pathogen interface. Mol Microbiol 2021. [PMID: 34816514 DOI: 10.1111/mmi.14849] [Reference Citation Analysis]
59 Liu X, Zhang X, Lv D, Yuan Y, Zheng G, Zhou D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med Chem 2020;12:1155-79. [PMID: 32431173 DOI: 10.4155/fmc-2020-0073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
60 Rambacher KM, Calabrese MF, Yamaguchi M. Perspectives on the development of first-in-class protein degraders. Future Med Chem 2021;13:1203-26. [PMID: 34015962 DOI: 10.4155/fmc-2021-0033] [Reference Citation Analysis]