BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang F, Tao F, Li C, Gao L, Yang P. Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. Nat Commun 2018;9:5443. [PMID: 30575744 DOI: 10.1038/s41467-018-07888-2] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen X, Zhang S, Hou D, Duan H, Deng B, Zeng Z, Liu B, Sun L, Song R, Du J, Gao P, Peng H, Liu Z, Wang L. Tunable Pore Size from Sub-Nanometer to a Few Nanometers in Large-Area Graphene Nanoporous Atomically Thin Membranes. ACS Appl Mater Interfaces 2021. [PMID: 34133124 DOI: 10.1021/acsami.1c06243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Zhang TD, Chen LL, Lin WJ, Shi WP, Wang JQ, Zhang CY, Guo WH, Deng X, Yin DC. Searching for conditions of protein self-assembly by protein crystallization screening method. Appl Microbiol Biotechnol 2021;105:2759-73. [PMID: 33683398 DOI: 10.1007/s00253-021-11188-z] [Reference Citation Analysis]
3 Jiang P, He Y, Zhao Y, Chen L. Hierarchical Surface Architecture of Hemodialysis Membranes for Eliminating Homocysteine Based on the Multifunctional Role of Pyridoxal 5'-phosphate. ACS Appl Mater Interfaces 2020;12:36837-50. [PMID: 32705861 DOI: 10.1021/acsami.0c07090] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Ham S, Jeong D, Jang D. Facile fabrication of reusable FeOOH-polycarbonate membranes for effective separation of organic molecules. Separation and Purification Technology 2020;253:117513. [DOI: 10.1016/j.seppur.2020.117513] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Wang G, Wu B, Xu Z, Wan L. Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration. Mater Chem Front 2019;3:2102-9. [DOI: 10.1039/c9qm00253g] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
6 Li Y, Li K, Wang X, An B, Cui M, Pu J, Wei S, Xue S, Ye H, Zhao Y, Liu M, Wang Z, Zhong C. Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. Nano Lett 2019;19:8399-408. [PMID: 31512886 DOI: 10.1021/acs.nanolett.9b02324] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
7 Xu Y, Liu Y, Hu X, Qin R, Su H, Li J, Yang P. The Synthesis of a 2D Ultra‐Large Protein Supramolecular Nanofilm by Chemoselective Thiol–Disulfide Exchange and its Emergent Functions. Angew Chem Int Ed 2020;59:2850-9. [DOI: 10.1002/anie.201912848] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
8 Yang J, Liu X, Tang J, Dėdinaitė A, Liu J, Miao R, Liu K, Peng J, Claesson PM, Liu X, Fang Y. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. ACS Appl Mater Interfaces 2021;13:3336-48. [PMID: 33356087 DOI: 10.1021/acsami.0c16831] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhu X, Xu D, Gan Z, Luo X, Tang X, Cheng X, Bai L, Li G, Liang H. Improving chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in-situ grafted melamine. Desalination 2020;489:114539. [DOI: 10.1016/j.desal.2020.114539] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
10 Zhang Q, Zhu Y, Wu J, Dong L. Nanofiltration Filter Paper Based on Ultralong Hydroxyapatite Nanowires and Cellulose Fibers/Nanofibers. ACS Sustainable Chem Eng 2019;7:17198-209. [DOI: 10.1021/acssuschemeng.9b03793] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
11 Zhang S, Liu Y, Li D, Wang Q, Ran F. Water-soluble MOF nanoparticles modified polyethersulfone membrane for improving flux and molecular retention. Applied Surface Science 2020;505:144553. [DOI: 10.1016/j.apsusc.2019.144553] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
12 Ariga K, Matsumoto M, Mori T, Shrestha LK. Materials nanoarchitectonics at two-dimensional liquid interfaces. Beilstein J Nanotechnol 2019;10:1559-87. [PMID: 31467820 DOI: 10.3762/bjnano.10.153] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
13 Su H, Liu Y, Gao Y, Fu C, Li C, Qin R, Liang L, Yang P. Amyloid-Like Protein Aggregation Toward Pesticide Reduction. Adv Sci (Weinh) 2022;:e2105106. [PMID: 35257513 DOI: 10.1002/advs.202105106] [Reference Citation Analysis]
14 Mruthunjayappa MH, Kotrappanavar NS, Mondal D. Bioinspired engineering protein nanofibrils-based multilayered self-cleaning membranes for universal water purification. J Hazard Mater 2021;424:127561. [PMID: 34736199 DOI: 10.1016/j.jhazmat.2021.127561] [Reference Citation Analysis]
15 Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020;12:1101-8. [PMID: 34163877 DOI: 10.1039/d0sc05312k] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Yu X, Zhu Y, Cheng C, Zhang T, Wang X, Hsiao BS. Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. Journal of Membrane Science 2019;582:151-63. [DOI: 10.1016/j.memsci.2019.04.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 6.3] [Reference Citation Analysis]
17 Saif B, Gu Q, Yang P. The Synthesis of Protein-Encapsulated Ceria Nanorods for Visible-Light Driven Hydrogen Production and Carbon Dioxide Reduction. Small 2021;17:e2103422. [PMID: 34596324 DOI: 10.1002/smll.202103422] [Reference Citation Analysis]
18 Yang F, Yan Z, Zhao J, Miao S, Wang D, Yang P. Rapid capture of trace precious metals by amyloid-like protein membrane with high adsorption capacity and selectivity. J Mater Chem A 2020;8:3438-49. [DOI: 10.1039/c9ta12124b] [Cited by in Crossref: 18] [Article Influence: 9.0] [Reference Citation Analysis]
19 Meng P, Brock A, Xu Y, Han C, Chen S, Yan C, Mcmurtrie J, Xu J. Crystal Transformation from the Incorporation of Coordinate Bonds into a Hydrogen-Bonded Network Yields Robust Free-Standing Supramolecular Membranes. J Am Chem Soc 2020;142:479-86. [DOI: 10.1021/jacs.9b11336] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
20 Wu M, Yang F, Yang J, Zhong Q, Körstgen V, Yang P, Müller-buschbaum P, Xu Z. Lysozyme Membranes Promoted by Hydrophobic Substrates for Ultrafast and Precise Organic Solvent Nanofiltration. Nano Lett 2020;20:8760-7. [DOI: 10.1021/acs.nanolett.0c03632] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
21 Wang C, Cheng R, Hou P, Ma Y, Majeed A, Wang X, Liu C. MXene-Carbon Nanotube Hybrid Membrane for Robust Recovery of Au from Trace-Level Solution. ACS Appl Mater Interfaces 2020;12:43032-41. [DOI: 10.1021/acsami.0c09310] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
22 Maity S, Mishra B, Nayak K, Dubey N, Tripathi B. Zwitterionic microgel based anti(-bio)fouling smart membranes for tunable water filtration and molecular separation. Materials Today Chemistry 2022;24:100779. [DOI: 10.1016/j.mtchem.2022.100779] [Reference Citation Analysis]
23 Yu R, Wang H, Wang R, Zhao P, Chen Y, Liu G, Liao X. Polyphenol modified natural collagen fibrous network towards sustainable and antibacterial microfiltration membrane for efficient water disinfection. Water Research 2022;218:118469. [DOI: 10.1016/j.watres.2022.118469] [Reference Citation Analysis]
24 Xu Y, Liu Y, Hu X, Qin R, Su H, Li J, Yang P. The Synthesis of a 2D Ultra‐Large Protein Supramolecular Nanofilm by Chemoselective Thiol–Disulfide Exchange and its Emergent Functions. Angew Chem 2020;132:2872-81. [DOI: 10.1002/ange.201912848] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhou Y, Zhang G, Li B, Wu L. Two-Dimensional Supramolecular Ionic Frameworks for Precise Membrane Separation of Small Nanoparticles. ACS Appl Mater Interfaces 2020;12:30761-9. [DOI: 10.1021/acsami.0c05947] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Son G, Kim J, Park CB. Interference of Solvatochromic Twist in Amyloid Nanostructure for Light-Driven Biocatalysis. ACS Appl Energy Mater 2020;3:1215-21. [DOI: 10.1021/acsaem.9b02303] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
27 Li J, Wang R, Su Z, Ma X, Jiang X. Multifunctional Polymer Sponge with Molecule Recognition: Facile Mechanic Induced Separation. Langmuir 2019;35:14920-8. [PMID: 31657577 DOI: 10.1021/acs.langmuir.9b02857] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
28 Li R, Xu J, Wang T, Wang L, Li F, Liu S, Jiang X, Luo Q, Liu J. Dynamically Tunable Ultrathin Protein Membranes for Controlled Molecular Separation. ACS Appl Mater Interfaces 2021;13:12359-65. [PMID: 33666409 DOI: 10.1021/acsami.0c21817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sakaguchi T, Wada T, Kasai T, Shiratori T, Minami Y, Shimada Y, Otsuka Y, Komatsu K, Goto S. Effects of ionic and reductive atmosphere on the conformational rearrangement in hen egg white lysozyme prior to amyloid formation. Colloids and Surfaces B: Biointerfaces 2020;190:110845. [DOI: 10.1016/j.colsurfb.2020.110845] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Liu Y, Tao F, Miao S, Yang P. Controlling the Structure and Function of Protein Thin Films through Amyloid-like Aggregation. Acc Chem Res 2021;54:3016-27. [PMID: 34282883 DOI: 10.1021/acs.accounts.1c00231] [Reference Citation Analysis]
31 Zhu W, Guo J, Amini S, Ju Y, Agola JO, Zimpel A, Shang J, Noureddine A, Caruso F, Wuttke S, Croissant JG, Brinker CJ. SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticle-Based Exoskeletons. Adv Mater 2019;31:e1900545. [PMID: 31032545 DOI: 10.1002/adma.201900545] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 13.7] [Reference Citation Analysis]
32 Fonseca J, Choi S. Rational Synthesis of a Hierarchical Supramolecular Porous Material Created via Self-Assembly of Metal–Organic Framework Nanosheets. Inorg Chem 2020;59:3983-92. [DOI: 10.1021/acs.inorgchem.9b03667] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Peydayesh M, Mezzenga R. Protein nanofibrils for next generation sustainable water purification. Nat Commun 2021;12:3248. [PMID: 34059677 DOI: 10.1038/s41467-021-23388-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Peydayesh M, Suta T, Usuelli M, Handschin S, Canelli G, Bagnani M, Mezzenga R. Sustainable Removal of Microplastics and Natural Organic Matter from Water by Coagulation-Flocculation with Protein Amyloid Fibrils. Environ Sci Technol 2021;55:8848-58. [PMID: 34170128 DOI: 10.1021/acs.est.1c01918] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Yu H, Zhong QZ, Liu TG, Qiu WZ, Wu BH, Xu ZK, Wan LS. Surface Deposition of Juglone/FeIII on Microporous Membranes for Oil/Water Separation and Dye Adsorption. Langmuir 2019;35:3643-50. [PMID: 30773014 DOI: 10.1021/acs.langmuir.8b03914] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 5.7] [Reference Citation Analysis]
36 Zhang S, Manasa P, Wang Q, Li D, Dang X, Xiaoqinniu, Ran F. Grafting copolymer of thermo-responsive and polysaccharide chains for surface modification of high performance membrane. Separation and Purification Technology 2020;240:116585. [DOI: 10.1016/j.seppur.2020.116585] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
37 Tian J, Liu Y, Miao S, Yang Q, Hu X, Han Q, Xue L, Yang P. Amyloid-like protein aggregates combining antifouling with antibacterial activity. Biomater Sci 2020;8:6903-11. [DOI: 10.1039/d0bm00760a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
38 Luo J, Fan J, Wang S. Recent Progress of Microfluidic Devices for Hemodialysis. Small 2019;16:1904076. [DOI: 10.1002/smll.201904076] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
39 Li C, Lu D, Deng J, Zhang X, Yang P. Amyloid‐Like Rapid Surface Modification for Antifouling and In‐Depth Remineralization of Dentine Tubules to Treat Dental Hypersensitivity. Adv Mater 2019;31:1903973. [DOI: 10.1002/adma.201903973] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
40 Nasu E, Kawakami N, Miyamoto K. Nanopore-Controlled Dual-Surface Modifications on Artificial Protein Nanocages as Nanocarriers. ACS Appl Nano Mater 2021;4:2434-9. [DOI: 10.1021/acsanm.0c02972] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 Wang Q, Zhang S, Ji X, Ran F. High rejection performance ultrafiltration membrane with ultrathin dense layer fabricated by the movement and dissolution of metal–organic frameworks. New J Chem 2020;44:13745-54. [DOI: 10.1039/d0nj02700f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Zhang F, Cheng Z, Ding C, Li J. Functional biomedical materials derived from proteins in the acquired salivary pellicle. J Mater Chem B 2021;9:6507-20. [PMID: 34304263 DOI: 10.1039/d1tb01121a] [Reference Citation Analysis]
43 Sha X, Li P, Feng Y, Xia D, Tian X, Wang Z, Yang Y, Mao X, Liu L. Self-Assembled Peptide Nanofibrils Designed to Release Membrane-Lysing Antimicrobial Peptides. ACS Appl Bio Mater 2020;3:3648-55. [DOI: 10.1021/acsabm.0c00281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS Appl Bio Mater 2021;4:1156-77. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]