BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tsarouchas TM, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, Underhill A, Barrett T, Kassapis E, Ogryzko N, Feng Y, van Ham TJ, Becker T, Becker CG. Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun 2018;9:4670. [PMID: 30405119 DOI: 10.1038/s41467-018-07036-w] [Cited by in Crossref: 85] [Cited by in F6Publishing: 78] [Article Influence: 21.3] [Reference Citation Analysis]
Number Citing Articles
1 Tsata V, Kroehne V, Wehner D, Rost F, Lange C, Hoppe C, Kurth T, Reinhardt S, Petzold A, Dahl A, Loeffler M, Reimer MM, Brand M. Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord. Development 2020;147:dev193946. [PMID: 33158923 DOI: 10.1242/dev.193946] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Yang X, Xu X, Cai X, He J, Lu P, Guo Q, Wang G, Zhu H, Wang H, Xue C. Gene set enrichment analysis and protein-protein interaction network analysis after sciatic nerve injury. Ann Transl Med 2020;8:988. [PMID: 32953788 DOI: 10.21037/atm-20-4958] [Reference Citation Analysis]
3 Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021;10:566. [PMID: 33807650 DOI: 10.3390/cells10030566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022;13:18. [PMID: 35033187 DOI: 10.1186/s13287-021-02690-2] [Reference Citation Analysis]
5 Tsata V, Wehner D. Know How to Regrow-Axon Regeneration in the Zebrafish Spinal Cord. Cells 2021;10:1404. [PMID: 34204045 DOI: 10.3390/cells10061404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Perez JC, Gerber YN, Perrin FE. Dynamic Diversity of Glial Response Among Species in Spinal Cord Injury. Front Aging Neurosci 2021;13:769548. [PMID: 34899275 DOI: 10.3389/fnagi.2021.769548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Haspel G, Severi KE, Fauci LJ, Cohen N, Tytell ED, Morgan JR. Resilience of neural networks for locomotion. J Physiol 2021;599:3825-40. [PMID: 34187088 DOI: 10.1113/JP279214] [Reference Citation Analysis]
8 Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. Adv Genet (Hoboken) 2021;2:e10042. [PMID: 34423307 DOI: 10.1002/ggn2.10042] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Tsata V, Möllmert S, Schweitzer C, Kolb J, Möckel C, Böhm B, Rosso G, Lange C, Lesche M, Hammer J, Kesavan G, Beis D, Guck J, Brand M, Wehner D. A switch in pdgfrb+ cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 2021;56:509-524.e9. [PMID: 33412105 DOI: 10.1016/j.devcel.2020.12.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
10 Cigliola V, Becker CJ, Poss KD. Building bridges, not walls: spinal cord regeneration in zebrafish. Dis Model Mech 2020;13:dmm044131. [PMID: 32461216 DOI: 10.1242/dmm.044131] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
11 Quick RE, Buck LD, Parab S, Tolbert ZR, Matsuoka RL. Highly Efficient Synthetic CRISPR RNA/Cas9-Based Mutagenesis for Rapid Cardiovascular Phenotypic Screening in F0 Zebrafish. Front Cell Dev Biol 2021;9:735598. [PMID: 34746131 DOI: 10.3389/fcell.2021.735598] [Reference Citation Analysis]
12 Rosowski EE. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 2020;13:dmm041889. [PMID: 31932292 DOI: 10.1242/dmm.041889] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
13 Koganti L, Liu J, DeMajewski A, Agostini MA, Wong TW, Faber DS, Zottoli SJ. Invasion of microglia/macrophages and granulocytes into the Mauthner axon myelin sheath following spinal cord injury of the adult goldfish, Carassius auratus. J Morphol 2020;281:135-52. [PMID: 31774588 DOI: 10.1002/jmor.21086] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Chang L, Liu X, Chen J, Liu H, Wang G, Wang G, Liao X, Shen X. Attenuation of Activated eIF2α Signaling by ISRIB Treatment After Spinal Cord Injury Improves Locomotor Function. J Mol Neurosci 2021. [PMID: 34647267 DOI: 10.1007/s12031-021-01920-9] [Reference Citation Analysis]
15 Palominos MF, Whitlock KE. The Olfactory Organ Is Populated by Neutrophils and Macrophages During Early Development. Front Cell Dev Biol 2020;8:604030. [PMID: 33537298 DOI: 10.3389/fcell.2020.604030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Keatinge M, Tsarouchas TM, Munir T, Porter NJ, Larraz J, Gianni D, Tsai HH, Becker CG, Lyons DA, Becker T. CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genet 2021;17:e1009515. [PMID: 33914736 DOI: 10.1371/journal.pgen.1009515] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. Elife 2021;10:e66706. [PMID: 33900197 DOI: 10.7554/eLife.66706] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Var SR, Byrd-Jacobs CA. Microglial response patterns following damage to the zebrafish olfactory bulb. IBRO Rep 2019;7:70-9. [PMID: 31650065 DOI: 10.1016/j.ibror.2019.08.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
19 Becker T, Becker CG. Dynamic cell interactions allow spinal cord regeneration in zebrafish. Current Opinion in Physiology 2020;14:64-9. [DOI: 10.1016/j.cophys.2020.01.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Li X, Kang J, Lv H, Liu R, Chen J, Zhang Y, Zhang Y, Yu G, Zhang X, Ning B. CircPrkcsh, a circular RNA, contributes to the polarization of microglia towards the M1 phenotype induced by spinal cord injury and acts via the JNK/p38 MAPK pathway. FASEB J 2021;35:e22014. [PMID: 34751973 DOI: 10.1096/fj.202100993R] [Reference Citation Analysis]
21 Paramos-de-Carvalho D, Martins I, Cristóvão AM, Dias AF, Neves-Silva D, Pereira T, Chapela D, Farinho A, Jacinto A, Saúde L. Targeting senescent cells improves functional recovery after spinal cord injury. Cell Rep 2021;36:109334. [PMID: 34233184 DOI: 10.1016/j.celrep.2021.109334] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Bolaños-Castro LA, Walters HE, García Vázquez RO, Yun MH. Immunity in salamander regeneration: Where are we standing and where are we headed? Dev Dyn 2021;250:753-67. [PMID: 32924213 DOI: 10.1002/dvdy.251] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Peñailillo J, Palacios M, Mounieres C, Muñoz R, Slater PG, De Domenico E, Patrushev I, Gilchrist M, Larraín J. Analysis of the early response to spinal cord injury identified a key role for mTORC1 signaling in the activation of neural stem progenitor cells. NPJ Regen Med 2021;6:68. [PMID: 34686684 DOI: 10.1038/s41536-021-00179-3] [Reference Citation Analysis]
24 Dai YL, Jiang YF, Lu YA, Yu JB, Kang MC, Jeon YJ. Fucoxanthin-rich fraction from Sargassum fusiformis alleviates particulate matter-induced inflammation in vitro and in vivo. Toxicol Rep 2021;8:349-58. [PMID: 33665132 DOI: 10.1016/j.toxrep.2021.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Tsai SL, Baselga-Garriga C, Melton DA. Midkine is a dual regulator of wound epidermis development and inflammation during the initiation of limb regeneration. Elife 2020;9:e50765. [PMID: 31934849 DOI: 10.7554/eLife.50765] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Laredo F, Plebanski J, Tedeschi A. Pericytes: Problems and Promises for CNS Repair. Front Cell Neurosci 2019;13:546. [PMID: 31866833 DOI: 10.3389/fncel.2019.00546] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
27 Leach LL, Hanovice NJ, George SM, Gabriel AE, Gross JM. The immune response is a critical regulator of zebrafish retinal pigment epithelium regeneration. Proc Natl Acad Sci U S A 2021;118:e2017198118. [PMID: 34006636 DOI: 10.1073/pnas.2017198118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Development 2022;149:dev199636. [PMID: 34523672 DOI: 10.1242/dev.199636] [Reference Citation Analysis]
29 Wong AY, Whited JL. Parallels between wound healing, epimorphic regeneration and solid tumors. Development 2020;147:dev181636. [PMID: 31898582 DOI: 10.1242/dev.181636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
30 Silva NJ, Nagashima M, Li J, Kakuk-Atkins L, Ashrafzadeh M, Hyde DR, Hitchcock PF. Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in adult zebrafish. Glia 2020;68:1445-65. [PMID: 32034934 DOI: 10.1002/glia.23792] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
31 Sipka T, Peroceschi R, Hassan-Abdi R, Groß M, Ellett F, Begon-Pescia C, Gonzalez C, Lutfalla G, Nguyen-Chi M. Damage-Induced Calcium Signaling and Reactive Oxygen Species Mediate Macrophage Activation in Zebrafish. Front Immunol 2021;12:636585. [PMID: 33841419 DOI: 10.3389/fimmu.2021.636585] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Choi D, An J, Jou I, Park SM, Joe E. A Parkinson's disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D2 synthase expression. Neurobiology of Disease 2019;127:482-91. [DOI: 10.1016/j.nbd.2019.04.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
33 Zhang P, Wu Y, Li R, Lv H, Yu B. Tripartite Motif Containing 52 Positively Regulates NF-κB Signaling by Promoting IκBα Ubiquitination in Lipopolysaccharide-Treated Microglial Cell Activation. Med Sci Monit 2020;26:e925356. [PMID: 33122622 DOI: 10.12659/MSM.925356] [Reference Citation Analysis]
34 Chen S, Lathrop KL, Kuwajima T, Gross JM. Retinal ganglion cell survival after severe optic nerve injury is modulated by crosstalk between Jak/Stat signaling and innate immune responses in the zebrafish retina. Development 2022;149:dev199694. [PMID: 34528064 DOI: 10.1242/dev.199694] [Reference Citation Analysis]
35 Nelson CM, Lennon VA, Lee H, Krug RG 2nd, Kamalova A, Madigan NN, Clark KJ, Windebank AJ, Henley JR. Glucocorticoids Target Ependymal Glia and Inhibit Repair of the Injured Spinal Cord. Front Cell Dev Biol 2019;7:56. [PMID: 31069223 DOI: 10.3389/fcell.2019.00056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
36 de Kort BJ, Koch SE, Wissing TB, Krebber MM, Bouten CVC, Smits AIPM. Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021;178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021;9:660969. [PMID: 34095125 DOI: 10.3389/fcell.2021.660969] [Reference Citation Analysis]
38 Var SR, Byrd-Jacobs CA. Role of Macrophages and Microglia in Zebrafish Regeneration. Int J Mol Sci 2020;21:E4768. [PMID: 32635596 DOI: 10.3390/ijms21134768] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
39 Gaire BP. Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Reference Citation Analysis]
40 Chia K, Keatinge M, Mazzolini J, Sieger D. Brain tumours repurpose endogenous neuron to microglia signalling mechanisms to promote their own proliferation. Elife 2019;8:e46912. [PMID: 31313988 DOI: 10.7554/eLife.46912] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
41 Sheng F, Zhang L, Wang S, Yang L, Li P. Deacetyl Ganoderic Acid F Inhibits LPS-Induced Neural Inflammation via NF-κB Pathway Both In Vitro and In Vivo. Nutrients 2019;12:E85. [PMID: 31892211 DOI: 10.3390/nu12010085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
42 Van Dyck A, Bollaerts I, Beckers A, Vanhunsel S, Glorian N, van Houcke J, van Ham TJ, De Groef L, Andries L, Moons L. Müller glia-myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia 2021;69:1444-63. [PMID: 33502042 DOI: 10.1002/glia.23972] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
43 Xing L, Cai Y, Yang T, Yu W, Gao M, Chai R, Ding S, Wei J, Pan J, Chen G. Epitranscriptomic m6A regulation following spinal cord injury. J Neurosci Res 2021;99:843-57. [PMID: 33271625 DOI: 10.1002/jnr.24763] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
44 Bradbury EJ, Burnside ER. Moving beyond the glial scar for spinal cord repair. Nat Commun 2019;10:3879. [PMID: 31462640 DOI: 10.1038/s41467-019-11707-7] [Cited by in Crossref: 115] [Cited by in F6Publishing: 118] [Article Influence: 38.3] [Reference Citation Analysis]
45 Gan D, Wu S, Chen B, Zhang J. Application of the Zebrafish Traumatic Brain Injury Model in Assessing Cerebral Inflammation. Zebrafish 2020;17:73-82. [PMID: 31825288 DOI: 10.1089/zeb.2019.1793] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
46 Song P, Fogerty J, Cianciolo LT, Stupay R, Perkins BD. Cone Photoreceptor Degeneration and Neuroinflammation in the Zebrafish Bardet-Biedl Syndrome 2 (bbs2) Mutant Does Not Lead to Retinal Regeneration. Front Cell Dev Biol 2020;8:578528. [PMID: 33324636 DOI: 10.3389/fcell.2020.578528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Arenas Gómez CM, Echeverri K. Salamanders: The molecular basis of tissue regeneration and its relevance to human disease. Curr Top Dev Biol 2021;145:235-75. [PMID: 34074531 DOI: 10.1016/bs.ctdb.2020.11.009] [Reference Citation Analysis]
48 Bootorabi F, Saadat F, Falak R, Manouchehri H, Changizi R, Mohammadi H, Safavifar F, Khorramizadeh MR. Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Res Notes 2021;14:302. [PMID: 34372916 DOI: 10.1186/s13104-021-05706-5] [Reference Citation Analysis]
49 Wang H, Yang F, Zhang S, Xin R, Sun Y. Genetic and environmental factors in Alzheimer's and Parkinson's diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021;7:70. [PMID: 34381040 DOI: 10.1038/s41531-021-00213-7] [Reference Citation Analysis]
50 Nguyen-Chi M, Luz-Crawford P, Balas L, Sipka T, Contreras-López R, Barthelaix A, Lutfalla G, Durand T, Jorgensen C, Djouad F. Pro-resolving mediator protectin D1 promotes epimorphic regeneration by controlling immune cell function in vertebrates. Br J Pharmacol 2020;177:4055-73. [PMID: 32520398 DOI: 10.1111/bph.15156] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Andries L, Masin L, Navarro MS, Zaunz S, Claes M, Bergmans S, Brouwers V, Lefevere E, Verfaillie C, Movahedi K, De Groef L, Moons L. MMP2 Modulates Inflammatory Response during Axonal Regeneration in the Murine Visual System. Cells 2021;10:1672. [PMID: 34359839 DOI: 10.3390/cells10071672] [Reference Citation Analysis]
52 Sabin KZ, Echeverri K. The role of the immune system during regeneration of the central nervous system. J Immunol Regen Med 2020;7:100023. [PMID: 32864529 DOI: 10.1016/j.regen.2019.100023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 Cavone L, McCann T, Drake LK, Aguzzi EA, Oprişoreanu AM, Pedersen E, Sandi S, Selvarajah J, Tsarouchas TM, Wehner D, Keatinge M, Mysiak KS, Henderson BEP, Dobie R, Henderson NC, Becker T, Becker CG. A unique macrophage subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in the zebrafish spinal cord. Dev Cell 2021;56:1617-1630.e6. [PMID: 34033756 DOI: 10.1016/j.devcel.2021.04.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
54 Domínguez-Romero ME, Slater PG. Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021;22:8344. [PMID: 34361110 DOI: 10.3390/ijms22158344] [Reference Citation Analysis]
55 Sanz-Morejón A, García-Redondo AB, Reuter H, Marques IJ, Bates T, Galardi-Castilla M, Große A, Manig S, Langa X, Ernst A, Piragyte I, Botos MA, González-Rosa JM, Ruiz-Ortega M, Briones AM, Salaices M, Englert C, Mercader N. Wilms Tumor 1b Expression Defines a Pro-regenerative Macrophage Subtype and Is Required for Organ Regeneration in the Zebrafish. Cell Rep 2019;28:1296-1306.e6. [PMID: 31365871 DOI: 10.1016/j.celrep.2019.06.091] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
56 Li SY, Gu X, Heinrich A, Hurley EG, Capel B, DeFalco T. Loss of Mafb and Maf distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesis†. Biol Reprod 2021:ioab098. [PMID: 34007995 DOI: 10.1093/biolre/ioab098] [Reference Citation Analysis]
57 Kaveh A, Bruton FA, Buckley C, Oremek MEM, Tucker CS, Mullins JJ, Taylor JM, Rossi AG, Denvir MA. Live Imaging of Heart Injury in Larval Zebrafish Reveals a Multi-Stage Model of Neutrophil and Macrophage Migration. Front Cell Dev Biol 2020;8:579943. [PMID: 33195220 DOI: 10.3389/fcell.2020.579943] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Demirci Y, Cucun G, Poyraz YK, Mohammed S, Heger G, Papatheodorou I, Ozhan G. Comparative Transcriptome Analysis of the Regenerating Zebrafish Telencephalon Unravels a Resource With Key Pathways During Two Early Stages and Activation of Wnt/β-Catenin Signaling at the Early Wound Healing Stage. Front Cell Dev Biol 2020;8:584604. [PMID: 33163496 DOI: 10.3389/fcell.2020.584604] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Smith TP, Sahoo PK, Kar AN, Twiss JL. Intra-axonal mechanisms driving axon regeneration. Brain Res 2020;1740:146864. [PMID: 32360100 DOI: 10.1016/j.brainres.2020.146864] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
60 Scheiblich H, Trombly M, Ramirez A, Heneka MT. Neuroimmune Connections in Aging and Neurodegenerative Diseases. Trends in Immunology 2020;41:300-12. [DOI: 10.1016/j.it.2020.02.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
61 Zhao X, Zhao X, Wang Z. Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. J Chem Neuroanat 2021;118:102037. [PMID: 34601074 DOI: 10.1016/j.jchemneu.2021.102037] [Reference Citation Analysis]
62 Rodriguez-Fontan F, Reeves B, Tuaño K, Colakoglu S, D' Agostino L, Banegas R. Tobacco use and neurogenesis: A theoretical review of pathophysiological mechanism affecting the outcome of peripheral nerve regeneration. J Orthop 2020;22:59-63. [PMID: 32280170 DOI: 10.1016/j.jor.2020.03.026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 El-Daher F, Becker CG. Neural circuit reorganisation after spinal cord injury in zebrafish. Curr Opin Genet Dev 2020;64:44-51. [PMID: 32604009 DOI: 10.1016/j.gde.2020.05.017] [Reference Citation Analysis]
64 Song P, Han T, Xiang X, Wang Y, Fang H, Niu Y, Shen C. The role of hepatocyte growth factor in mesenchymal stem cell-induced recovery in spinal cord injured rats. Stem Cell Res Ther 2020;11:178. [PMID: 32410702 DOI: 10.1186/s13287-020-01691-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
65 Berthézène CD, Rabiller L, Jourdan G, Cousin B, Pénicaud L, Casteilla L, Lorsignol A. Tissue Regeneration: The Dark Side of Opioids. Int J Mol Sci 2021;22:7336. [PMID: 34298954 DOI: 10.3390/ijms22147336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Kuil LE, van Ham TJ, Zagury JF, Sieger D. Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia 2020;68:298-315. [PMID: 31508850 DOI: 10.1002/glia.23717] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
67 Cunha MI, Su M, Cantuti-Castelvetri L, Müller SA, Schifferer M, Djannatian M, Alexopoulos I, van der Meer F, Winkler A, van Ham TJ, Schmid B, Lichtenthaler SF, Stadelmann C, Simons M. Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. J Exp Med 2020;217:e20191390. [PMID: 32078678 DOI: 10.1084/jem.20191390] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
68 Zhang B, Lin F, Dong J, Liu J, Ding Z, Xu J. Peripheral Macrophage-derived Exosomes promote repair after Spinal Cord Injury by inducing Local Anti-inflammatory type Microglial Polarization via Increasing Autophagy. Int J Biol Sci 2021;17:1339-52. [PMID: 33867850 DOI: 10.7150/ijbs.54302] [Reference Citation Analysis]
69 Iribarne M. Inflammation induces zebrafish regeneration. Neural Regen Res 2021;16:1693-701. [PMID: 33510057 DOI: 10.4103/1673-5374.306059] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
70 Zhu Y, Crowley SC, Latimer AJ, Lewis GM, Nash R, Kucenas S. Migratory Neural Crest Cells Phagocytose Dead Cells in the Developing Nervous System. Cell 2019;179:74-89.e10. [PMID: 31495570 DOI: 10.1016/j.cell.2019.08.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
71 Xia X, Wang W, Yin K, Wang S. Interferon regulatory factor 8 governs myeloid cell development. Cytokine & Growth Factor Reviews 2020;55:48-57. [DOI: 10.1016/j.cytogfr.2020.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Reuter H, Vogg MC, Serras F. Repair, regenerate and reconstruct: meeting the state-of-the-art. Development 2019;146:dev176974. [PMID: 31068375 DOI: 10.1242/dev.176974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
73 Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019;146:dev167692. [DOI: 10.1242/dev.167692] [Cited by in Crossref: 56] [Cited by in F6Publishing: 36] [Article Influence: 18.7] [Reference Citation Analysis]
74 Stella SL Jr, Geathers JS, Weber SR, Grillo MA, Barber AJ, Sundstrom JM, Grillo SL. Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021;10:633. [PMID: 33809186 DOI: 10.3390/cells10030633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
75 Herzog C, Greenald D, Larraz J, Keatinge M, Herrgen L. RNA-seq analysis and compound screening highlight multiple signalling pathways regulating secondary cell death after acute CNS injury in vivo. Biol Open 2020;9:bio050260. [PMID: 32366533 DOI: 10.1242/bio.050260] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
76 Xian P, Chen Y, Gao S, Qian J, Zhang W, Udduttula A, Huang N, Wan G. Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application. Surface and Coatings Technology 2020;401:126282. [DOI: 10.1016/j.surfcoat.2020.126282] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
77 Andries L, De Groef L, Moons L. Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Underlying Cellular and Molecular Players? Curr Eye Res 2020;45:397-409. [PMID: 31567007 DOI: 10.1080/02713683.2019.1669664] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
78 Zou W, Xia M, Jiang K, Cao Z, Zhang X, Hu X. Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. Environ Sci Technol 2020;54:13888-98. [DOI: 10.1021/acs.est.0c05399] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
79 Ji Z, Zhou ZL, Hao Q, Zhao L, Cui C, Huang SB, Yang YL, Shen YQ. Activating Transcription Factor 6 Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish. J Mol Neurosci 2021;71:734-45. [PMID: 32895880 DOI: 10.1007/s12031-020-01691-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021;9:616551. [PMID: 33644052 DOI: 10.3389/fcell.2021.616551] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 John N, Kolb J, Wehner D. Mechanical spinal cord transection in larval zebrafish and subsequent whole-mount histological processing. STAR Protocols 2022;3:101093. [DOI: 10.1016/j.xpro.2021.101093] [Reference Citation Analysis]
82 Li J, Sultan Y, Sun Y, Zhang S, Liu Y, Li X. Expression analysis of Hsp90α and cytokines in zebrafish caudal fin regeneration. Dev Comp Immunol 2021;116:103922. [PMID: 33186559 DOI: 10.1016/j.dci.2020.103922] [Reference Citation Analysis]