BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fan Z, Chang Y, Cui C, Sun L, Wang DH, Pan Z, Zhang M. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat Commun 2018;9:2605. [PMID: 29973582 DOI: 10.1038/s41467-018-04763-y] [Cited by in Crossref: 65] [Cited by in F6Publishing: 55] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Chen H, Luo Q, Wang J, He H, Luo W, Zhang L, Xiao Q, Chen T, Xu X, Niu W, Ke Y, Wang Y. Response of pH-Sensitive Doxorubicin Nanoparticles on Complex Tumor Microenvironments by Tailoring Multiple Physicochemical Properties. ACS Appl Mater Interfaces 2020;12:22673-86. [PMID: 32337980 DOI: 10.1021/acsami.0c05724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
2 Sun L, Li A, Hu Y, Li Y, Shang L, Zhang L. Self‐Assembled Fluorescent and Antibacterial GHK‐Cu Nanoparticles for Wound Healing Applications. Part Part Syst Charact 2019;36:1800420. [DOI: 10.1002/ppsc.201800420] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
3 Tao K, Tang Y, Rencus-Lazar S, Yao Y, Xue B, Gilead S, Wei G, Gazit E. Bioinspired Supramolecular Packing Enables High Thermo-Sustainability. Angew Chem Int Ed Engl 2020;59:19037-41. [PMID: 32691899 DOI: 10.1002/anie.202008702] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Dong R, Li Y, Li W, Zhang H, Liu Y, Ma L, Wang X, Lei B. Recent developments in luminescent nanoparticles for plant imaging and photosynthesis. Journal of Rare Earths 2019;37:903-15. [DOI: 10.1016/j.jre.2019.04.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
5 Liu Y, Lv S, Liu D, Song F. Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomaterialia 2020;116:16-31. [DOI: 10.1016/j.actbio.2020.09.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Zhang X, Ong'achwa Machuki J, Pan W, Cai W, Xi Z, Shen F, Zhang L, Yang Y, Gao F, Guan M. Carbon Nitride Hollow Theranostic Nanoregulators Executing Laser-Activatable Water Splitting for Enhanced Ultrasound/Fluorescence Imaging and Cooperative Phototherapy. ACS Nano 2020;14:4045-60. [PMID: 32255341 DOI: 10.1021/acsnano.9b08737] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 21.5] [Reference Citation Analysis]
7 Didamson OC, Abrahamse H. Targeted Photodynamic Diagnosis and Therapy for Esophageal Cancer: Potential Role of Functionalized Nanomedicine. Pharmaceutics 2021;13:1943. [PMID: 34834358 DOI: 10.3390/pharmaceutics13111943] [Reference Citation Analysis]
8 Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021;221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Anwar S, Ovais M, Hassan N, Aslam S. Detection of enzyme‐triggered peptide self‐assembly via laser confocal Raman microscopy and circular dichroism spectroscopy in cellular environment. J Raman Spectrosc 2020;51:941-51. [DOI: 10.1002/jrs.5858] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Ashokkumar P, Collot M, Klymchenko AS. Fluorogenic Squaraine Dendrimers for Background-Free Imaging of Integrin Receptors in Cancer Cells. Chemistry 2021;27:6795-803. [PMID: 33567148 DOI: 10.1002/chem.202100480] [Reference Citation Analysis]
11 Patsenker L, Gellerman G. Fluorescent Reporters for Drug Delivery Monitoring. Isr J Chem 2020;60:504-18. [DOI: 10.1002/ijch.201900137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
12 Li X, Chen L, Luan S, Zhou J, Xiao X, Yang Y, Mao C, Fang P, Chen L, Zeng X, Gao H, Yuan Y. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.01.007] [Reference Citation Analysis]
13 Saha PC, Bera T, Chatterjee T, Samanta J, Sengupta A, Bhattacharyya M, Guha S. Supramolecular Dipeptide-Based Near-Infrared Fluorescent Nanotubes for Cellular Mitochondria Targeted Imaging and Early Apoptosis. Bioconjug Chem 2021;32:833-41. [PMID: 33826302 DOI: 10.1021/acs.bioconjchem.1c00106] [Reference Citation Analysis]
14 Li X, Ma Z, Wang H, Ren L, Zhang D, Liang W, Zhang G, Zhang J, Yu D, Fang X. Screening, Identification, and Characterization of an Affinity Peptide Specific to MT1-MMP and Its Application in Tumor Imaging. Bioconjug Chem 2019;30:1507-17. [PMID: 30986050 DOI: 10.1021/acs.bioconjchem.9b00220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Asampille G, Verma BK, Swain M, Shettar A, Rosenzweig SA, Kondaiah P, Atreya HS. An ultra-stable redox-controlled self-assembling polypeptide nanotube for targeted imaging and therapy in cancer. J Nanobiotechnology 2018;16:101. [PMID: 30526620 DOI: 10.1186/s12951-018-0427-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
16 Rizvi SFA, Mu S, Zhao C, Zhang H. Fabrication of self-assembled peptide nanoparticles for in vitro assessment of cell apoptosis pathway and in vivo therapeutic efficacy. Mikrochim Acta 2022;189:53. [PMID: 34999971 DOI: 10.1007/s00604-021-05148-7] [Reference Citation Analysis]
17 Rehman MU, Khan A, Imtiyaz Z, Ali S, Makeen HA, Rashid S, Arafah A. Current Nano-therapeutic Approaches Ameliorating Inflammation in Cancer Progression. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.006] [Reference Citation Analysis]
18 Chen ZL, Yu ZL, Zhou MM, Zhang S, Zhang B, Liu Y, Zhao YF, Cao HM, Lin Y, Zhang ZL, Pang DW. Chlorophyll-Based Near-Infrared Fluorescent Nanocomposites: Preparation and Optical Properties. ACS Omega 2020;5:14261-6. [PMID: 32596562 DOI: 10.1021/acsomega.9b04081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sun B, Chang R, Cao S, Yuan C, Zhao L, Yang H, Li J, Yan X, van Hest JCM. Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. Angew Chem Int Ed Engl 2020;59:20582-8. [PMID: 32687653 DOI: 10.1002/anie.202008708] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
20 Ribeiro IS, Pontes FJG, Carneiro MJM, Sousa NA, Pinto VPT, Ribeiro FOS, Silva DA, Araújo GS, Marinho Filho JDB, Araújo AJ, Paula HCB, Feitosa JPA, de Paula RCM. Poly(ε-caprolactone) grafted cashew gum nanoparticles as an epirubicin delivery system. Int J Biol Macromol 2021;179:314-23. [PMID: 33675833 DOI: 10.1016/j.ijbiomac.2021.03.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Liu Z, Xie F, Xie J, Chen J, Li Y, Lin Q, Luo F, Yan J. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic-photothermal therapy. Drug Deliv 2021;28:1769-84. [PMID: 34470548 DOI: 10.1080/10717544.2021.1960923] [Reference Citation Analysis]
22 Liu M, Fang X, Yang Y, Wang C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng Biotechnol 2021;9:701504. [PMID: 34277592 DOI: 10.3389/fbioe.2021.701504] [Reference Citation Analysis]
23 Zhang Q, Liang J, Yun SLJ, Liang K, Yang D, Gu Z. Recent advances in improving tumor-targeted delivery of imaging nanoprobes. Biomater Sci 2020;8:4129-46. [PMID: 32638731 DOI: 10.1039/d0bm00761g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Fu D, Liu D, Zhang L, Sun L. Self-assembled fluorescent tripeptide nanoparticles for bioimaging and drug delivery applications. Chinese Chemical Letters 2020;31:3195-9. [DOI: 10.1016/j.cclet.2020.07.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
25 Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opinion on Drug Delivery 2019;16:481-96. [DOI: 10.1080/17425247.2019.1604679] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
26 Kong J, Wang Y, Qi W, Su R, He Z. Photo- and Aromatic Stacking-Induced Green Emissive Peptidyl Nanoparticles for Cell Imaging and Monitoring of Nucleic Acid Delivery. ACS Appl Mater Interfaces 2019;11:15401-10. [PMID: 30966742 DOI: 10.1021/acsami.9b03945] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
27 Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics 2019;9:8073-90. [PMID: 31754382 DOI: 10.7150/thno.37198] [Cited by in Crossref: 78] [Cited by in F6Publishing: 75] [Article Influence: 26.0] [Reference Citation Analysis]
28 Fu S, Zhao Y, Sun J, Yang T, Zhi D, Zhang E, Zhong F, Zhen Y, Zhang S, Zhang S. Integrin αvβ3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf B Biointerfaces 2021;201:111623. [PMID: 33636597 DOI: 10.1016/j.colsurfb.2021.111623] [Reference Citation Analysis]
29 Liu F, Wu Q, Han W, Laster K, Hu Y, Ma F, Chen H, Tian X, Qiao Y, Liu H, Kim DJ, Dong Z, Liu K. Targeting integrin αvβ3 with indomethacin inhibits patient-derived xenograft tumour growth and recurrence in oesophageal squamous cell carcinoma. Clin Transl Med 2021;11:e548. [PMID: 34709754 DOI: 10.1002/ctm2.548] [Reference Citation Analysis]
30 Luo X, Liu J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Adv Sci (Weinh) 2021;:e2103971. [PMID: 34796699 DOI: 10.1002/advs.202103971] [Reference Citation Analysis]
31 Lv M, Jan Cornel E, Fan Z, Du J. Advances and Perspectives of Peptide and Polypeptide‐Based Materials for Biomedical Imaging. Adv NanoBio Res 2021;1:2000109. [DOI: 10.1002/anbr.202000109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Boaro A, Ageitos L, Torres M, Bartoloni FH, de la Fuente-Nunez C. Light-Emitting Probes for Labeling Peptides. Cell Rep Phys Sci 2020;1:100257. [PMID: 34396352 DOI: 10.1016/j.xcrp.2020.100257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021;296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhou X, You M, Wang F, Wang Z, Gao X, Jing C, Liu J, Guo M, Li J, Luo A, Liu H, Liu Z, Chen C. Multifunctional Graphdiyne-Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. Adv Mater 2021;33:e2100556. [PMID: 33949734 DOI: 10.1002/adma.202100556] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Jin Y, Lu X, Wang M, Zhao X, Xue L. X-linked inhibitor of apoptosis protein accelerates migration by inducing epithelial-mesenchymal transition through TGF-β signaling pathway in esophageal cancer cells. Cell Biosci 2019;9:76. [PMID: 31548877 DOI: 10.1186/s13578-019-0338-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
36 Peng C, Xu J, Yu M, Ning X, Huang Y, Du B, Hernandez E, Kapur P, Hsieh J, Zheng J. Tuning the In Vivo Transport of Anticancer Drugs Using Renal‐Clearable Gold Nanoparticles. Angew Chem 2019. [DOI: 10.1002/ange.201903256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
37 Lin W, Yang Y, Lei Y, An F, Sun L, Qin Y, Zhang L. Self-Assembly of an Antitumor Dipeptide Induced Near-Infrared Fluorescence and Improved Stability for Theranostic Applications. ACS Appl Mater Interfaces 2021;13:32799-809. [PMID: 34227796 DOI: 10.1021/acsami.1c07983] [Reference Citation Analysis]
38 Wang J, Xu L, Liu X, Yang R, Wang D. A facile adenosine triphosphate-responsive nanoplatform for efficacious therapy of esophageal cancer. Oncol Lett 2020;20:108. [PMID: 32831927 DOI: 10.3892/ol.2020.11969] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today 2021;36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Sun L. Meet Our Editorial Board Member. CPB 2021;22:191-191. [DOI: 10.2174/138920102202210203122512] [Reference Citation Analysis]
41 Chan KH, Tay JJJ. Advancement of Peptide Nanobiotechnology via Emerging Microfluidic Technology. Micromachines (Basel) 2019;10:E627. [PMID: 31547039 DOI: 10.3390/mi10100627] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
42 Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020;15:8673-96. [PMID: 33192061 DOI: 10.2147/IJN.S231477] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Calvelo M, Lamas A, Guerra A, Amorín M, Garcia-Fandino R, Granja JR. Parallel Versus Antiparallel β-Sheet Structure in Cyclic Peptide Hybrids Containing γ- or δ-Cyclic Amino Acids. Chemistry 2020;26:5846-58. [PMID: 31999874 DOI: 10.1002/chem.201905554] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
44 Sun B, Chang R, Cao S, Yuan C, Zhao L, Yang H, Li J, Yan X, Hest JCM. Acid‐Activatable Transmorphic Peptide‐Based Nanomaterials for Photodynamic Therapy. Angew Chem 2020;132:20763-9. [DOI: 10.1002/ange.202008708] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
45 He K, Zhu J, Gong L, Tan Y, Chen H, Liang H, Huang B, Liu J. In situ self-assembly of near-infrared-emitting gold nanoparticles into body-clearable 1D nanostructures with rapid lysosome escape and fast cellular excretion. Nano Res 2021;14:1087-94. [DOI: 10.1007/s12274-020-3153-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
46 d'Orlyé F, Trapiella-Alfonso L, Lescot C, Pinvidic M, Doan BT, Varenne A. Synthesis, Characterization and Evaluation of Peptide Nanostructures for Biomedical Applications. Molecules 2021;26:4587. [PMID: 34361740 DOI: 10.3390/molecules26154587] [Reference Citation Analysis]
47 Liu D, Fu D, Zhang L, Sun L. Detection of amyloid-beta by Fmoc-KLVFF self-assembled fluorescent nanoparticles for Alzheimer’s disease diagnosis. Chinese Chemical Letters 2021;32:1066-70. [DOI: 10.1016/j.cclet.2020.09.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
48 Zheng Y, Hou G, Zhang G, Lan T, Yuan J, Zhang L, Yan F, Wang F, Meng P, Dun X, Li X, Chen G, Zhu Z, Wei D, He W, Yuan J. The near-infrared fluorescent dye IR-780 was coupled with cabazitaxel for castration-resistant prostate cancer imaging and therapy. Invest New Drugs 2020;38:1641-52. [DOI: 10.1007/s10637-020-00934-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Mehrotra N, Kharbanda S, Singh H. Peptide-based combination nanoformulations for cancer therapy. Nanomedicine (Lond) 2020;15:2201-17. [PMID: 32914691 DOI: 10.2217/nnm-2020-0220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020;25:E3482. [PMID: 32751865 DOI: 10.3390/molecules25153482] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
51 Kong J, Wang Y, Qi W, Huang M, Su R, He Z. Green fluorescent protein inspired fluorophores. Advances in Colloid and Interface Science 2020;285:102286. [DOI: 10.1016/j.cis.2020.102286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
52 Sofias AM, Toner YC, Meerwaldt AE, van Leent MMT, Soultanidis G, Elschot M, Gonai H, Grendstad K, Flobak Å, Neckmann U, Wolowczyk C, Fisher EL, Reiner T, Davies CL, Bjørkøy G, Teunissen AJP, Ochando J, Pérez-Medina C, Mulder WJM, Hak S. Tumor Targeting by αvβ3-Integrin-Specific Lipid Nanoparticles Occurs via Phagocyte Hitchhiking. ACS Nano 2020;14:7832-46. [PMID: 32413260 DOI: 10.1021/acsnano.9b08693] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
53 Kemker I, Feiner RC, Müller KM, Sewald N. Size-Dependent Cellular Uptake of RGD Peptides. Chembiochem 2020;21:496-9. [PMID: 31478590 DOI: 10.1002/cbic.201900512] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
54 Sun L. Meet the Editorial Board Member. CPB 2022;23:3-3. [DOI: 10.2174/138920102301211124143140] [Reference Citation Analysis]
55 Wang Y, Qian J, Yang M, Xu W, Wang J, Hou G, Ji L, Suo A. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 2019;225:115206. [PMID: 31521263 DOI: 10.1016/j.carbpol.2019.115206] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
56 Peng C, Xu J, Yu M, Ning X, Huang Y, Du B, Hernandez E, Kapur P, Hsieh JT, Zheng J. Tuning the In Vivo Transport of Anticancer Drugs Using Renal-Clearable Gold Nanoparticles. Angew Chem Int Ed Engl. 2019;58:8479-8483. [PMID: 31006932 DOI: 10.1002/anie.201903256] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
57 Li Y, Männel MJ, Hauck N, Patel HP, Auernhammer GK, Chae S, Fery A, Li J, Thiele J. Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics. Angew Chem Int Ed Engl 2021;60:6724-32. [PMID: 33283395 DOI: 10.1002/anie.202015340] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
58 Yang PP, Li YJ, Cao Y, Zhang L, Wang JQ, Lai Z, Zhang K, Shorty D, Xiao W, Cao H, Wang L, Wang H, Liu R, Lam KS. Rapid discovery of self-assembling peptides with one-bead one-compound peptide library. Nat Commun 2021;12:4494. [PMID: 34301935 DOI: 10.1038/s41467-021-24597-5] [Reference Citation Analysis]
59 Yang M, Yuan C, Shen G, Chang R, Xing R, Yan X. Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. Journal of Colloid and Interface Science 2019;557:458-64. [DOI: 10.1016/j.jcis.2019.09.049] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
60 Sun B, Tao K, Jia Y, Yan X, Zou Q, Gazit E, Li J. Photoactive properties of supramolecular assembled short peptides. Chem Soc Rev 2019;48:4387-400. [PMID: 31237282 DOI: 10.1039/c9cs00085b] [Cited by in Crossref: 64] [Cited by in F6Publishing: 13] [Article Influence: 21.3] [Reference Citation Analysis]
61 Jin Y, Yan R, Wang S, Wang X, Zhang X, Tang Y. Dipeptide nanoparticle and aptamer-based hybrid fluorescence platform for enrofloxacin determination. Mikrochim Acta 2022;189:96. [PMID: 35147788 DOI: 10.1007/s00604-022-05182-z] [Reference Citation Analysis]
62 Torrenegra-rico JD, Arango-restrepo A, Rubí JM. Enhancing particle transport in deformable micro-channels. J Chem Phys 2022;156:054118. [DOI: 10.1063/5.0080125] [Reference Citation Analysis]
63 Yin H, Guan X, Lin H, Pu Y, Fang Y, Yue W, Zhou B, Wang Q, Chen Y, Xu H. Nanomedicine-Enabled Photonic Thermogaseous Cancer Therapy. Adv Sci (Weinh) 2020;7:1901954. [PMID: 31993287 DOI: 10.1002/advs.201901954] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
64 Chang Y, Wu F, Pandey NK, Chudal L, Xing M, Zhang X, Nguyen L, Liu X, Liu JP, Chen W, Pan Z. Combination of Disulfiram and Copper-Cysteamine Nanoparticles for an Enhanced Antitumor Effect on Esophageal Cancer. ACS Appl Bio Mater 2020;3:7147-57. [PMID: 34179726 DOI: 10.1021/acsabm.0c00949] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
65 Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg 2018;5:38. [PMID: 30539365 DOI: 10.1186/s40580-018-0170-1] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 14.5] [Reference Citation Analysis]