BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Biggs CI, Bailey TL, Ben Graham, Stubbs C, Fayter A, Gibson MI. Polymer mimics of biomacromolecular antifreezes. Nat Commun 2017;8:1546. [PMID: 29142216 DOI: 10.1038/s41467-017-01421-7] [Cited by in Crossref: 89] [Cited by in F6Publishing: 77] [Article Influence: 17.8] [Reference Citation Analysis]
Number Citing Articles
1 Akhter S, Awan MA, Arshad J, Rakha BA, Ansari MS, Iqbal S. Effect of Synergism Between Carboxylated Poly-l-Lysine and Glycerol on Freezability of Nili-Ravi Buffalo ( Bubalus bubalis ) Semen. Biopreservation and Biobanking 2020;18:367-75. [DOI: 10.1089/bio.2019.0120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Wang Q, Huang X, Guo W, Cao Z. Synergy of orientational relaxation between bound water and confined water in ice cold-crystallization. Phys Chem Chem Phys 2019;21:10293-9. [DOI: 10.1039/c9cp01600g] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Li Q, Guo Z. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. J Mater Chem A 2018;6:13549-81. [DOI: 10.1039/c8ta03259a] [Cited by in Crossref: 91] [Article Influence: 22.8] [Reference Citation Analysis]
4 Wu X, Yao F, Zhang H, Li J. Antifreeze proteins and their biomimetics for cell cryopreservation: Mechanism, function and application-A review. Int J Biol Macromol 2021;192:1276-91. [PMID: 34634336 DOI: 10.1016/j.ijbiomac.2021.09.211] [Reference Citation Analysis]
5 Adam MK, Jarrett‐wilkins C, Beards M, Staykov E, Macfarlane LR, Bell TDM, Matthews JM, Manners I, Faul CFJ, Moens PDJ, Ben RN, Wilkinson BL. 1D Self‐Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide‐Functionalized Perylene Bisimides. Chem Eur J 2018;24:7834-9. [DOI: 10.1002/chem.201800857] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
6 Matsumura K, Hatakeyama S, Naka T, Ueda H, Rajan R, Tanaka D, Hyon SH. Molecular Design of Polyampholytes for Vitrification-Induced Preservation of Three-Dimensional Cell Constructs without Using Liquid Nitrogen. Biomacromolecules 2020;21:3017-25. [PMID: 32659086 DOI: 10.1021/acs.biomac.0c00293] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Diaz-Dussan D, Peng YY, Sengupta J, Zabludowski R, Adam MK, Acker JP, Ben RN, Kumar P, Narain R. Trehalose-Based Polyethers for Cryopreservation and Three-Dimensional Cell Scaffolds. Biomacromolecules 2020;21:1264-73. [PMID: 31913606 DOI: 10.1021/acs.biomac.0c00018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Austin MJ, Rosales AM. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci 2019;7:490-505. [PMID: 30628589 DOI: 10.1039/c8bm01215f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 7.7] [Reference Citation Analysis]
9 Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020;12:E1953. [PMID: 32872312 DOI: 10.3390/polym12091953] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
10 Li C, Fan L, Zhu R, Li X, Wen P, Zhao X, Wang G, Zou J, Kim F. Adjusting Channel Size within PVA-Based Hydrogels via Ice Templating for Enhanced Solar Steam Generation. ACS Appl Energy Mater 2020;3:9216-25. [DOI: 10.1021/acsaem.0c01584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
11 Tomás RMF, Bailey TL, Hasan M, Gibson MI. Extracellular Antifreeze Protein Significantly Enhances the Cryopreservation of Cell Monolayers. Biomacromolecules 2019;20:3864-72. [PMID: 31498594 DOI: 10.1021/acs.biomac.9b00951] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
12 Singh P, Bedi MK, Singhal S, Singh AK, Kumar A, Honparkhe M. Effect of graphene oxide as cryoprotectant on post-thaw sperm functional and kinetic parameters of cross bred (HF X Sahiwal) and Murrah buffalo ( ) bulls. Cryobiology 2022. [DOI: 10.1016/j.cryobiol.2022.03.002] [Reference Citation Analysis]
13 Tian J, Yang G, Huang H, Liu M, Liu L, Zhang X, Wei Y. Recent progress and development for the fabrication of antibacterial materials through mussel-inspired chemistry. Journal of Environmental Chemical Engineering 2020;8:104383. [DOI: 10.1016/j.jece.2020.104383] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Lee J, Lee SY, Lim D, Ahn DJ, Lee S. Antifreezing Gold Colloids. J Am Chem Soc 2019;141:18682-93. [DOI: 10.1021/jacs.9b05526] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
15 Fayter AER, Hasan M, Congdon TR, Kontopoulou I, Gibson MI. Ice recrystallisation inhibiting polymers prevent irreversible protein aggregation during solvent-free cryopreservation as additives and as covalent polymer-protein conjugates. Eur Polym J 2020;140:110036. [PMID: 33311718 DOI: 10.1016/j.eurpolymj.2020.110036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Pandey P, Mallajosyula SS. Elucidating the role of key structural motifs in antifreeze glycoproteins. Phys Chem Chem Phys 2019;21:3903-17. [PMID: 30702099 DOI: 10.1039/c8cp06743k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bailey TL, Stubbs C, Murray K, Tomás RMF, Otten L, Gibson MI. Synthetically Scalable Poly(ampholyte) Which Dramatically Enhances Cellular Cryopreservation. Biomacromolecules 2019;20:3104-14. [PMID: 31268698 DOI: 10.1021/acs.biomac.9b00681] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
18 Li T, Li M, Zhong Q, Wu T. Effect of Fibril Length on the Ice Recrystallization Inhibition Activity of Nanocelluloses. Carbohydrate Polymers 2020;240:116275. [DOI: 10.1016/j.carbpol.2020.116275] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Vessella G, Casillo A, Fabozzi A, Traboni S, Iadonisi A, Corsaro MM, Bedini E. Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from Colwellia psychrerythraea 34H. Org Biomol Chem 2019;17:3129-40. [DOI: 10.1039/c9ob00104b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhang D, Liu Y, Liu Y, Peng Y, Tang Y, Xiong L, Gong X, Zheng J. A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Adv Mater 2021;33:e2104006. [PMID: 34476856 DOI: 10.1002/adma.202104006] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Mochizuki K, Molinero V. Antifreeze Glycoproteins Bind Reversibly to Ice via Hydrophobic Groups. J Am Chem Soc 2018;140:4803-11. [PMID: 29392937 DOI: 10.1021/jacs.7b13630] [Cited by in Crossref: 61] [Cited by in F6Publishing: 48] [Article Influence: 15.3] [Reference Citation Analysis]
22 Liu X, Geng H, Sheng N, Wang J, Shi G. Suppressing ice growth by integrating the dual characteristics of antifreeze proteins into biomimetic two-dimensional graphene derivatives. J Mater Chem A 2020;8:23555-62. [DOI: 10.1039/d0ta06421a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
23 Graham B, Fayter AER, Gibson MI. Synthesis of Anthracene Conjugates of Truncated Antifreeze Protein Sequences: Effect of the End Group and Photocontrolled Dimerization on Ice Recrystallization Inhibition Activity. Biomacromolecules 2019;20:4611-21. [PMID: 31714763 DOI: 10.1021/acs.biomac.9b01538] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
24 Georgiou PG, Marton HL, Baker AN, Congdon TR, Whale TF, Gibson MI. Polymer Self-Assembly Induced Enhancement of Ice Recrystallization Inhibition. J Am Chem Soc 2021;143:7449-61. [PMID: 33944551 DOI: 10.1021/jacs.1c01963] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
25 Liu B, Zhang Q, Zhao Y, Ren L, Yuan X. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. J Mater Chem B 2019;7:5695-703. [DOI: 10.1039/c9tb01089k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Qin K, Eschenbrenner C, Ginot F, Dedovets D, Coradin T, Deville S, Fernandes FM. Unveiling Cells’ Local Environment during Cryopreservation by Correlative In Situ Spatial and Thermal Analyses. J Phys Chem Lett 2020;11:7730-8. [DOI: 10.1021/acs.jpclett.0c01729] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Choi J, Kim S, Yoo J, Choi S, Char K. Self-Healable Antifreeze Hydrogel Based on Dense Quadruple Hydrogen Bonding. Macromolecules 2021;54:6389-99. [DOI: 10.1021/acs.macromol.1c00295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Sumii Y, Hibino H, Saidalimu I, Kawahara H, Shibata N. Design and synthesis of galactose-conjugated fluorinated and non-fluorinated proline oligomers: towards antifreeze molecules. Chem Commun (Camb) 2018;54:9749-52. [PMID: 30102305 DOI: 10.1039/c8cc05588b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
29 Stubbs C, Wilkins LE, Fayter AER, Walker M, Gibson MI. Multivalent Presentation of Ice Recrystallization Inhibiting Polymers on Nanoparticles Retains Activity. Langmuir 2019;35:7347-53. [PMID: 30095267 DOI: 10.1021/acs.langmuir.8b01952] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
30 Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021;131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Reference Citation Analysis]
31 Nagao M, Sengupta J, Diaz-dussan D, Adam M, Wu M, Acker J, Ben R, Ishihara K, Zeng H, Miura Y, Narain R. Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Appl Bio Mater 2018;1:356-66. [DOI: 10.1021/acsabm.8b00096] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
32 Graham B, Fayter AER, Houston JE, Evans RC, Gibson MI. Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization. J Am Chem Soc 2018;140:5682-5. [PMID: 29660982 DOI: 10.1021/jacs.8b02066] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
33 Hussain S, Haji-Akbari A. Role of Nanoscale Interfacial Proximity in Contact Freezing in Water. J Am Chem Soc 2021;143:2272-84. [PMID: 33507741 DOI: 10.1021/jacs.0c10663] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Ampaw A, Charlton TA, Briard JG, Ben RN. Designing the next generation of cryoprotectants - From proteins to small molecules. Peptide Science 2019;111:e24086. [DOI: 10.1002/pep2.24086] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Naullage PM, Qiu Y, Molinero V. What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces? J Phys Chem Lett 2018;9:1712-20. [DOI: 10.1021/acs.jpclett.8b00300] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
36 Delesky EA, Srubar WV. Ice-binding proteins and bioinspired synthetic mimics in non-physiological environments. iScience 2022;25:104286. [DOI: 10.1016/j.isci.2022.104286] [Reference Citation Analysis]
37 Murray KA, Gibson MI. Post-Thaw Culture and Measurement of Total Cell Recovery Is Crucial in the Evaluation of New Macromolecular Cryoprotectants. Biomacromolecules 2020;21:2864-73. [PMID: 32501710 DOI: 10.1021/acs.biomac.0c00591] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
38 Hudait A, Qiu Y, Odendahl N, Molinero V. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. J Am Chem Soc 2019;141:7887-98. [DOI: 10.1021/jacs.9b02248] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
39 Yang J, Sui X, Li Q, Zhao W, Zhang J, Zhu Y, Chen P, Zhang L. In Situ Encapsulation of Postcryopreserved Cells Using Alginate Polymer and Zwitterionic Betaine. ACS Biomater Sci Eng 2019;5:2621-30. [DOI: 10.1021/acsbiomaterials.9b00249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
40 Lee TW, Lee GW, An S, Seong KY, Lee JS, Yang SY. Enhanced Cellular Cryopreservation by Biopolymer-Associated Suppression of RhoA/ROCK Signaling Pathway. Materials (Basel) 2021;14:6056. [PMID: 34683648 DOI: 10.3390/ma14206056] [Reference Citation Analysis]
41 Wang F, Zhuo Y, He Z, Xiao S, He J, Zhang Z. Dynamic Anti-Icing Surfaces (DAIS). Adv Sci (Weinh) 2021;8:e2101163. [PMID: 34499428 DOI: 10.1002/advs.202101163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Qu Z, Guo S, Sproncken CCM, Surís-Valls R, Yu Q, Voets IK. Enhancing the Freeze-Thaw Durability of Concrete through Ice Recrystallization Inhibition by Poly(vinyl alcohol). ACS Omega 2020;5:12825-31. [PMID: 32548466 DOI: 10.1021/acsomega.0c00555] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Progress in Polymer Science 2020;102:101209. [DOI: 10.1016/j.progpolymsci.2020.101209] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
44 Surís-Valls R, Voets IK. Peptidic Antifreeze Materials: Prospects and Challenges. Int J Mol Sci 2019;20:E5149. [PMID: 31627404 DOI: 10.3390/ijms20205149] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
45 Sui X, Chen P, Wen C, Yang J, Li Q, Zhang L. Exploring novel cell cryoprotectants based on neutral amino acids. Chinese Journal of Chemical Engineering 2020;28:2640-9. [DOI: 10.1016/j.cjche.2020.07.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Fahy GM, Wowk B. Principles of Ice-Free Cryopreservation by Vitrification.Methods Mol Biol. 2021;2180:27-97. [PMID: 32797408 DOI: 10.1007/978-1-0716-0783-1_2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
47 Jin S, Yin L, Kong B, Wu S, He Z, Xue H, Liu Z, Cheng Q, Zhou X, Wang J. Spreading fully at the ice-water interface is required for high ice recrystallization inhibition activity. Sci China Chem 2019;62:909-15. [DOI: 10.1007/s11426-018-9428-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
48 Sampaio-Pinto V, Janssen J, Chirico N, Serra M, Alves PM, Doevendans PA, Voets IK, Sluijter JPG, van Laake LW, van Mil A. A Roadmap to Cardiac Tissue-Engineered Construct Preservation: Insights from Cells, Tissues, and Organs. Adv Mater 2021;33:e2008517. [PMID: 34048090 DOI: 10.1002/adma.202008517] [Reference Citation Analysis]
49 Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol 2021:S0167-7799(21)00134-7. [PMID: 34238601 DOI: 10.1016/j.tibtech.2021.06.004] [Reference Citation Analysis]
50 Stubbs C, Congdon T, Davis J, Lester D, Richards SJ, Gibson MI. High-Throughput Tertiary Amine Deoxygenated Photopolymerizations for Synthesizing Polymer Libraries. Macromolecules 2019;52:7603-12. [PMID: 31656323 DOI: 10.1021/acs.macromol.9b01714] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
51 Jamil MI, Ali A, Haq F, Zhang Q, Zhan X, Chen F. Icephobic Strategies and Materials with Superwettability: Design Principles and Mechanism. Langmuir 2018;34:15425-44. [PMID: 30445813 DOI: 10.1021/acs.langmuir.8b03276] [Cited by in Crossref: 56] [Cited by in F6Publishing: 22] [Article Influence: 14.0] [Reference Citation Analysis]
52 Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. IJMS 2022;23:2639. [DOI: 10.3390/ijms23052639] [Reference Citation Analysis]
53 Chang T, Moses OA, Tian C, Wang H, Song L, Zhao G. Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants. Adv Sci (Weinh) 2021;8:2003387. [PMID: 33747736 DOI: 10.1002/advs.202003387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
54 Gao L, Zhou Q, Zhang Y, Sun S, Lv L, Ma P, Yang J, Liu M, Zhang L, Wang X, Zhan L. Dimethyl Sulfoxide-Free Cryopreservation of Human Umbilical Cord Mesenchymal Stem Cells Based on Zwitterionic Betaine and Electroporation. Int J Mol Sci 2021;22:7445. [PMID: 34299064 DOI: 10.3390/ijms22147445] [Reference Citation Analysis]
55 Li T, Zhong Q, Zhao B, Lenaghan S, Wang S, Wu T. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses. Carbohydr Polym 2020;234:115863. [PMID: 32070502 DOI: 10.1016/j.carbpol.2020.115863] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
56 Gao S, Zhu K, Zhang Q, Niu Q, Chong J, Ren L, Yuan X. Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes. Biomacromolecules 2021. [PMID: 34965723 DOI: 10.1021/acs.biomac.1c01372] [Reference Citation Analysis]
57 Liu Z, Wang Y, Ren Y, Jin G, Zhang C, Chen W, Yan F. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater Horiz 2020;7:919-27. [DOI: 10.1039/c9mh01688k] [Cited by in Crossref: 76] [Cited by in F6Publishing: 6] [Article Influence: 38.0] [Reference Citation Analysis]
58 Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Adv Sci (Weinh) 2021;8:2002425. [PMID: 33747720 DOI: 10.1002/advs.202002425] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
59 Bissoyi A, Reicher N, Chasnitsky M, Arad S, Koop T, Rudich Y, Braslavsky I. Ice Nucleation Properties of Ice-binding Proteins from Snow Fleas. Biomolecules 2019;9:E532. [PMID: 31557956 DOI: 10.3390/biom9100532] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
60 Stubbs C, Congdon TR, Gibson MI. Photo-polymerisation and study of the ice recrystallisation inhibition of hydrophobically modified poly(vinyl pyrrolidone) co-polymers. European Polymer Journal 2019;110:330-6. [DOI: 10.1016/j.eurpolymj.2018.11.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Piao Z, Park JK, Patel M, Lee HJ, Jeong B. Poly( l -Ala- co - l -Lys) Exhibits Excellent Ice Recrystallization Inhibition Activity. ACS Macro Lett 2021;10:1436-42. [DOI: 10.1021/acsmacrolett.1c00584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
62 Stubbs C, Bailey TL, Murray K, Gibson MI. Polyampholytes as Emerging Macromolecular Cryoprotectants. Biomacromolecules 2020;21:7-17. [PMID: 31418266 DOI: 10.1021/acs.biomac.9b01053] [Cited by in Crossref: 34] [Cited by in F6Publishing: 23] [Article Influence: 11.3] [Reference Citation Analysis]
63 Stubbs C, Murray KA, Ishibe T, Mathers RT, Gibson MI. Combinatorial Biomaterials Discovery Strategy to Identify New Macromolecular Cryoprotectants. ACS Macro Lett 2020;9:290-4. [PMID: 32337092 DOI: 10.1021/acsmacrolett.0c00044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
64 Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regenerative Medicine 2020;15:1463-91. [DOI: 10.2217/rme-2019-0145] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
65 Murray KA, Tomás RMF, Gibson MI. Low DMSO Cryopreservation of Stem Cells Enabled by Macromolecular Cryoprotectants. ACS Appl Bio Mater 2020;3:5627-32. [PMID: 32984779 DOI: 10.1021/acsabm.0c00638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
66 Park JK, Patel M, Piao Z, Park SJ, Jeong B. Size and Shape Control of Ice Crystals by Amphiphilic Block Copolymers and Their Implication in the Cryoprotection of Mesenchymal Stem Cells. ACS Appl Mater Interfaces 2021;13:33969-80. [PMID: 34275265 DOI: 10.1021/acsami.1c09933] [Reference Citation Analysis]
67 Chen X, Wu J, Cai X, Wang S. Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Comprehensive Reviews in Food Science and Food Safety 2021;20:542-62. [DOI: 10.1111/1541-4337.12655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Hedir G, Stubbs C, Aston P, Dove AP, Gibson MI. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity. ACS Macro Lett 2017;6:1404-8. [PMID: 29399386 DOI: 10.1021/acsmacrolett.7b00905] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
69 Park MH, Park J, Lee HJ, Jeong B. Alpha-beta transition induced by C18-conjugation of polyalanine and its implication in aqueous solution behavior of poly(ethylene glycol)-polyalanine block copolymers. Biomater Res 2020;24:23. [PMID: 33334374 DOI: 10.1186/s40824-020-00200-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Fan Q, Dou M, Mao J, Hou Y, Liu S, Zhao L, Lv J, Liu Z, Wang Y, Rao W, Jin S, Wang J. Strong Hydration Ability of Silk Fibroin Suppresses Formation and Recrystallization of Ice Crystals During Cryopreservation. Biomacromolecules 2021. [PMID: 34378928 DOI: 10.1021/acs.biomac.1c00700] [Reference Citation Analysis]
71 Ishibe T, Congdon T, Stubbs C, Hasan M, Sosso GC, Gibson MI. Enhancement of Macromolecular Ice Recrystallization Inhibition Activity by Exploiting Depletion Forces. ACS Macro Lett 2019;8:1063-7. [PMID: 31475076 DOI: 10.1021/acsmacrolett.9b00386] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
72 Sui X, Wen C, Yang J, Guo H, Zhao W, Li Q, Zhang J, Zhu Y, Zhang L. Betaine Combined with Membrane Stabilizers Enables Solvent-Free Whole Blood Cryopreservation and One-Step Cryoprotectant Removal. ACS Biomater Sci Eng 2019;5:1083-91. [PMID: 33405798 DOI: 10.1021/acsbiomaterials.8b01286] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
73 Blackman LD, Gunatillake PA, Cass P, Locock KES. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019;48:757-70. [PMID: 30548039 DOI: 10.1039/c8cs00508g] [Cited by in Crossref: 140] [Cited by in F6Publishing: 22] [Article Influence: 46.7] [Reference Citation Analysis]
74 Mousazadehkasin M, Tsavalas JG. Insights into Design of Biomimetic Glycerol-Grafted Polyol-Based Polymers for Ice Nucleation/Recrystallization Inhibition and Thermal Hysteresis Activity. Biomacromolecules 2020;21:4626-37. [DOI: 10.1021/acs.biomac.0c00907] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
75 Xue B, Zhao L, Qin X, Qin M, Lai J, Huang W, Lei H, Wang J, Wang W, Li Y, Cao Y. Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides. ACS Macro Lett 2019;8:1383-90. [DOI: 10.1021/acsmacrolett.9b00610] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
76 Marton HL, Styles KM, Kilbride P, Sagona AP, Gibson MI. Polymer-Mediated Cryopreservation of Bacteriophages. Biomacromolecules 2021;22:5281-9. [PMID: 34846863 DOI: 10.1021/acs.biomac.1c01187] [Reference Citation Analysis]
77 Georgiou PG, Kontopoulou I, Congdon TR, Gibson MI. Ice recrystallisation inhibiting polymer nano-objects via saline-tolerant polymerisation-induced self-assembly. Mater Horiz 2020;8:1883-7. [PMID: 33692903 DOI: 10.1039/D0MH00354A] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
78 He X, Hu B, Yang Y, Zhu HY, Rong RX, Li XL, Wang KR. Synthesis, self-aggregation and cryopreservation effects of perylene bisimide-glycopeptide conjugates. Chem Commun (Camb) 2021;57:12000-3. [PMID: 34709255 DOI: 10.1039/d1cc03835d] [Reference Citation Analysis]
79 Biggs CI, Stubbs C, Graham B, Fayter AER, Hasan M, Gibson MI. Mimicking the Ice Recrystallization Activity of Biological Antifreezes. When is a New Polymer "Active"? Macromol Biosci 2019;19:e1900082. [PMID: 31087781 DOI: 10.1002/mabi.201900082] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 9.7] [Reference Citation Analysis]
80 Fayter A, Huband S, Gibson MI. X-ray diffraction to probe the kinetics of ice recrystallization inhibition. Analyst 2020;145:3666-77. [PMID: 32266881 DOI: 10.1039/c9an02141h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
81 Liu X, Pan Y, Liu F, He Y, Zhu Q, Liu Z, Zhan X, Tan S, Vassallo A. A Review of the Material Characteristics, Antifreeze Mechanisms, and Applications of Cryoprotectants (CPAs). Journal of Nanomaterials 2021;2021:1-14. [DOI: 10.1155/2021/9990709] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
82 Zhu W, Guo J, Agola JO, Croissant JG, Wang Z, Shang J, Coker E, Motevalli B, Zimpel A, Wuttke S, Brinker CJ. Metal–Organic Framework Nanoparticle-Assisted Cryopreservation of Red Blood Cells. J Am Chem Soc 2019;141:7789-96. [DOI: 10.1021/jacs.9b00992] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 9.7] [Reference Citation Analysis]
83 Pereira J, Ferraretto X, Patrat C, Meddahi-pellé A. Dextran-Based Hydrogel as a New Tool for BALB/c 3T3 Cell Cryopreservation Without Dimethyl Sulfoxide. Biopreservation and Biobanking 2019;17:2-10. [DOI: 10.1089/bio.2018.0034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
84 Li T, Zhao Y, Zhong Q, Wu T. Inhibiting Ice Recrystallization by Nanocelluloses. Biomacromolecules 2019;20:1667-74. [DOI: 10.1021/acs.biomac.9b00027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
85 Chen X, Wu J, Li X, Yang F, Huang D, Huang J, Wang S, Guyonnet V. Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria. NPJ Sci Food 2022;6:10. [PMID: 35115563 DOI: 10.1038/s41538-022-00128-4] [Reference Citation Analysis]
86 Warren MT, Galpin I, Bachtiger F, Gibson MI, Sosso GC. Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. J Phys Chem Lett 2022;:2237-44. [PMID: 35238571 DOI: 10.1021/acs.jpclett.1c04080] [Reference Citation Analysis]
87 Hasan M, Fayter AER, Gibson MI. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Microorganisms. Biomacromolecules 2018;19:3371-6. [PMID: 29932648 DOI: 10.1021/acs.biomac.8b00660] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
88 Özsoylu D, Isık T, Demir MM, Schöning MJ, Wagner T. Cryopreservation of a cell-based biosensor chip modified with elastic polymer fibers enabling ready-to-use on-site applications. Biosens Bioelectron 2021;177:112983. [PMID: 33535119 DOI: 10.1016/j.bios.2021.112983] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Park S, Piao Z, Park JK, Lee HJ, Jeong B. Ice Recrystallization Inhibition Using l -Alanine/ l -Lysine Copolymers. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00174] [Reference Citation Analysis]
90 Long F, Jin T, Han K, Zhuang W. Impact of borate on structure of antifreeze glycoproteins. Chinese Journal of Chemical Physics 2021;34:659-69. [DOI: 10.1063/1674-0068/cjcp2107120] [Reference Citation Analysis]
91 Huang J, Guo J, Zhou L, Zheng G, Cao J, Li Z, Zhou Z, Lei Q, Brinker CJ, Zhu W. Advanced Nanomaterials-Assisted Cell Cryopreservation: A Mini Review. ACS Appl Bio Mater 2021;4:2996-3014. [PMID: 35014388 DOI: 10.1021/acsabm.1c00105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
92 Wilkins LE, Hasan M, Fayter AER, Biggs C, Walker M, Gibson MI. Site-specific conjugation of antifreeze proteins onto polymer-stabilized nanoparticles. Polym Chem 2019;10:2986-90. [PMID: 31303900 DOI: 10.1039/c8py01719k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
93 Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. Bioresour Bioprocess 2022;9. [DOI: 10.1186/s40643-022-00494-7] [Reference Citation Analysis]
94 Guo J, Yu Y, Zhu W, Serda RE, Franco S, Wang L, Lei Q, Agola JO, Noureddine A, Ploetz E, Wuttke S, Brinker CJ. Modular Assembly of Red Blood Cell Superstructures from Metal–Organic Framework Nanoparticle‐Based Building Blocks. Adv Funct Mater 2021;31:2005935. [DOI: 10.1002/adfm.202005935] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
95 Fan Q, Gao Y, Zhu C, Liu J, Zhao L, Mao J, Wu S, Xue H, Francisco JS, Zeng XC, Wang J. Unraveling Molecular Mechanism on Dilute Surfactant Solution Controlled Ice Recrystallization. Langmuir 2020;36:1691-8. [DOI: 10.1021/acs.langmuir.9b03417] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red Blood Cell Cryopreservation with Minimal Post-Thaw Lysis Enabled by a Synergistic Combination of a Cryoprotecting Polyampholyte with DMSO/Trehalose. Biomacromolecules 2021. [PMID: 34097399 DOI: 10.1021/acs.biomac.1c00599] [Reference Citation Analysis]
97 Li M, Luckett CR, Wu T. Potent Time-Dependent Ice Recrystallization Inhibition Activity of Cellulose Nanocrystals in Sucrose Solutions. Biomacromolecules 2021. [PMID: 34914371 DOI: 10.1021/acs.biomac.1c01201] [Reference Citation Analysis]
98 Zhang J, Wang F, Cao Z, Wang Q. New State-Diagram of Aqueous Solutions Unveiling Ionic Hydration, Antiplasticization, and Structural Heterogeneities in LiTFSI-H2O. J Phys Chem B 2021;125:13041-8. [PMID: 34788045 DOI: 10.1021/acs.jpcb.1c08431] [Reference Citation Analysis]
99 Hudait A, Odendahl N, Qiu Y, Paesani F, Molinero V. Ice-Nucleating and Antifreeze Proteins Recognize Ice through a Diversity of Anchored Clathrate and Ice-like Motifs. J Am Chem Soc 2018;140:4905-12. [PMID: 29564892 DOI: 10.1021/jacs.8b01246] [Cited by in Crossref: 58] [Cited by in F6Publishing: 41] [Article Influence: 14.5] [Reference Citation Analysis]