BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Que F, Hou XL, Wang GL, Xu ZS, Tan GF, Li T, Wang YH, Khadr A, Xiong AS. Advances in research on the carrot, an important root vegetable in the Apiaceae family. Hortic Res 2019;6:69. [PMID: 31231527 DOI: 10.1038/s41438-019-0150-6] [Cited by in Crossref: 78] [Cited by in F6Publishing: 82] [Article Influence: 26.0] [Reference Citation Analysis]
Number Citing Articles
1 Tan S, Duan A, Wang G, Liu H, Xu Z, Xiong A. Genome-wide identification reveals the DcMADS-box family transcription factors involved in flowering of carrot. Scientia Horticulturae 2023;308:111558. [DOI: 10.1016/j.scienta.2022.111558] [Reference Citation Analysis]
2 Liu X, Zhao D, Ou C, Hao W, Zhao Z, Zhuang F. Genome-wide identification and characterization profile of phosphatidy ethanolamine-binding protein family genes in carrot. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.1047890] [Reference Citation Analysis]
3 Junaid MD, Öztürk Gökçe ZN, Gökçe AF. Investigation of drought induced biochemical and gene expression changes in carrot cultivars. Mol Biol Rep 2022. [DOI: 10.1007/s11033-022-08050-4] [Reference Citation Analysis]
4 Khaliq H, Anwar S, Shafiq F, Ashraf M, Zhang L, Haider I, Khan S. Interactive Effects of Soil and Foliar-Applied Nanobiochar on Growth, Metabolites, and Nutrient Composition in Daucus carota. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10832-w] [Reference Citation Analysis]
5 Duan A, Tan S, Deng Y, Xu Z, Xiong A. Genome-Wide Identification and Evolution Analysis of R2R3-MYB Gene Family Reveals S6 Subfamily R2R3-MYB Transcription Factors Involved in Anthocyanin Biosynthesis in Carrot. IJMS 2022;23:11859. [DOI: 10.3390/ijms231911859] [Reference Citation Analysis]
6 Liu J, Wang H, Feng K, Li T, Liu Y, Duan A, Shu S, Liu H, Xiong A. AgDHAR2, a chloroplast-located dehydroascorbate reductase, modulates the ascorbate accumulation and drought stress response in celery. Environmental and Experimental Botany 2022;202:105006. [DOI: 10.1016/j.envexpbot.2022.105006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Türköz B, Bardakçi MS, Biyikli A, Karacabey E. UTILIZATION OF CARROT LEAF, AN AGRICULTURAL WASTE, AS HERBAL TEA. MBTD 2022;10:1076-1083. [DOI: 10.21923/jesd.1077722] [Reference Citation Analysis]
8 Yang Y, Yang M, Zhao T, Pan L, Jia L, Zheng L. Residue and Risk Assessment of Fluopyram in Carrot Tissues. Molecules 2022;27:5544. [DOI: 10.3390/molecules27175544] [Reference Citation Analysis]
9 Zhao Y, Deng Y, Wang Y, Lou Y, He L, Liu H, Li T, Yan Z, Zhuang J, Xiong A. Changes in Carotenoid Concentration and Expression of Carotenoid Biosynthesis Genes in Daucus carota Taproots in Response to Increased Salinity. Horticulturae 2022;8:650. [DOI: 10.3390/horticulturae8070650] [Reference Citation Analysis]
10 Wang XR, Wang YH, Jia M, Zhang RR, Liu H, Xu ZS, Xiong AS. The phytochrome-interacting factor DcPIF3 of carrot plays a positive role in drought stress by increasing endogenous ABA level in Arabidopsis. Plant Sci 2022;:111367. [PMID: 35788027 DOI: 10.1016/j.plantsci.2022.111367] [Reference Citation Analysis]
11 Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2022:S2090-1232(22)00150-3. [PMID: 35753652 DOI: 10.1016/j.jare.2022.06.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Rajora N, Thakral V, Geetika, Vats S, Padalkar G, Sudhakaran S, Kumawat S, Sonah H, Deshmukh R. Understanding aquaporins regulation and silicon uptake in carrot (Daucus carota). J Plant Biochem Biotechnol . [DOI: 10.1007/s13562-022-00780-7] [Reference Citation Analysis]
13 Vafaei N, Rempel CB, Scanlon MG, Jones PJH, Eskin MNA. Application of Supercritical Fluid Extraction (SFE) of Tocopherols and Carotenoids (Hydrophobic Antioxidants) Compared to Non-SFE Methods. AppliedChem 2022;2:68-92. [DOI: 10.3390/appliedchem2020005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Keskin M, Soysal Y, Celiktas N, Sekerli YE. Applied microwave power estimation of black carrot powders using spectroscopy combined with chemometrics. Spectroscopy Letters. [DOI: 10.1080/00387010.2022.2074042] [Reference Citation Analysis]
15 Jia M, Zhu SQ, Wang YH, Liu JX, Tan SS, Liu H, Shu S, Tao JP, Xiong AS. Morphological characteristics, anatomical structure, and dynamic change of ascorbic acid under different storage conditions of celery. Protoplasma 2022. [PMID: 35396652 DOI: 10.1007/s00709-022-01760-3] [Reference Citation Analysis]
16 Rasheed H, Shehzad M, Rabail R, Kowalczewski PŁ, Kidoń M, Jeżowski P, Ranjha MMAN, Rakha A, Din A, Aadil RM. Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. Applied Sciences 2022;12:3170. [DOI: 10.3390/app12063170] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
17 Bhandari SR, Rhee J, Choi CS, Jo JS, Shin YK, Song JW, Kim S, Lee JG. Morphological and Biochemical Variation in Carrot Genetic Resources Grown under Open Field Conditions: The Selection of Functional Genotypes for a Breeding Program. Agronomy 2022;12:553. [DOI: 10.3390/agronomy12030553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Sajjad M, Huang Q, Khan S, Khan MA, Yin L, Wang J, Lian F, Wang Q, Guo G. Microplastics in the soil environment: A critical review. Environmental Technology & Innovation 2022. [DOI: 10.1016/j.eti.2022.102408] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
19 Ou C, Sun T, Liu X, Li C, Li M, Wang X, Ren H, Zhao Z, Zhuang F. Detection of Chromosomal Segments Introgressed from Wild Species of Carrot into Cultivars: Quantitative Trait Loci Mapping for Morphological Features in Backcross Inbred Lines. Plants (Basel) 2022;11:391. [PMID: 35161370 DOI: 10.3390/plants11030391] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Abreu DJMD, Lorenço MS, Ferreira AN, Scalice HK, Vilas Boas EVDB, Piccoli RH, Carvalho EEN. Artificial Neural Networks for the Evaluation of Physicochemical Properties of Carrots ( Daucus carota L.) Subjected to Different Cooking Conditions as an Alternative to Traditional Statistical Methods. ACS Food Sci Technol 2022;2:143-50. [DOI: 10.1021/acsfoodscitech.1c00375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Acosta-motos JR, Díaz-vivancos P, Becerra-gutiérrez V, Hernández Cortés JA, Barba-espín G. Comparative Characterization of Eastern Carrot Accessions for Some Main Agricultural Traits. Agronomy 2021;11:2460. [DOI: 10.3390/agronomy11122460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Badgujar PM, Wang Y, Cheng C. A light‐mediated study of carotenoids in carrots ( Daucus carota ) using resonance Raman spectroscopy. J Raman Spectroscopy 2021;52:2609-2620. [DOI: 10.1002/jrs.6176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Liu JX, Jiang Q, Tao JP, Feng K, Li T, Duan AQ, Wang H, Xu ZS, Liu H, Xiong AS. Integrative genome, transcriptome, microRNA, and degradome analysis of water dropwort (Oenanthe javanica) in response to water stress. Hortic Res 2021;8:262. [PMID: 34848704 DOI: 10.1038/s41438-021-00707-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
24 Ghemeray H, Kumar R, Behera TK, Sharma VK, Singh S, Bhatia R, Dey SS. Genetic architecture, physio-biochemical characterization and identification of elite cytoplasmic male sterile (pt-CMS) based combiners in developing antioxidant-rich carrot. Plant Genet Resour 2021;19:484-496. [DOI: 10.1017/s1479262121000599] [Reference Citation Analysis]
25 Schifano E, Tomassini A, Preziosi A, Montes J, Aureli W, Mancini P, Miccheli A, Uccelletti D. Leuconostoc mesenteroides Strains Isolated from Carrots Show Probiotic Features. Microorganisms 2021;9:2290. [PMID: 34835416 DOI: 10.3390/microorganisms9112290] [Reference Citation Analysis]
26 Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. Plants (Basel) 2021;10:2369. [PMID: 34834732 DOI: 10.3390/plants10112369] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Nikmatullah A, Samudra GG, Zawani K, Muslim K, Nairfana I, Sarjan M. Foliar Organic Fertilizer Enhanced Growth, Yield and Carotenoid Content of Carrot Plants (Daucus carota L.) Cultivated in the Lowland. IOP Conf Ser : Earth Environ Sci 2021;913:012019. [DOI: 10.1088/1755-1315/913/1/012019] [Reference Citation Analysis]
28 Chrapačienė S, Rasiukevičiūtė N, Valiuškaitė A. Biocontrol of Carrot Disease-Causing Pathogens Using Essential Oils. Plants (Basel) 2021;10:2231. [PMID: 34834594 DOI: 10.3390/plants10112231] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Li T, Liu JX, Deng YJ, Xu ZS, Xiong AS. Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana. BMC Plant Biol 2021;21:475. [PMID: 34663216 DOI: 10.1186/s12870-021-03236-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
30 Zhao S, Garcia D, Zhao Y, Huang D. Hydro-Electro Hybrid Priming Promotes Carrot (Daucus carota L.) Seed Germination by Activating Lipid Utilization and Respiratory Metabolism. Int J Mol Sci 2021;22:11090. [PMID: 34681749 DOI: 10.3390/ijms222011090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Djebaili R, Pellegrini M, Ercole C, Farda B, Kitouni M, Del Gallo M. Biocontrol of Soil-Borne Pathogens of Solanum lycopersicum L. and Daucus carota L. by Plant Growth-Promoting Actinomycetes: In Vitro and In Planta Antagonistic Activity. Pathogens 2021;10:1305. [PMID: 34684253 DOI: 10.3390/pathogens10101305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ding X, Liu JX, Li T, Duan AQ, Yin L, Wang H, Jia LL, Liu YH, Liu H, Tao JP, Xiong AS. AgZDS, a gene encoding ζ-carotene desaturase, increases lutein and β-carotene contents in transgenic Arabidopsis and celery. Plant Sci 2021;312:111043. [PMID: 34620441 DOI: 10.1016/j.plantsci.2021.111043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Hu Z, Chen X, Huangfu L, Shao S, Tao X, Song L, Tong W, Yi CD. Comparative analysis morphology, anatomical structure and transcriptional regulatory network of chlorophyll biosynthesis in Oryza longistaminata, O. sativa and their F1 generation. PeerJ 2021;9:e12099. [PMID: 34567844 DOI: 10.7717/peerj.12099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yusuf E, Tkacz K, Turkiewicz IP, Wojdyło A, Nowicka P. Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. Eur Food Res Technol 2021;247:3053-62. [DOI: 10.1007/s00217-021-03857-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Keskin M, Guclu G, Sekerli YE, Soysal Y, Selli S, Kelebek H. Comparative assessment of volatile and phenolic profiles of fresh black carrot (Daucus carota L.) and powders prepared by three drying methods. Scientia Horticulturae 2021;287:110256. [DOI: 10.1016/j.scienta.2021.110256] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
36 Pei Q, Yu T, Wu T, Yang Q, Gong K, Zhou R, Cui C, Yu Y, Zhao W, Kang X, Cao R, Song X. Comprehensive identification and analyses of the Hsf gene family in the whole-genome of three Apiaceae species. Horticultural Plant Journal 2021;7:457-68. [DOI: 10.1016/j.hpj.2020.08.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Teng R, Wang Y, Li H, Liu H, Wang Y, Zhuang J. Identification and Expression Analysis of the SBP-box Gene Family Related to Abiotic Stress in Tea Plant (Camellia sinensis (L.) O. Kuntze). Plant Mol Biol Rep. [DOI: 10.1007/s11105-021-01306-6] [Reference Citation Analysis]
38 Brainard SH, Bustamante JA, Dawson JC, Spalding EP, Goldman IL. A Digital Image-Based Phenotyping Platform for Analyzing Root Shape Attributes in Carrot. Front Plant Sci 2021;12:690031. [PMID: 34220912 DOI: 10.3389/fpls.2021.690031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Gao J, Xiong K, Zhou W, Li W. Extensive Metabolite Profiling in the Unexploited Organs of Black Tiger for Their Potential Valorization in the Pharmaceutical Industry. Life (Basel) 2021;11:544. [PMID: 34200589 DOI: 10.3390/life11060544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Papoutsis K, Edelenbos M. Postharvest environmentally and human-friendly pre-treatments to minimize carrot waste in the supply chain caused by physiological disorders and fungi. Trends in Food Science & Technology 2021;112:88-98. [DOI: 10.1016/j.tifs.2021.03.038] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
41 Dong Y, Gao M, Qiu W, Song Z. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects. Journal of Hazardous Materials 2021;411:125055. [DOI: 10.1016/j.jhazmat.2021.125055] [Cited by in Crossref: 42] [Cited by in F6Publishing: 51] [Article Influence: 42.0] [Reference Citation Analysis]
42 Ding X, Jia LL, Xing GM, Tao JP, Sun S, Tan GF, Li S, Liu JX, Duan AQ, Wang H, Xiong AS. The Accumulation of Lutein and β-Carotene and Transcript Profiling of Genes Related to Carotenoids Biosynthesis in Yellow Celery. Mol Biotechnol 2021;63:638-49. [PMID: 33973142 DOI: 10.1007/s12033-021-00332-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
43 Patkowska E. COVER CROPS AND SOIL-BORNE FUNGI DANGEROUS TOWARDS THE CULTIVATION OF Daucus carota L. asphc 2021;20:3-12. [DOI: 10.24326/asphc.2021.2.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Hussain I, Rehman K, Ashraf MA, Rasheed R, Gul J, Akash MSH, Bashir R. Effect of Pharmaceutical Effluents on Growth, Oxidative Defense, Secondary Metabolism, and Ion Homeostasis in Carrot. Dose Response 2021;19:1559325821998506. [PMID: 33911988 DOI: 10.1177/1559325821998506] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Yusuf E, Wojdyło A, Oszmiański J, Nowicka P. Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods 2021;10:808. [PMID: 33918549 DOI: 10.3390/foods10040808] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
46 Blando F, Marchello S, Maiorano G, Durante M, Signore A, Laus MN, Soccio M, Mita G. Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace "Polignano" Carrot. Plants (Basel) 2021;10:564. [PMID: 33802658 DOI: 10.3390/plants10030564] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
47 Hameed A, Akram NA, Saleem MH, Ashraf M, Ahmed S, Ali S, Abdullah Alsahli A, Alyemeni MN. Seed Treatment with α-Tocopherol Regulates Growth and Key Physio-Biochemical Attributes in Carrot (Daucus carota L.) Plants under Water Limited Regimes. Agronomy 2021;11:469. [DOI: 10.3390/agronomy11030469] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
48 Martínez-zamora L, Castillejo N, Gómez PA, Artés-hernández F. Amelioration Effect of LED Lighting in the Bioactive Compounds Synthesis during Carrot Sprouting. Agronomy 2021;11:304. [DOI: 10.3390/agronomy11020304] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
49 Gupta E, Mishra P. Functional Food with Some Health Benefits, So Called Superfood: A Review. CNF 2021;17:144-66. [DOI: 10.2174/1573401316999200717171048] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
50 Singh AK, Shikha K, Shahi JP. Hybrids and abiotic stress tolerance in horticultural crops. Stress Tolerance in Horticultural Crops 2021. [DOI: 10.1016/b978-0-12-822849-4.00015-2] [Reference Citation Analysis]
51 Saurabh S, Prasad D. Role of CRISPR/Cas system in altering phenolic and carotenoid biosynthesis in plants defense activation. CRISPR and RNAi Systems 2021. [DOI: 10.1016/b978-0-12-821910-2.00022-9] [Reference Citation Analysis]
52 Khadr A, Wang GL, Wang YH, Zhang RR, Wang XR, Xu ZS, Tian YS, Xiong AS. Effects of auxin (indole-3-butyric acid) on growth characteristics, lignification, and expression profiles of genes involved in lignin biosynthesis in carrot taproot. PeerJ 2020;8:e10492. [PMID: 33354430 DOI: 10.7717/peerj.10492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
53 Ierna A, Mauro RP, Leonardi C, Giuffrida F. Shelf-Life of Bunched Carrots as Affected by Nitrogen Fertilization and Leaf Presence. Agronomy 2020;10:1982. [DOI: 10.3390/agronomy10121982] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Purkiewicz A, Ciborska J, Tańska M, Narwojsz A, Starowicz M, Przybyłowicz KE, Sawicki T. The Impact of the Method Extraction and Different Carrot Variety on the Carotenoid Profile, Total Phenolic Content and Antioxidant Properties of Juices. Plants (Basel) 2020;9:E1759. [PMID: 33322599 DOI: 10.3390/plants9121759] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
55 Reichardt S, Budahn H, Lamprecht D, Riewe D, Ulrich D, Dunemann F, Kopertekh L. The carrot monoterpene synthase gene cluster on chromosome 4 harbours genes encoding flavour-associated sabinene synthases. Hortic Res 2020;7:190. [PMID: 33328444 DOI: 10.1038/s41438-020-00412-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
56 Lukošiūtė S, Rasiukevičiūtė N, Valiuškaitė A. Control of Carrot Seed-Borne Pathogens by Aromatic Plants Distillates. The 1st International Electronic Conference on Plant Science 2020. [DOI: 10.3390/iecps2020-08628] [Reference Citation Analysis]
57 Yin L, Liu JX, Tao JP, Xing GM, Tan GF, Li S, Duan AQ, Ding X, Xu ZS, Xiong AS. The gene encoding lycopene epsilon cyclase of celery enhanced lutein and β-carotene contents and confers increased salt tolerance in Arabidopsis. Plant Physiol Biochem 2020;157:339-47. [PMID: 33186851 DOI: 10.1016/j.plaphy.2020.10.036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
58 Liu JX, Wu B, Feng K, Li MY, Duan AQ, Shen D, Yin L, Xu ZS, Xiong AS. A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance. Mol Genet Genomics 2021;296:179-92. [PMID: 33130909 DOI: 10.1007/s00438-020-01738-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zhang RR, Wang YH, Li T, Tan GF, Tao JP, Su XJ, Xu ZS, Tian YS, Xiong AS. Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots. Protoplasma 2021;258:379-90. [PMID: 33111186 DOI: 10.1007/s00709-020-01570-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
60 Wang YH, Que F, Li T, Zhang RR, Khadr A, Xu ZS, Tian YS, Xiong AS. DcABF3, an ABF transcription factor from carrot, alters stomatal density and reduces ABA sensitivity in transgenic Arabidopsis. Plant Sci 2021;302:110699. [PMID: 33288012 DOI: 10.1016/j.plantsci.2020.110699] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
61 Arkoub-djermoune L, Louaileche H, Benmeziane F, Madani K, Boulekbache-makhlouf L. Impact of refrigerated storage on the bioactive compounds and antioxidant capacity of two Algerian carrot varieties (Daucus carota L.). Acta Universitatis Sapientiae, Alimentaria 2020;13:5-31. [DOI: 10.2478/ausal-2020-0001] [Reference Citation Analysis]
62 Liu R, Choi HS, Kim SL, Kim JH, Yun BS, Lee DS. 6-Methoxymellein Isolated from Carrot (Daucus carota L.) Targets Breast Cancer Stem Cells by Regulating NF-κB Signaling. Molecules 2020;25:E4374. [PMID: 32977636 DOI: 10.3390/molecules25194374] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
63 Duan AQ, Tao JP, Jia LL, Tan GF, Liu JX, Li T, Chen LZ, Su XJ, Feng K, Xu ZS, Xiong AS. AgNAC1, a celery transcription factor, related to regulation on lignin biosynthesis and salt tolerance. Genomics 2020;112:5254-64. [PMID: 32976976 DOI: 10.1016/j.ygeno.2020.09.049] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
64 Muzykiewicz-szymańska A, Zielonka-brzezicka J, Klimowicz A. THE IMPACT OF PLANT MATERIAL FREEZING AND EXTRACTANT ACIDIFYING ON THE ANTIOXIDANT POTENTIAL AND PIGMENTS CONTENT IN EXTRACTS AND RAW MATERIALS OF DIFFERENT CARROT VARIETIES. asphc 2021;20:33-42. [DOI: 10.24326/asphc.2021.2.4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Hussein AMS, Fouda K, Mehaya FM, Mohamed DA, Mohammad AA, Abdelgayed SS, Mohamed RS. Fortified vegetarian milk for prevention of metabolic syndrome in rats: impact on hepatic and vascular complications. Heliyon 2020;6:e04593. [PMID: 32793828 DOI: 10.1016/j.heliyon.2020.e04593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Arias D, Maldonado J, Silva H, Stange C. A de novo transcriptome analysis revealed that photomorphogenic genes are required for carotenoid synthesis in the dark-grown carrot taproot. Mol Genet Genomics 2020;295:1379-92. [PMID: 32656704 DOI: 10.1007/s00438-020-01707-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
67 Li H, Wang Y, Liu H, Lin S, Han M, Zhuang J. Genomic analyses of the crosstalk between gibberellins and brassinosteroids metabolisms in tea plant (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 2020;268:109368. [DOI: 10.1016/j.scienta.2020.109368] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Wang G, An Y, Wang Y, Liu J, Wang J, Sun M, Xiong A. Gibberellin-Induced Alterations to the Expression of Cell Wall-Related Genes in the Xylem of Carrot Root. J Plant Growth Regul 2021;40:787-97. [DOI: 10.1007/s00344-020-10143-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
69 Li H, Liu JX, Wang Y, Zhuang J. The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions. Plant Sci 2020;296:110500. [PMID: 32540018 DOI: 10.1016/j.plantsci.2020.110500] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
70 Hao JN, Wang YH, Duan AQ, Liu JX, Feng K, Xiong AS. NAC Family Transcription Factors in Carrot: Genomic and Transcriptomic Analysis and Responses to Abiotic Stresses. DNA Cell Biol 2020;39:816-27. [PMID: 32175765 DOI: 10.1089/dna.2019.5208] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
71 Song X, Wang J, Li N, Yu J, Meng F, Wei C, Liu C, Chen W, Nie F, Zhang Z, Gong K, Li X, Hu J, Yang Q, Li Y, Li C, Feng S, Guo H, Yuan J, Pei Q, Yu T, Kang X, Zhao W, Lei T, Sun P, Wang L, Ge W, Guo D, Duan X, Shen S, Cui C, Yu Y, Xie Y, Zhang J, Hou Y, Wang J, Wang J, Li XQ, Paterson AH, Wang X. Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant Biotechnol J 2020;18:1444-56. [PMID: 31799788 DOI: 10.1111/pbi.13310] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
72 Wang YH, Li T, Zhang RR, Khadr A, Tian YS, Xu ZS, Xiong AS. Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors. Protoplasma 2020;257:949-63. [PMID: 31982943 DOI: 10.1007/s00709-020-01482-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
73 Khadr A, Wang Y, Que F, Li T, Xu Z, Xiong A. Exogenous abscisic acid suppresses the lignification and changes the growth, root anatomical structure and related gene profiles of carrot. Acta Biochim Biophys Sin (Shanghai) 2020;52:97-100. [PMID: 31897466 DOI: 10.1093/abbs/gmz138] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
74 Li T, Huang Y, Khadr A, Wang Y, Xu Z, Xiong A. DcDREB1A, a DREB-binding transcription factor from Daucus carota, enhances drought tolerance in transgenic Arabidopsis thaliana and modulates lignin levels by regulating lignin-biosynthesis-related genes. Environmental and Experimental Botany 2020;169:103896. [DOI: 10.1016/j.envexpbot.2019.103896] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
75 Yin L, Xing G, Sun S, Wang G, Liu J, Ding X, Shen D, Feng K, Xu Z, Xiong A. Comparison of ascorbic acid and lignin accumulation in four white celery varieties and transcriptional profiling of genes related to the metabolic pathways. Biotechnology & Biotechnological Equipment 2020;34:532-541. [DOI: 10.1080/13102818.2020.1779126] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Que F, Wang YH, Xu ZS, Xiong AS. DcBAS1, a Carrot Brassinosteroid Catabolism Gene, Modulates Cellulose Synthesis. J Agric Food Chem 2019;67:13526-33. [PMID: 31725271 DOI: 10.1021/acs.jafc.9b05241] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
77 Vénica CI, Spotti MJ, Pavón YL, Molli JS, Perotti MC. Influence of carrot fibre powder addition on rheological, microstructure and sensory characteristics of stirred‐type yogurt. Int J Food Sci Technol 2020;55:1916-23. [DOI: 10.1111/ijfs.14415] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
78 Guo H, Zhang Y, Wang Z, Lin L, Cui M, Long Y, Xing Z. Genome-Wide Identification of WRKY Transcription Factors in the Asteranae. Plants (Basel) 2019;8:E393. [PMID: 31581604 DOI: 10.3390/plants8100393] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
79 Li MY, Liu JX, Hao JN, Feng K, Duan AQ, Yang QQ, Xu ZS, Xiong AS. Genomic identification of AP2/ERF transcription factors and functional characterization of two cold resistance-related AP2/ERF genes in celery (Apium graveolens L.). Planta 2019;250:1265-80. [PMID: 31236696 DOI: 10.1007/s00425-019-03222-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]