BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen C, Xu ZQ, Zong YP, Ou BC, Shen XH, Feng H, Zheng MH, Zhao JK, Lu AG. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer. Cell Death Dis 2019;10:178. [PMID: 30792394 DOI: 10.1038/s41419-019-1431-6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 15.5] [Reference Citation Analysis]
Number Citing Articles
1 Cagliani R, Gatto F, Cibecchini G, Marotta R, Catalano F, Sanchez-Moreno P, Pompa PP, Bardi G. CXCL5 Modified Nanoparticle Surface Improves CXCR2+ Cell Selective Internalization. Cells 2019;9:E56. [PMID: 31878341 DOI: 10.3390/cells9010056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
2 Zhou M, Wang B, Li H, Han J, Li A, Lu W. RNA-binding protein SAMD4A inhibits breast tumor angiogenesis by modulating the balance of angiogenesis program. Cancer Sci 2021;112:3835-45. [PMID: 34219323 DOI: 10.1111/cas.15053] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Irani S, Barati I, Badiei M. Periodontitis and oral cancer - current concepts of the etiopathogenesis. Oncol Rev 2020;14:465. [PMID: 32231765 DOI: 10.4081/oncol.2020.465] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
4 Sun DS, Guan CH, Wang WN, Hu ZT, Zhao YQ, Jiang XM. LncRNA NORAD promotes proliferation, migration and angiogenesis of hepatocellular carcinoma cells through targeting miR-211-5p/FOXD1/VEGF-A axis. Microvasc Res 2021;134:104120. [PMID: 33309645 DOI: 10.1016/j.mvr.2020.104120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Ye J, Liu J, Tang T, Xin L, Bao X, Yan Y. miR‑4306 inhibits the malignant behaviors of colorectal cancer by regulating lncRNA FoxD2‑AS1. Mol Med Rep 2021;24:723. [PMID: 34396433 DOI: 10.3892/mmr.2021.12362] [Reference Citation Analysis]
6 Klosterhoff BS, Vantucci CE, Kaiser J, Ong KG, Wood LB, Weiss JA, Guldberg RE, Willett NJ. Effects of osteogenic ambulatory mechanical stimulation on early stages of BMP-2 mediated bone repair. Connect Tissue Res 2021;:1-12. [PMID: 33820456 DOI: 10.1080/03008207.2021.1897582] [Reference Citation Analysis]
7 Lin CH, Lee HH, Chang WM, Lee FP, Chen LC, Lu LS, Lin YF. FOXD1 Repression Potentiates Radiation Effectiveness by Downregulating G3BP2 Expression and Promoting the Activation of TXNIP-Related Pathways in Oral Cancer. Cancers (Basel) 2020;12:E2690. [PMID: 32967107 DOI: 10.3390/cancers12092690] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines (Basel) 2020;11:E411. [PMID: 32295170 DOI: 10.3390/mi11040411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
9 Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021;20:71. [PMID: 33926452 DOI: 10.1186/s12943-021-01365-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhang Y, Tian Y, Zhang H, Xu B, Chen H. Potential pathways of zinc deficiency-promoted tumorigenesis. Biomed Pharmacother 2021;133:110983. [PMID: 33190036 DOI: 10.1016/j.biopha.2020.110983] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhang Y, Zhang W. FOXD1, negatively regulated by miR-186, promotes the proliferation, metastasis and radioresistance of nasopharyngeal carcinoma cells. Cancer Biomark 2020;28:511-21. [PMID: 32568181 DOI: 10.3233/CBM-191311] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Kim Y, Lee D, Lawler S. Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philos Trans R Soc Lond B Biol Sci 2020;375:20190390. [PMID: 32713306 DOI: 10.1098/rstb.2019.0390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zhang JW, Zhang D, Yu BP. Senescent cells in cancer therapy: why and how to remove them. Cancer Lett 2021;520:68-79. [PMID: 34237406 DOI: 10.1016/j.canlet.2021.07.002] [Reference Citation Analysis]
14 Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021;15:361-81. [PMID: 34086259 DOI: 10.1007/s12079-021-00621-7] [Reference Citation Analysis]
15 Rocha LA, Gomes ED, Afonso JL, Granja S, Baltazar F, Silva NA, Shoichet MS, Sousa RA, Learmonth DA, Salgado AJ. In vitro Evaluation of ASCs and HUVECs Co-cultures in 3D Biodegradable Hydrogels on Neurite Outgrowth and Vascular Organization. Front Cell Dev Biol 2020;8:489. [PMID: 32612997 DOI: 10.3389/fcell.2020.00489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Xu H, Ma Y, Zhang J, Gu J, Jing X, Lu S, Fu S, Huo J. Identification and Verification of Core Genes in Colorectal Cancer. Biomed Res Int 2020;2020:8082697. [PMID: 32462020 DOI: 10.1155/2020/8082697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
17 Wang T, Chen B, Meng T, Liu Z, Wu W. Identification and immunoprofiling of key prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Bioengineered 2021;12:1555-75. [PMID: 33955820 DOI: 10.1080/21655979.2021.1918538] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, Li M, Shuoa SM, You Q, Miao L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond) 2020;40:69-80. [PMID: 32237072 DOI: 10.1002/cac2.12010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]
19 Novillo A, Gaibar M, Romero-Lorca A, Gilsanz MF, Beltrán L, Galán M, Antón B, Malón D, Moreno A, Fernández-Santander A. Efficacy of bevacizumab-containing chemotherapy in metastatic colorectal cancer and CXCL5 expression: Six case reports. World J Gastroenterol 2020;26:1979-86. [PMID: 32390708 DOI: 10.3748/wjg.v26.i16.1979] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 Xu X, Cheng J, Luo S, Huang D, Xu J, Qian Y, Zhou H, Wan X. Deoxycholic acid-stimulated macrophage-derived exosomes promote intestinal metaplasia and suppress proliferation in human gastric epithelial cells. Eur J Pharmacol 2020;887:173566. [PMID: 32950501 DOI: 10.1016/j.ejphar.2020.173566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wang J, Hu T, Wang Q, Chen R, Xie Y, Chang H, Cheng J. Repression of the AURKA-CXCL5 axis induces autophagic cell death and promotes radiosensitivity in non-small-cell lung cancer. Cancer Lett 2021;509:89-104. [PMID: 33848520 DOI: 10.1016/j.canlet.2021.03.028] [Reference Citation Analysis]
22 Jiang F, Chen Y, Ren S, Li Z, Sun K, Xing Y, Zhu Y, Piao D. Cyclovirobuxine D inhibits colorectal cancer tumorigenesis via the CTHRC1‑AKT/ERK‑Snail signaling pathway. Int J Oncol 2020;57:183-96. [PMID: 32319595 DOI: 10.3892/ijo.2020.5038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Zhang Y, Zheng S, Liao N, Huang H, Chen W, Wu Z, Wu D. CircCTNNA1 acts as a ceRNA for miR-363-3p to facilitate the progression of colorectal cancer by promoting CXCL5 expression. J Biol Res (Thessalon) 2021;28:7. [PMID: 33640021 DOI: 10.1186/s40709-021-00135-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
24 Zhang B, Zou J, Zhang Q, Wang Z, Wang N, He S, Zhao Y, Naman CB. Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy. Int J Mol Sci 2021;22:2408. [PMID: 33673713 DOI: 10.3390/ijms22052408] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Jia X, Wei S, Xiong W. CXCL5/NF-κB Pathway as a Therapeutic Target in Hepatocellular Carcinoma Treatment. J Oncol 2021;2021:9919494. [PMID: 34194499 DOI: 10.1155/2021/9919494] [Reference Citation Analysis]
26 Khandia R, Munjal A. Interplay between inflammation and cancer. Inflammatory Disorders, Part A. Elsevier; 2020. pp. 199-245. [DOI: 10.1016/bs.apcsb.2019.09.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
27 Luo M, Hu Z, Kong Y, Li L. MicroRNA-432-5p inhibits cell migration and invasion by targeting CXCL5 in colorectal cancer. Exp Ther Med 2021;21:301. [PMID: 33717244 DOI: 10.3892/etm.2021.9732] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020;6:838-57. [PMID: 32482536 DOI: 10.1016/j.trecan.2020.05.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 39] [Article Influence: 57.0] [Reference Citation Analysis]
29 Xu Z, Sun Y, Wei Z, Jiang J, Xu J, Liu P. Suppression of CXCL-1 Could Restore Necroptotic Pathway in Chronic Lymphocytic Leukemia. Onco Targets Ther 2020;13:6917-25. [PMID: 32764983 DOI: 10.2147/OTT.S256993] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]