BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Svensmark JH, Brakebusch C. Rho GTPases in cancer: friend or foe? Oncogene 2019;38:7447-56. [PMID: 31427738 DOI: 10.1038/s41388-019-0963-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang Q, Liu W, Chen S, Luo Q, Li Y, Peng S, Wang H, Liu X, Chen D. ORMDL1 is upregulated and associated with favorable outcomes in colorectal cancer. Transl Oncol 2021;14:101171. [PMID: 34243012 DOI: 10.1016/j.tranon.2021.101171] [Reference Citation Analysis]
2 Venditti M, Arcaniolo D, De Sio M, Minucci S. Preliminary Investigation on the Involvement of Cytoskeleton-Related Proteins, DAAM1 and PREP, in Human Testicular Disorders. Int J Mol Sci 2021;22:8094. [PMID: 34360857 DOI: 10.3390/ijms22158094] [Reference Citation Analysis]
3 García-padilla C, Muñoz-gallardo MDM, Lozano-velasco E, Castillo-casas JM, Caño-carrillo S, García-lópez V, Aránega A, Franco D, García-martínez V, López-sánchez C. New Insights into the Roles of lncRNAs as Modulators of Cytoskeleton Architecture and Their Implications in Cellular Homeostasis and in Tumorigenesis. ncRNA 2022;8:28. [DOI: 10.3390/ncrna8020028] [Reference Citation Analysis]
4 El-Mais N, Fakhoury I, Abdellatef S, Abi-Habib R, El-Sibai M. Human recombinant arginase I [HuArgI (Co)-PEG5000]-induced arginine depletion inhibits ovarian cancer cell adhesion and migration through autophagy-mediated inhibition of RhoA. J Ovarian Res 2021;14:13. [PMID: 33423701 DOI: 10.1186/s13048-021-00767-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Pineiro NM, Carneiro ACDM, Crema VO. Rho GTPases are Involved on Regulation of Cytodifferentiation of SCC-4 Oral Squamous Cell Carcinoma Cell Line: A Preliminary Study. Asian Pac J Cancer Prev 2020;21:3-6. [PMID: 31983155 DOI: 10.31557/APJCP.2020.21.1.3] [Reference Citation Analysis]
6 Kreider-letterman G, Carr NM, Garcia-mata R. Fixing the GAP: the role of RhoGAPs in cancer. European Journal of Cell Biology 2022. [DOI: 10.1016/j.ejcb.2022.151209] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Kitai Y, Ishiura M, Saitoh K, Matsumoto N, Owashi K, Yamada S, Muromoto R, Kashiwakura JI, Oritani K, Matsuda T. CD47 promotes T-cell lymphoma metastasis by up-regulating AKAP13-mediated RhoA activation. Int Immunol 2021;33:273-80. [PMID: 33406263 DOI: 10.1093/intimm/dxab002] [Reference Citation Analysis]
8 Wang M, Chen B, Zhang W, Zhang F, Qiu Y, Lin Y, Yang S. Dematin inhibits glioblastoma malignancy through RhoA-mediated CDKs downregulation and cytoskeleton remodeling. Exp Cell Res 2022;:113196. [PMID: 35561787 DOI: 10.1016/j.yexcr.2022.113196] [Reference Citation Analysis]
9 Zaoui K, Duhamel S. Colorimetric RhoB GTPase Activity Assay. Bio Protoc 2020;10:e3609. [PMID: 33659574 DOI: 10.21769/BioProtoc.3609] [Reference Citation Analysis]
10 Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020;11:581455. [PMID: 33132914 DOI: 10.3389/fphar.2020.581455] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
11 Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021;124:102-14. [PMID: 33204027 DOI: 10.1038/s41416-020-01149-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
12 Ungefroren H, Wellner UF, Keck T, Lehnert H, Marquardt JU. The Small GTPase RAC1B: A Potent Negative Regulator of-and Useful Tool to Study-TGFβ Signaling. Cancers (Basel) 2020;12:E3475. [PMID: 33266416 DOI: 10.3390/cancers12113475] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
13 Murphy NP, Binti Ahmad Mokhtar AM, Mott HR, Owen D. Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021;49:1425-42. [PMID: 34196668 DOI: 10.1042/BST20200557] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Corry J, Mott HR, Owen D. Activation of STAT transcription factors by the Rho-family GTPases. Biochem Soc Trans 2020;48:2213-27. [PMID: 32915198 DOI: 10.1042/BST20200468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020;12:E665. [PMID: 32178475 DOI: 10.3390/cancers12030665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
16 Jin X, Zhang B, Zhang H, Yu H. Smoking-associated upregulation of CBX3 suppresses ARHGAP24 expression to activate Rac1 signaling and promote tumor progression in lung adenocarcinoma. Oncogene 2021. [PMID: 34785774 DOI: 10.1038/s41388-021-02114-8] [Reference Citation Analysis]
17 Lorenzo-Martín LF, Rodríguez-Fdez S, Fabbiano S, Abad A, García-Macías MC, Dosil M, Cuadrado M, Robles-Valero J, Bustelo XR. Vav2 pharmaco-mimetic mice reveal the therapeutic value and caveats of the catalytic inactivation of a Rho exchange factor. Oncogene 2020;39:5098-111. [PMID: 32528129 DOI: 10.1038/s41388-020-1353-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
18 Ciccarelli BT, Hu T, Wang Q, Kim JJ, Whitehead IP. Examination of clinically-derived p210 BCR/ABL1 RhoGEF mutations in a murine bone marrow transplantation model of CML. Leuk Res 2020;97:106440. [PMID: 32892149 DOI: 10.1016/j.leukres.2020.106440] [Reference Citation Analysis]
19 Pei J, Kinch LN, Otwinowski Z, Grishin NV. Mutation severity spectrum of rare alleles in the human genome is predictive of disease type. PLoS Comput Biol 2020;16:e1007775. [PMID: 32413045 DOI: 10.1371/journal.pcbi.1007775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Gilad Y, Eliaz Y, Yu Y, Dean AM, Han SJ, Qin L, O'Malley BW, Lonard DM. A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Commun Biol 2021;4:399. [PMID: 33767353 DOI: 10.1038/s42003-021-01929-1] [Reference Citation Analysis]
21 Yu B, Xu L, Chen L, Wang Y, Jiang H, Wang Y, Yan Y, Luo S, Zhai Z. FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. Cell Death Dis 2020;11:652. [PMID: 32811808 DOI: 10.1038/s41419-020-02830-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Wieland A, Strissel PL, Schorle H, Bakirci E, Janzen D, Beckmann MW, Eckstein M, Dalton PD, Strick R. Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts. Cancers (Basel) 2021;13:5144. [PMID: 34680293 DOI: 10.3390/cancers13205144] [Reference Citation Analysis]
23 Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm 2022;3. [DOI: 10.1002/mco2.144] [Reference Citation Analysis]
24 Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2020;8:612728. [PMID: 33490038 DOI: 10.3389/fchem.2020.612728] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liu L, Cui J, Zhao Y, Liu X, Chen L, Xia Y, Wang Y, Chen S, Sun S, Shi B, Zou Y. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Mol Cancer 2021;20:77. [PMID: 34006303 DOI: 10.1186/s12943-021-01369-9] [Reference Citation Analysis]
26 Baker MJ, Abba MC, Garcia-Mata R, Kazanietz MG. P-REX1-Independent, Calcium-Dependent RAC1 Hyperactivation in Prostate Cancer. Cancers (Basel). 2020;12. [PMID: 32092966 DOI: 10.3390/cancers12020480] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
27 Shao FL, Liu QQ, Wang S. Identify potential miRNA-mRNA regulatory networks contributing to high-risk neuroblastoma. Invest New Drugs 2021;39:901-13. [PMID: 33666785 DOI: 10.1007/s10637-021-01064-y] [Reference Citation Analysis]
28 Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021;13:5386. [PMID: 34771549 DOI: 10.3390/cancers13215386] [Reference Citation Analysis]
29 Baker MJ, Cooke M, Kreider-Letterman G, Garcia-Mata R, Janmey PA, Kazanietz MG. Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. J Biol Chem 2020;295:13698-710. [PMID: 32817335 DOI: 10.1074/jbc.RA120.013919] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 de Curtis I. The Rac3 GTPase in Neuronal Development, Neurodevelopmental Disorders, and Cancer. Cells 2019;8:E1063. [PMID: 31514269 DOI: 10.3390/cells8091063] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
31 Niu L, Zhou Y, Zhang W, Yan Y, Ren Y. ARHGEF19 promotes the growth of breast cancer in vitro and in vivo by the MAPK pathway. Physiol Int 2021. [PMID: 34813497 DOI: 10.1556/2060.2021.00187] [Reference Citation Analysis]
32 Zhong H, Xu Y, Wang J, Cao Q, Hu L, Sun D. Overexpression of microRNA-19a-3p promotes lymph node metastasis of esophageal squamous cell carcinoma via the RAC1/CDC42-PAK1 pathway. Transl Cancer Res 2021;10:2694-706. [PMID: 35116581 DOI: 10.21037/tcr-21-254] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020;8:201. [PMID: 32322580 DOI: 10.3389/fcell.2020.00201] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
34 Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021;13:4754. [PMID: 34638240 DOI: 10.3390/cancers13194754] [Reference Citation Analysis]
35 Streit L, Brunaud L, Vitale N, Ory S, Gasman S. Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020;12:E1859. [PMID: 32664294 DOI: 10.3390/cancers12071859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Reference Citation Analysis]
37 Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022;16:25-64. [PMID: 35499121 DOI: 10.1080/19336918.2022.2055520] [Reference Citation Analysis]
38 Liu G, Li J, Zhang CY, Huang DY, Xu JW. ARHGAP20 Expression Inhibited HCC Progression by Regulating the PI3K-AKT Signaling Pathway. J Hepatocell Carcinoma 2021;8:271-84. [PMID: 33907697 DOI: 10.2147/JHC.S298554] [Reference Citation Analysis]
39 Wu J, Xu C, Guan X, Ni D, Yang X, Yang Z, Wang M. Comprehensive analysis of tumor microenvironment and identification of an immune signature to predict the prognosis and immunotherapeutic response in lung squamous cell carcinoma. Ann Transl Med 2021;9:569. [PMID: 33987267 DOI: 10.21037/atm-21-463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhang Z, Liu M, Zheng Y. Role of Rho GTPases in stem cell regulation. Biochem Soc Trans 2021;49:2941-55. [PMID: 34854916 DOI: 10.1042/BST20211071] [Reference Citation Analysis]
41 Miller KE, Kang PJ, Park HO. Regulation of Cdc42 for polarized growth in budding yeast. Microb Cell 2020;7:175-89. [PMID: 32656257 DOI: 10.15698/mic2020.07.722] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
42 Jung H, Yoon SR, Lim J, Cho HJ, Lee HG. Dysregulation of Rho GTPases in Human Cancers. Cancers (Basel) 2020;12:E1179. [PMID: 32392742 DOI: 10.3390/cancers12051179] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
43 Pancione M, Cerulo L, Remo A, Giordano G, Gutierrez-Uzquiza Á, Bragado P, Porras A. Centrosome Dynamics and Its Role in Inflammatory Response and Metastatic Process. Biomolecules 2021;11:629. [PMID: 33922633 DOI: 10.3390/biom11050629] [Reference Citation Analysis]
44 Bernal Astrain G, Nikolova M, Smith MJ. Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans 2022:BST20211166. [PMID: 35356965 DOI: 10.1042/BST20211166] [Reference Citation Analysis]
45 Magalhaes YT, Farias JO, Silva LE, Forti FL. GTPases, genome, actin: A hidden story in DNA damage response and repair mechanisms. DNA Repair (Amst) 2021;100:103070. [PMID: 33618126 DOI: 10.1016/j.dnarep.2021.103070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Pereira De Carvalho B, Chern YJ, He J, Chan CH. The ubiquitin ligase RNF8 regulates Rho GTPases and promotes cytoskeletal changes and motility in triple-negative breast cancer cells. FEBS Lett 2021;595:241-52. [PMID: 33205415 DOI: 10.1002/1873-3468.13999] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021;9:642235. [PMID: 34124035 DOI: 10.3389/fcell.2021.642235] [Reference Citation Analysis]
48 Kaushik P, Curell RV, Henry M, Barron N, Meleady P. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Biotechnol Lett 2020;42:2523-36. [DOI: 10.1007/s10529-020-02953-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Yang YY, Yu K, Li L, Huang M, Wang Y. Proteome-wide Interrogation of Small GTPases Regulated by N6-Methyladenosine Modulators. Anal Chem 2020;92:10145-52. [PMID: 32567849 DOI: 10.1021/acs.analchem.0c02203] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Clayton NS, Ridley AJ. Targeting Rho GTPase Signaling Networks in Cancer. Front Cell Dev Biol 2020;8:222. [PMID: 32309283 DOI: 10.3389/fcell.2020.00222] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 15.5] [Reference Citation Analysis]
51 Zhan F, He T, Chen Z, Zuo Q, Wang Y, Li Q, Zhong S, Ou Y. RhoA enhances osteosarcoma resistance to MPPa-PDT via the Hippo/YAP signaling pathway. Cell Biosci 2021;11:179. [PMID: 34627383 DOI: 10.1186/s13578-021-00690-6] [Reference Citation Analysis]
52 El-Mais N, Fakhoury I, Al Haddad M, Nohra S, Abi-Habib R, El-Sibai M. Human Recombinant Arginase I [HuArgI(Co)-PEG5000]-Induced Arginine Depletion Inhibits Pancreatic Cancer Cell Migration and Invasion Through Autophagy. Pancreas 2021;50:1187-94. [PMID: 34714283 DOI: 10.1097/MPA.0000000000001891] [Reference Citation Analysis]
53 Tameni A, Sauta E, Mularoni V, Torricelli F, Manzotti G, Inghirami G, Bellazzi R, Fragliasso V, Ciarrocchi A. The DNA-helicase HELLS drives ALK- ALCL proliferation by the transcriptional control of a cytokinesis-related program. Cell Death Dis 2021;12:130. [PMID: 33504766 DOI: 10.1038/s41419-021-03425-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Mei C, Liu C, Gao Y, Dai WT, Zhang W, Li X, Liu ZQ. eIF3a Regulates Colorectal Cancer Metastasis via Translational Activation of RhoA and Cdc42. Front Cell Dev Biol 2022;10:794329. [PMID: 35300416 DOI: 10.3389/fcell.2022.794329] [Reference Citation Analysis]