BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang M, Xu B, Li X, Shang Y, Chu Y, Wang W, Chen D, Wu N, Hu S, Zhang S, Li M, Wu K, Yang X, Liang J, Nie Y, Fan D. O-GlcNAcylation promotes colorectal cancer metastasis via the miR-101-O-GlcNAc/EZH2 regulatory feedback circuit. Oncogene. 2019;38:301-316. [PMID: 30093632 DOI: 10.1038/s41388-018-0435-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Sheraj I, Guray NT, Banerjee S. A pan-cancer transcriptomic study showing tumor specific alterations in central metabolism. Sci Rep 2021;11:13637. [PMID: 34211032 DOI: 10.1038/s41598-021-93003-3] [Reference Citation Analysis]
2 Fu Y, Ning L, Feng J, Yu X, Guan F, Li X. Dynamic regulation of O-GlcNAcylation and phosphorylation on STAT3 under hypoxia-induced EMT. Cellular Signalling 2022. [DOI: 10.1016/j.cellsig.2022.110277] [Reference Citation Analysis]
3 King DT, Males A, Davies GJ, Vocadlo DJ. Molecular mechanisms regulating O-linked N-acetylglucosamine (O-GlcNAc)-processing enzymes. Curr Opin Chem Biol 2019;53:131-44. [PMID: 31654859 DOI: 10.1016/j.cbpa.2019.09.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
4 Liu Y, Yao RZ, Lian S, Liu P, Hu YJ, Shi HZ, Lv HM, Yang YY, Xu B, Li SZ. O-GlcNAcylation: the "stress and nutrition receptor" in cell stress response. Cell Stress Chaperones 2021;26:297-309. [PMID: 33159661 DOI: 10.1007/s12192-020-01177-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Luanpitpong S, Rodboon N, Samart P, Vinayanuwattikun C, Klamkhlai S, Chanvorachote P, Rojanasakul Y, Issaragrisil S. A novel TRPM7/O-GlcNAc axis mediates tumour cell motility and metastasis by stabilising c-Myc and caveolin-1 in lung carcinoma. Br J Cancer 2020;123:1289-301. [PMID: 32684624 DOI: 10.1038/s41416-020-0991-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Li XN, Wang ZJ, Ye CX, Zhao BC, Huang XX, Yang L. Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer. Biomed Pharmacother. 2019;112:108611. [PMID: 30797148 DOI: 10.1016/j.biopha.2019.108611] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 16.7] [Reference Citation Analysis]
7 Yu M, Chu S, Fei B, Fang X, Liu Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp Cell Res. 2019;382:111464. [PMID: 31202709 DOI: 10.1016/j.yexcr.2019.06.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
8 Sasaki M, Ishikawa T, Ishiguro M, Okazaki S, Yamauchi S, Kikuchi A, Matsuyama T, Kawada K, Tokunaga M, Uetake H, Kinugasa Y. The effectiveness of plasma miR-33a-5p as a predictive biomarker for the efficacy of colorectal cancer chemotherapy. Oncol Lett 2021;21:489. [PMID: 33968205 DOI: 10.3892/ol.2021.12749] [Reference Citation Analysis]
9 Quik M, Hokke CH, Everts B. The role of O-GlcNAcylation in immunity against infections. Immunology 2020;161:175-85. [PMID: 32740921 DOI: 10.1111/imm.13245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Zhang T, Gong Y, Meng H, Li C, Xue L. Symphony of epigenetic and metabolic regulation-interaction between the histone methyltransferase EZH2 and metabolism of tumor. Clin Epigenetics 2020;12:72. [PMID: 32448308 DOI: 10.1186/s13148-020-00862-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
11 Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020;11:605263. [PMID: 33329753 DOI: 10.3389/fgene.2020.605263] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
12 Lam C, Low JY, Tran PT, Wang H. The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett 2021;503:11-8. [PMID: 33484754 DOI: 10.1016/j.canlet.2021.01.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sun L, Lv S, Song T. O-GlcNAcylation links oncogenic signals and cancer epigenetics. Discov Onc 2021;12. [DOI: 10.1007/s12672-021-00450-5] [Reference Citation Analysis]
14 Vekic J, Zeljkovic A, Stefanovic A, Giglio RV, Ciaccio M, Rizzo M. Diabetes and Colorectal Cancer Risk: A New Look at Molecular Mechanisms and Potential Role of Novel Antidiabetic Agents. Int J Mol Sci 2021;22:12409. [PMID: 34830295 DOI: 10.3390/ijms222212409] [Reference Citation Analysis]
15 Chen Y, Ren B, Yang J, Wang H, Yang G, Xu R, You L, Zhao Y. The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduct Target Ther 2020;5:143. [PMID: 32747629 DOI: 10.1038/s41392-020-00252-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
16 Li Z, Sun X. Non-Coding RNAs Operate in the Crosstalk Between Cancer Metabolic Reprogramming and Metastasis. Front Oncol 2020;10:810. [PMID: 32547948 DOI: 10.3389/fonc.2020.00810] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Xiao L, Wang W, Zhao J, Xu H, Li S, Yang X. lncRNA MALAT1 promotes cell proliferation and invasion by regulating the miR-101/EZH2 axis in oral squamous cell carcinoma. Oncol Lett 2020;20:164. [PMID: 32934732 DOI: 10.3892/ol.2020.12024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 dos Passos Junior RR, Bomfim GF, Giachini FR, Tostes RC, Lima VV. O-Linked β-N-Acetylglucosamine Modification: Linking Hypertension and the Immune System. Front Immunol 2022;13:852115. [DOI: 10.3389/fimmu.2022.852115] [Reference Citation Analysis]
19 Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021;121:1513-81. [DOI: 10.1021/acs.chemrev.0c00884] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
20 Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, Ninniri MC, Carru C, Porcu A, Pira G, Uva P, Cossu-Rocca P, De Miglio MR. Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. Int J Mol Sci 2021;22:1603. [PMID: 33562604 DOI: 10.3390/ijms22041603] [Reference Citation Analysis]
21 Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021;9:772542. [PMID: 34938735 DOI: 10.3389/fcell.2021.772542] [Reference Citation Analysis]
22 Phillips RM, Lam C, Wang H, Tran PT. Bittersweet tumor development and progression: Emerging roles of epithelial plasticity glycosylations. Adv Cancer Res 2019;142:23-62. [PMID: 30885363 DOI: 10.1016/bs.acr.2019.01.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
23 Thu CT, Mahal LK. Sweet Control: MicroRNA Regulation of the Glycome. Biochemistry 2020;59:3098-110. [PMID: 31585501 DOI: 10.1021/acs.biochem.9b00784] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
24 Li X, Wu Z, He J, Jin Y, Chu C, Cao Y, Gu F, Wang H, Hou C, Liu X, Zou Q. OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene 2021;40:4859-71. [PMID: 34155345 DOI: 10.1038/s41388-021-01901-7] [Reference Citation Analysis]
25 Pucci M, Malagolini N, Dall'Olio F. Glycobiology of the Epithelial to Mesenchymal Transition. Biomedicines 2021;9:770. [PMID: 34356834 DOI: 10.3390/biomedicines9070770] [Reference Citation Analysis]
26 Cao Y, Chen X, Sun H. Silencing of O-linked N-acetylglucosamine transferase ameliorates hypercalcemia-induced neurotoxicity in renal failure by regulating EZH2/KLF2/CXCL1 axis. Cell Death Dis 2021;12:819. [PMID: 34462420 DOI: 10.1038/s41419-021-04022-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Wu D, Jin J, Qiu Z, Liu D, Luo H. Functional Analysis of O-GlcNAcylation in Cancer Metastasis. Front Oncol 2020;10:585288. [PMID: 33194731 DOI: 10.3389/fonc.2020.585288] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Wei C, Lei L, Hui H, Tao Z. MicroRNA-124 regulates TRAF6 expression and functions as an independent prognostic factor in colorectal cancer. Oncol Lett 2019;18:856-63. [PMID: 31289563 DOI: 10.3892/ol.2019.10358] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
29 Netsirisawan P, Chokchaichamnankit D, Saharat K, Srisomsap C, Svasti J, Champattanachai V. Quantitative proteomic analysis of the association between decreasing O‑GlcNAcylation and metastasis in MCF‑7 breast cancer cells. Int J Oncol 2020;56:1387-404. [PMID: 32236627 DOI: 10.3892/ijo.2020.5022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Zhou Z, Xu H, Duan Y, Liu B. MicroRNA-101 suppresses colorectal cancer progression by negative regulation of Rap1b. Oncol Lett 2020;20:2225-31. [PMID: 32782539 DOI: 10.3892/ol.2020.11791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Fernández-Ponce C, Geribaldi-Doldán N, Sánchez-Gomar I, Quiroz RN, Ibarra LA, Escorcia LG, Fernández-Cisnal R, Martinez GA, García-Cózar F, Quiroz EN. The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci 2021;22:5822. [PMID: 34070747 DOI: 10.3390/ijms22115822] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Xiao L, Hou Y, He H, Cheng S, Hou Y, Jin H, Song X, Nie G, Hou Y. A novel targeted delivery system for drug-resistant hepatocellular carcinoma therapy. Nanoscale 2020;12:17029-44. [PMID: 32780053 DOI: 10.1039/d0nr01908a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Naka Y, Okada T, Nakagawa T, Kobayashi E, Kawasaki Y, Tanaka Y, Tawa H, Hirata Y, Kawakami K, Kakimoto K, Inoue T, Takeuchi T, Fukunishi S, Hirose Y, Uchiyama K, Asahi M, Higuchi K. Enhancement of O-linked N-acetylglucosamine modification promotes metastasis in patients with colorectal cancer and concurrent type 2 diabetes mellitus. Oncol Lett 2020;20:1171-8. [PMID: 32724357 DOI: 10.3892/ol.2020.11665] [Reference Citation Analysis]
34 Seo J, Park YS, Kweon TH, Kang J, Son S, Kim HB, Seo YR, Kang MJ, Yi EC, Lee YH, Kim JH, Park B, Yang WH, Cho JW. O-Linked N-Acetylglucosamine Modification of Mitochondrial Antiviral Signaling Protein Regulates Antiviral Signaling by Modulating Its Activity. Front Immunol 2020;11:589259. [PMID: 33603735 DOI: 10.3389/fimmu.2020.589259] [Reference Citation Analysis]
35 Liu J, Hao Y, Wang C, Jin Y, Yang Y, Gu J, Chen X. An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis. ACS Chem Biol 2022. [PMID: 35254053 DOI: 10.1021/acschembio.1c00981] [Reference Citation Analysis]
36 Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2021;101:427-93. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
37 Fang N, Li P. O-linked N-acetylglucosaminyltransferase OGT inhibits diabetic nephropathy by stabilizing histone methyltransferases EZH2 via the HES1/PTEN axis. Life Sci 2021;274:119226. [PMID: 33609540 DOI: 10.1016/j.lfs.2021.119226] [Reference Citation Analysis]
38 Butler AA, Sanchez RG, Jarome TJ, Webb WM, Lubin FD. O-GlcNAc and EZH2-mediated epigenetic regulation of gene expression during consolidation of fear memories. Learn Mem 2019;26:373-9. [PMID: 31416910 DOI: 10.1101/lm.049023.118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
39 Zheng W, Li H, Zhang H, Zhang C, Zhu Z, Liang H, Zhou Y. Long noncoding RNA RHPN1-AS1 promotes colorectal cancer progression via targeting miR-7-5p/OGT axis. Cancer Cell Int 2020;20:54. [PMID: 32099527 DOI: 10.1186/s12935-020-1110-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
40 Huang T, Meng F, Huang H, Wang L, Wang L, Liu Y, Liu Y, Wang J, Li W, Zhang J, Liu Y. GALNT8 suppresses breast cancer cell metastasis potential by regulating EGFR O-GalNAcylation. Biochemical and Biophysical Research Communications 2022. [DOI: 10.1016/j.bbrc.2022.02.072] [Reference Citation Analysis]
41 Zhu Y, Hart GW. Nutrient regulation of the flow of genetic information by O-GlcNAcylation. Biochem Soc Trans 2021;49:867-80. [PMID: 33769449 DOI: 10.1042/BST20200769] [Reference Citation Analysis]
42 Xu Z, Isaji T, Fukuda T, Wang Y, Gu J. O-GlcNAcylation regulates integrin-mediated cell adhesion and migration via formation of focal adhesion complexes. J Biol Chem 2019;294:3117-24. [PMID: 30587575 DOI: 10.1074/jbc.RA118.005923] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
43 Decourcelle A, Leprince D, Dehennaut V. Regulation of Polycomb Repression by O-GlcNAcylation: Linking Nutrition to Epigenetic Reprogramming in Embryonic Development and Cancer. Front Endocrinol (Lausanne) 2019;10:117. [PMID: 30873122 DOI: 10.3389/fendo.2019.00117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
44 Liu Y, Peng FX. Research progress on O-GlcNAcylation in the occurrence, development, and treatment of colorectal cancer. World J Gastrointest Surg 2021; 13(2): 96-115 [PMID: 33643531 DOI: 10.4240/wjgs.v13.i2.96] [Reference Citation Analysis]
45 Lai X, Li Q, Wu F, Lin J, Chen J, Zheng H, Guo L. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Front Cell Dev Biol 2020;8:760. [PMID: 32850862 DOI: 10.3389/fcell.2020.00760] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
46 Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, Giri B, Ferrantella A, Dudeja V, Saluja A, Banerjee S. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest 2020;130:451-65. [PMID: 31613799 DOI: 10.1172/JCI127515] [Cited by in Crossref: 39] [Cited by in F6Publishing: 22] [Article Influence: 19.5] [Reference Citation Analysis]
47 Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer. Cancers (Basel) 2021;13:5365. [PMID: 34771527 DOI: 10.3390/cancers13215365] [Reference Citation Analysis]
48 Liu R, Gou D, Xiang J, Pan X, Gao Q, Zhou P, Liu Y, Hu J, Wang K, Tang N. O-GlcNAc modified-TIP60/KAT5 is required for PCK1 deficiency-induced HCC metastasis. Oncogene 2021. [PMID: 34650217 DOI: 10.1038/s41388-021-02058-z] [Reference Citation Analysis]
49 Li R, Li Y, Tian M, Zhang H, Lou L, Liu K, Zhang J, Zhao Y, Zhang J, Le S, Fu X, Zhou Y, Li W, Gao X, Nie Y. Comparative proteomic profiling reveals a pathogenic role for the O-GlcNAcylated AIMP2-PARP1 complex in aging-related hepatic steatosis in mice. FEBS Lett 2021. [PMID: 34817071 DOI: 10.1002/1873-3468.14242] [Reference Citation Analysis]
50 Guo K, Qian K, Shi Y, Sun T, Wang Z. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis 2021;12:1097. [PMID: 34811354 DOI: 10.1038/s41419-021-04386-0] [Reference Citation Analysis]