BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat Rev Microbiol 2017;15:711-23. [DOI: 10.1038/nrmicro.2017.133] [Cited by in Crossref: 218] [Cited by in F6Publishing: 163] [Article Influence: 43.6] [Reference Citation Analysis]
Number Citing Articles
1 Kraus F, Roy K, Pucadyil TJ, Ryan MT. Function and regulation of the divisome for mitochondrial fission. Nature 2021;590:57-66. [PMID: 33536648 DOI: 10.1038/s41586-021-03214-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
2 O’malley MA, Leger MM, Wideman JG, Ruiz-trillo I. Concepts of the last eukaryotic common ancestor. Nat Ecol Evol 2019;3:338-44. [DOI: 10.1038/s41559-019-0796-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
3 Waltz F, Giegé P. Striking Diversity of Mitochondria-Specific Translation Processes across Eukaryotes. Trends Biochem Sci 2020;45:149-62. [PMID: 31780199 DOI: 10.1016/j.tibs.2019.10.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
4 York A. New data for the tree of life. Nat Rev Microbiol 2020;18:63. [PMID: 31844163 DOI: 10.1038/s41579-019-0317-z] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Long X, Xue H, Wong JT. Descent of Bacteria and Eukarya From an Archaeal Root of Life. Evol Bioinform Online 2020;16:1176934320908267. [PMID: 32636606 DOI: 10.1177/1176934320908267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
6 Sojo V. Why the Lipid Divide? Membrane Proteins as Drivers of the Split between the Lipids of the Three Domains of Life. Bioessays 2019;41:e1800251. [PMID: 30970170 DOI: 10.1002/bies.201800251] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
7 Henneman B, Brouwer TB, Erkelens AM, Kuijntjes GJ, van Emmerik C, van der Valk RA, Timmer M, Kirolos NCS, van Ingen H, van Noort J, Dame RT. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res 2021;49:4338-49. [PMID: 33341892 DOI: 10.1093/nar/gkaa1196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Hu W, Pan J, Wang B, Guo J, Li M, Xu M. Metagenomic insights into the metabolism and evolution of a new Thermoplasmata order (Candidatus Gimiplasmatales). Environ Microbiol 2021;23:3695-709. [PMID: 33295091 DOI: 10.1111/1462-2920.15349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M, Matsui Y, Miyazaki M, Murata K, Saito Y, Sakai S, Song C, Tasumi E, Yamanaka Y, Yamaguchi T, Kamagata Y, Tamaki H, Takai K. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020;577:519-25. [PMID: 31942073 DOI: 10.1038/s41586-019-1916-6] [Cited by in Crossref: 195] [Cited by in F6Publishing: 125] [Article Influence: 97.5] [Reference Citation Analysis]
10 Bowerman S, Wereszczynski J, Luger K. Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways. Elife 2021;10:e65587. [PMID: 33650488 DOI: 10.7554/eLife.65587] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
11 Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HMI, Peichl L, Meimann S, Casewell NR, Henkel CV, Richardson MK, Sanders KL, Simões BF. Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake. Genome Biol Evol 2021;13:evab253. [PMID: 34791190 DOI: 10.1093/gbe/evab253] [Reference Citation Analysis]
12 Watson A, Habib M, Bapteste E. Phylosystemics: Merging Phylogenomics, Systems Biology, and Ecology to Study Evolution. Trends in Microbiology 2020;28:176-90. [DOI: 10.1016/j.tim.2019.10.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Husnik F, Keeling PJ. The fate of obligate endosymbionts: reduction, integration, or extinction. Current Opinion in Genetics & Development 2019;58-59:1-8. [DOI: 10.1016/j.gde.2019.07.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
14 de Mendoza A, Sebé-Pedrós A. Origin and evolution of eukaryotic transcription factors. Curr Opin Genet Dev 2019;58-59:25-32. [PMID: 31466037 DOI: 10.1016/j.gde.2019.07.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Avcı B, Brandt J, Nachmias D, Elia N, Albertsen M, Ettema TJG, Schramm A, Kjeldsen KU. Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME J 2021. [PMID: 34465898 DOI: 10.1038/s41396-021-01098-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Coleman GA, Pancost RD, Williams TA. Investigating the Origins of Membrane Phospholipid Biosynthesis Genes Using Outgroup-Free Rooting. Genome Biol Evol 2019;11:883-98. [PMID: 30753429 DOI: 10.1093/gbe/evz034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
17 Hu H, Natarajan VP, Wang F. Towards enriching and isolation of uncultivated archaea from marine sediments using a refined combination of conventional microbial cultivation methods. Mar Life Sci Technol 2021;3:231-42. [DOI: 10.1007/s42995-021-00092-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Akıl C, Tran LT, Orhant-Prioux M, Baskaran Y, Manser E, Blanchoin L, Robinson RC. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc Natl Acad Sci U S A 2020;117:19904-13. [PMID: 32747565 DOI: 10.1073/pnas.2009167117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
19 Drake H, Roberts NMW, Reinhardt M, Whitehouse M, Ivarsson M, Karlsson A, Kooijman E, Kielman-schmitt M. Biosignatures of ancient microbial life are present across the igneous crust of the Fennoscandian shield. Commun Earth Environ 2021;2. [DOI: 10.1038/s43247-021-00170-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Blaxter M, Archibald JM, Childers AK, Coddington JA, Crandall KA, Di Palma F, Durbin R, Edwards SV, Graves JAM, Hackett KJ, Hall N, Jarvis ED, Johnson RN, Karlsson EK, Kress WJ, Kuraku S, Lawniczak MKN, Lindblad-Toh K, Lopez JV, Moran NA, Robinson GE, Ryder OA, Shapiro B, Soltis PS, Warnow T, Zhang G, Lewin HA. Why sequence all eukaryotes? Proc Natl Acad Sci U S A 2022;119:e2115636118. [PMID: 35042801 DOI: 10.1073/pnas.2115636118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
21 Zhou Z, Liu Y, Li M, Gu JD. Two or three domains: a new view of tree of life in the genomics era. Appl Microbiol Biotechnol 2018;102:3049-58. [PMID: 29484479 DOI: 10.1007/s00253-018-8831-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
22 Friedrich VK, Rubel MA, Schurr TG. Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. Am J Hum Biol 2021;:e23629. [PMID: 34146380 DOI: 10.1002/ajhb.23629] [Reference Citation Analysis]
23 Yokono M, Satoh S, Tanaka A. Comparative analyses of whole-genome protein sequences from multiple organisms. Sci Rep 2018;8:6800. [PMID: 29717164 DOI: 10.1038/s41598-018-25090-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
24 Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, Belda-Ferre P, Al-Ghalith GA, Kopylova E, McDonald D, Kosciolek T, Yin JB, Huang S, Salam N, Jiao JY, Wu Z, Xu ZZ, Cantrell K, Yang Y, Sayyari E, Rabiee M, Morton JT, Podell S, Knights D, Li WJ, Huttenhower C, Segata N, Smarr L, Mirarab S, Knight R. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat Commun 2019;10:5477. [PMID: 31792218 DOI: 10.1038/s41467-019-13443-4] [Cited by in Crossref: 59] [Cited by in F6Publishing: 43] [Article Influence: 19.7] [Reference Citation Analysis]
25 Rogers SO. Photosynthetic Systems Suggest an Evolutionary Pathway to Diderms. Acta Biotheor 2021;69:343-58. [PMID: 33284411 DOI: 10.1007/s10441-020-09402-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Zhang C, Phillips APR, Wipfler RL, Olsen GJ, Whitaker RJ. The essential genome of the crenarchaeal model Sulfolobus islandicus. Nat Commun 2018;9:4908. [PMID: 30464174 DOI: 10.1038/s41467-018-07379-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
27 Dacks JB. Evolving eukaryotes: an interview with Joel Dacks. BMC Biol 2018;16:119. [PMID: 30382870 DOI: 10.1186/s12915-018-0586-4] [Reference Citation Analysis]
28 Kelman LM, O'Dell WB, Kelman Z. Unwinding 20 Years of the Archaeal Minichromosome Maintenance Helicase. J Bacteriol 2020;202:e00729-19. [PMID: 31907204 DOI: 10.1128/JB.00729-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Stevens KM, Swadling JB, Hocher A, Bang C, Gribaldo S, Schmitz RA, Warnecke T. Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proc Natl Acad Sci U S A 2020;117:33384-95. [PMID: 33288720 DOI: 10.1073/pnas.2007056117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
30 Schmitt E, Coureux PD, Kazan R, Bourgeois G, Lazennec-Schurdevin C, Mechulam Y. Recent Advances in Archaeal Translation Initiation. Front Microbiol 2020;11:584152. [PMID: 33072057 DOI: 10.3389/fmicb.2020.584152] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Du Toit A. Profilin(g) Asgard archaea. Nat Rev Microbiol 2018;16:717. [PMID: 30291304 DOI: 10.1038/s41579-018-0100-6] [Reference Citation Analysis]
32 Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee JH, Minh BQ, Rinke C, Spang A. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat Commun 2020;11:3939. [PMID: 32770105 DOI: 10.1038/s41467-020-17408-w] [Cited by in Crossref: 40] [Cited by in F6Publishing: 10] [Article Influence: 20.0] [Reference Citation Analysis]
33 [DOI: 10.1101/455816] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Shapiro JA. No genome is an island: toward a 21st century agenda for evolution. Ann N Y Acad Sci 2019;1447:21-52. [DOI: 10.1111/nyas.14044] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
35 Gelsinger DR, Dallon E, Reddy R, Mohammad F, Buskirk AR, DiRuggiero J. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res 2020;48:5201-16. [PMID: 32382758 DOI: 10.1093/nar/gkaa304] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
36 Caliari A, Xu J, Yomo T. The requirement of cellularity for abiogenesis. Comput Struct Biotechnol J 2021;19:2202-12. [PMID: 33995913 DOI: 10.1016/j.csbj.2021.04.030] [Reference Citation Analysis]
37 Wang X, Gu X, Li J, Yue L, Li D, Dong X. Characterization of the Methanomicrobial Archaeal RNase Zs for Processing the CCA-Containing tRNA Precursors. Front Microbiol 2020;11:1851. [PMID: 32982996 DOI: 10.3389/fmicb.2020.01851] [Reference Citation Analysis]
38 Ebright RH, Werner F, Zhang X. RNA Polymerase Reaches 60: Transcription Initiation, Elongation, Termination, and Regulation in Prokaryotes. J Mol Biol 2019;431:3945-6. [PMID: 31356803 DOI: 10.1016/j.jmb.2019.07.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Sabater-Muñoz B, Toft C. Evolution from Free-Living Bacteria to Endosymbionts of Insects: Genomic Changes and the Importance of the Chaperonin GroEL. Results Probl Cell Differ 2020;69:77-103. [PMID: 33263869 DOI: 10.1007/978-3-030-51849-3_3] [Reference Citation Analysis]
40 Martikainen PJ. Heterotrophic nitrification – An eternal mystery in the nitrogen cycle. Soil Biology and Biochemistry 2022;168:108611. [DOI: 10.1016/j.soilbio.2022.108611] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Orsi WD, Vuillemin A, Rodriguez P, Coskun ÖK, Gomez-Saez GV, Lavik G, Mohrholz V, Ferdelman TG. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol 2020;5:248-55. [PMID: 31873205 DOI: 10.1038/s41564-019-0630-3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
42 Fiore M, Buchet R. Symmetry Breaking of Phospholipids. Symmetry 2020;12:1488. [DOI: 10.3390/sym12091488] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
43 Hoshino Y, Gaucher EA. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc Natl Acad Sci U S A 2021;118:e2101276118. [PMID: 34131078 DOI: 10.1073/pnas.2101276118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
44 Tria FDK, Brueckner J, Skejo J, Xavier JC, Kapust N, Knopp M, Wimmer JLE, Nagies FSP, Zimorski V, Gould SB, Garg SG, Martin WF. Gene duplications trace mitochondria to the onset of eukaryote complexity. Genome Biol Evol 2021:evab055. [PMID: 33739376 DOI: 10.1093/gbe/evab055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
45 Subirana JA, Messeguer X. Satellites in the prokaryote world. BMC Evol Biol 2019;19:181. [PMID: 31533616 DOI: 10.1186/s12862-019-1504-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
46 Ku C, Sun TW. Did giant and large dsDNA viruses originate before their eukaryotic hosts? Proc Natl Acad Sci U S A 2020;117:2747-8. [PMID: 31992646 DOI: 10.1073/pnas.1919860117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Lingam M, Loeb A. Role of stellar physics in regulating the critical steps for life. International Journal of Astrobiology 2019;18:527-46. [DOI: 10.1017/s1473550419000016] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
48 Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. Biochim Biophys Acta Bioenerg 2021;1862:148334. [PMID: 33159845 DOI: 10.1016/j.bbabio.2020.148334] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
49 Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, Greening C, Baker BJ, Ettema TJG. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 2019;4:1138-48. [DOI: 10.1038/s41564-019-0406-9] [Cited by in Crossref: 83] [Cited by in F6Publishing: 62] [Article Influence: 27.7] [Reference Citation Analysis]
50 Narrowe AB, Spang A, Stairs CW, Caceres EF, Baker BJ, Miller CS, Ettema TJG. Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide Biosynthesis in Archaea and Parabasalids. Genome Biol Evol 2018;10:2380-93. [PMID: 30060184 DOI: 10.1093/gbe/evy154] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
51 Zabelskii D, Dmitrieva N, Volkov O, Shevchenko V, Kovalev K, Balandin T, Soloviov D, Astashkin R, Zinovev E, Alekseev A, Round E, Polovinkin V, Chizhov I, Rogachev A, Okhrimenko I, Borshchevskiy V, Chupin V, Büldt G, Yutin N, Bamberg E, Koonin E, Gordeliy V. Structure-based insights into evolution of rhodopsins. Commun Biol 2021;4:821. [PMID: 34193947 DOI: 10.1038/s42003-021-02326-4] [Reference Citation Analysis]
52 Garg SG, Kapust N, Lin W, Knopp M, Tria FDK, Nelson-Sathi S, Gould SB, Fan L, Zhu R, Zhang C, Martin WF. Anomalous Phylogenetic Behavior of Ribosomal Proteins in Metagenome-Assembled Asgard Archaea. Genome Biol Evol 2021;13:evaa238. [PMID: 33462601 DOI: 10.1093/gbe/evaa238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021;19:1335-60. [PMID: 33777334 DOI: 10.1016/j.csbj.2021.02.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
54 Duan Y, Lian J, Wang L, Wang X, Luo Y, Wang W, Wu F, Zhao J, Ding Y, Ma J, Li Y, Li Y. Variation in Soil Microbial Communities Along an Elevational Gradient in Alpine Meadows of the Qilian Mountains, China. Front Microbiol 2021;12:684386. [PMID: 34248904 DOI: 10.3389/fmicb.2021.684386] [Reference Citation Analysis]
55 Penev PI, Fakhretaha-Aval S, Patel VJ, Cannone JJ, Gutell RR, Petrov AS, Williams LD, Glass JB. Supersized Ribosomal RNA Expansion Segments in Asgard Archaea. Genome Biol Evol 2020;12:1694-710. [PMID: 32785681 DOI: 10.1093/gbe/evaa170] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Zhou L, Zhou Z, Lu Y, Ma L, Bai Y, Li X, Mbadinga SM, Liu Y, Yao X, Qiao Y, Zhang Z, Liu J, Yang S, Wang W, Gu J, Mu B. The newly proposed TACK and DPANN archaea detected in the production waters from a high-temperature petroleum reservoir. International Biodeterioration & Biodegradation 2019;143:104729. [DOI: 10.1016/j.ibiod.2019.104729] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
57 Meyer BH, Adam PS, Wagstaff BA, Kolyfetis GE, Probst AJ, Albers SV, Dorfmueller HC. Agl24 is an ancient archaeal homolog of the eukaryotic N-glycan chitobiose synthesis enzymes. Elife 2022;11:e67448. [PMID: 35394422 DOI: 10.7554/eLife.67448] [Reference Citation Analysis]
58 Raut P, Glass JB, Lieberman RL. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Proteins 2021;89:232-41. [PMID: 32935885 DOI: 10.1002/prot.26009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
59 Fournier GP, Poole AM. A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. Front Microbiol 2018;9:1896. [PMID: 30158917 DOI: 10.3389/fmicb.2018.01896] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
60 Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, Teske AP, Ettema TJG, Baker BJ. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 2019;10:1822. [PMID: 31015394 DOI: 10.1038/s41467-019-09364-x] [Cited by in Crossref: 92] [Cited by in F6Publishing: 60] [Article Influence: 30.7] [Reference Citation Analysis]
61 Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021;13:evab157. [PMID: 34247240 DOI: 10.1093/gbe/evab157] [Reference Citation Analysis]
62 Ignatz-hoover JJ, Murphy EV, Driscoll JJ. Targeting Proteasomes in Cancer and Infectious Disease: A Parallel Strategy to Treat Malignancies and Microbes. Front Cell Infect Microbiol 2022;12:925804. [DOI: 10.3389/fcimb.2022.925804] [Reference Citation Analysis]
63 Scaltsoyiannes V, Corre N, Waltz F, Giegé P. Types and Functions of Mitoribosome-Specific Ribosomal Proteins across Eukaryotes. Int J Mol Sci 2022;23:3474. [PMID: 35408834 DOI: 10.3390/ijms23073474] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Kellner S, Spang A, Offre P, Szöllősi GJ, Petitjean C, Williams TA. Genome size evolution in the Archaea. Emerg Top Life Sci 2018;2:595-605. [PMID: 33525826 DOI: 10.1042/ETLS20180021] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
65 Survery S, Hurtig F, Haq SR, Eriksson J, Guy L, Rosengren KJ, Lindås AC, Chi CN. Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun Biol 2021;4:1024. [PMID: 34471213 DOI: 10.1038/s42003-021-02543-x] [Reference Citation Analysis]
66 Akıl C, Robinson RC. Genomes of Asgard archaea encode profilins that regulate actin. Nature 2018;562:439-43. [DOI: 10.1038/s41586-018-0548-6] [Cited by in Crossref: 55] [Cited by in F6Publishing: 39] [Article Influence: 13.8] [Reference Citation Analysis]
67 Zeng Z, Liu XL, Wei JH, Summons RE, Welander PV. Calditol-linked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A 2018;115:12932-7. [PMID: 30518563 DOI: 10.1073/pnas.1814048115] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
68 Hedlund BP, Zhang C, Wang F, Rinke C, Martin WF. Editorial: Ecology, Metabolism and Evolution of Archaea-Perspectives From Proceedings of the International Workshop on Geo-Omics of Archaea. Front Microbiol 2022;12:827229. [DOI: 10.3389/fmicb.2021.827229] [Reference Citation Analysis]
69 Gaia M, Da Cunha V, Forterre P. The Tree of Life. In: Rampelotto PH, editor. Molecular Mechanisms of Microbial Evolution. Cham: Springer International Publishing; 2018. pp. 55-99. [DOI: 10.1007/978-3-319-69078-0_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Nikolayev S, Cohen-Rosenzweig C, Eichler J. Evolutionary considerations of the oligosaccharyltransferase AglB and other aspects of N-glycosylation across Archaea. Mol Phylogenet Evol 2020;153:106951. [PMID: 32889138 DOI: 10.1016/j.ympev.2020.106951] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
71 Shi Y, Fan K, Li Y, Yang T, He J, Chu H. Archaea Enhance the Robustness of Microbial Co‐occurrence Networks in Tibetan Plateau Soils. Soil Sci Soc Am j 2019;83:1093-9. [DOI: 10.2136/sssaj2018.11.0426] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
72 Gong P, Lei P, Wang S, Zeng A, Lou H. Post-Translational Modifications Aid Archaeal Survival. Biomolecules 2020;10:E584. [PMID: 32290118 DOI: 10.3390/biom10040584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
73 Rebeaud ME, Mallik S, Goloubinoff P, Tawfik DS. On the evolution of chaperones and cochaperones and the expansion of proteomes across the Tree of Life. Proc Natl Acad Sci U S A 2021;118:e2020885118. [PMID: 34001607 DOI: 10.1073/pnas.2020885118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
74 Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020;10:E1193. [PMID: 32824374 DOI: 10.3390/biom10081193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
75 Sharaf A, Vijayanathan M, Oborník M, Mozgová I. Phylogenetic profiling resolves early emergence of PRC2 and illuminates its functional core. Life Sci Alliance 2022;5:e202101271. [PMID: 35440471 DOI: 10.26508/lsa.202101271] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 [DOI: 10.1101/2019.12.25.888164] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 [DOI: 10.1101/312991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Di Giulio M. Common ancestry of eukaryotes and Asgardarchaeota: Three, two or more cellular domains of life? Journal of Theoretical Biology 2020;486:110083. [DOI: 10.1016/j.jtbi.2019.110083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
80 Hampl V, Čepička I, Eliáš M. Was the Mitochondrion Necessary to Start Eukaryogenesis? Trends Microbiol 2019;27:96-104. [PMID: 30466901 DOI: 10.1016/j.tim.2018.10.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
81 [DOI: 10.1101/527697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
82 Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019;74:223-35. [PMID: 30475385 DOI: 10.1111/all.13680] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
83 Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol 2020;30:R575-88. [PMID: 32428499 DOI: 10.1016/j.cub.2020.02.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
84 Shapiro JA. All living cells are cognitive. Biochem Biophys Res Commun 2021;564:134-49. [PMID: 32972747 DOI: 10.1016/j.bbrc.2020.08.120] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Eme L, Ettema TJG. The eukaryotic ancestor shapes up. Nature 2018;562:352-3. [DOI: 10.1038/d41586-018-06868-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
86 Oyston JW, Wilkinson M, Ruta M, Wills MA. Molecular phylogenies map to biogeography better than morphological ones. Commun Biol 2022;5:521. [PMID: 35641555 DOI: 10.1038/s42003-022-03482-x] [Reference Citation Analysis]
87 Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020;11:2060. [PMID: 32983044 DOI: 10.3389/fmicb.2020.02060] [Reference Citation Analysis]
88 Kumar PS, Dabdoub SM, Ganesan SM. Probing periodontal microbial dark matter using metataxonomics and metagenomics. Periodontol 2000 2021;85:12-27. [PMID: 33226714 DOI: 10.1111/prd.12349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
89 Drake H, Ivarsson M, Heim C, Snoeyenbos-west O, Bengtson S, Belivanova V, Whitehouse M. Fossilized anaerobic and possibly methanogenesis-fueling fungi identified deep within the Siljan impact structure, Sweden. Commun Earth Environ 2021;2. [DOI: 10.1038/s43247-021-00107-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
90 Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci U S A 2019;116:19585-92. [PMID: 31506349 DOI: 10.1073/pnas.1912006116] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 18.0] [Reference Citation Analysis]
91 Staley JT, Caetano-Anollés G. Archaea-First and the Co-Evolutionary Diversification of Domains of Life. Bioessays 2018;40:e1800036. [PMID: 29944192 DOI: 10.1002/bies.201800036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
92 White MF, Allers T. DNA repair in the archaea-an emerging picture. FEMS Microbiol Rev 2018;42:514-26. [PMID: 29741625 DOI: 10.1093/femsre/fuy020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
93 Fernie AR, Bauwe H. Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant J 2020;102:666-77. [PMID: 31904886 DOI: 10.1111/tpj.14669] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
94 Santana-Molina C, Rivas-Marin E, Rojas AM, Devos DP. Origin and Evolution of Polycyclic Triterpene Synthesis. Mol Biol Evol 2020;37:1925-41. [PMID: 32125435 DOI: 10.1093/molbev/msaa054] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
95 Neveu E, Khalifeh D, Salamin N, Fasshauer D. Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Curr Biol 2020;30:2468-2480.e5. [PMID: 32442459 DOI: 10.1016/j.cub.2020.04.060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
96 MacLeod F, Kindler GS, Wong HL, Chen R, Burns BP. Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiol 2019;5:48-61. [PMID: 31384702 DOI: 10.3934/microbiol.2019.1.48] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 11.3] [Reference Citation Analysis]
97 Choi J, Kim SH. Whole-proteome tree of life suggests a deep burst of organism diversity. Proc Natl Acad Sci U S A 2020;117:3678-86. [PMID: 32019884 DOI: 10.1073/pnas.1915766117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
98 Henneman B, van Emmerik C, van Ingen H, Dame RT. Structure and function of archaeal histones. PLoS Genet 2018;14:e1007582. [PMID: 30212449 DOI: 10.1371/journal.pgen.1007582] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
99 Blombach F, Fouqueau T, Matelska D, Smollett K, Werner F. Promoter-proximal elongation regulates transcription in archaea. Nat Commun 2021;12:5524. [PMID: 34535658 DOI: 10.1038/s41467-021-25669-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
100 Passman FJ, Küenzi P. Microbiology in Water-Miscible Metalworking Fluids. Tribology Transactions 2020;63:1147-71. [DOI: 10.1080/10402004.2020.1764684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Hendrickson HL, Poole AM. Manifold Routes to a Nucleus. Front Microbiol 2018;9:2604. [PMID: 30416499 DOI: 10.3389/fmicb.2018.02604] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
102 Río Bártulos C, Rogers MB, Williams TA, Gentekaki E, Brinkmann H, Cerff R, Liaud MF, Hehl AB, Yarlett NR, Gruber A, Kroth PG, van der Giezen M. Mitochondrial Glycolysis in a Major Lineage of Eukaryotes. Genome Biol Evol 2018;10:2310-25. [PMID: 30060189 DOI: 10.1093/gbe/evy164] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
103 Gribaldo S, Brochier-armanet C. Evolutionary relationships between Archaea and eukaryotes. Nat Ecol Evol 2020;4:20-1. [DOI: 10.1038/s41559-019-1073-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
104 Bulzu P, Andrei A, Salcher MM, Mehrshad M, Inoue K, Kandori H, Beja O, Ghai R, Banciu HL. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 2019;4:1129-37. [DOI: 10.1038/s41564-019-0404-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 16.0] [Reference Citation Analysis]
105 Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett 2019;366. [PMID: 30629179 DOI: 10.1093/femsle/fnz008] [Cited by in Crossref: 63] [Cited by in F6Publishing: 39] [Article Influence: 21.0] [Reference Citation Analysis]
106 Eichler J. N-glycosylation in Archaea-New roles for an ancient posttranslational modification. Mol Microbiol 2020;114:735-41. [PMID: 32633872 DOI: 10.1111/mmi.14569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
107 Waltz F, Salinas-Giegé T, Englmeier R, Meichel H, Soufari H, Kuhn L, Pfeffer S, Förster F, Engel BD, Giegé P, Drouard L, Hashem Y. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nat Commun 2021;12:7176. [PMID: 34887394 DOI: 10.1038/s41467-021-27200-z] [Reference Citation Analysis]
108 Maupin-Furlow JA. Methionine Sulfoxide Reductases of Archaea. Antioxidants (Basel) 2018;7:E124. [PMID: 30241308 DOI: 10.3390/antiox7100124] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
109 Baehren C, Buedding E, Bellm A, Schult F, Pembaur A, Wirth S, Ehrhardt A, Paulsen F, Postberg J, Aydin M. The Relevance of the Bacterial Microbiome, Archaeome and Mycobiome in Pediatric Asthma and Respiratory Disorders. Cells 2022;11:1287. [DOI: 10.3390/cells11081287] [Reference Citation Analysis]
110 Russum S, Lam KJK, Wong NA, Iddamsetty V, Hendargo KJ, Wang J, Dubey A, Zhang Y, Medrano-Soto A, Saier MH Jr. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS One 2021;16:e0247806. [PMID: 33770091 DOI: 10.1371/journal.pone.0247806] [Reference Citation Analysis]
111 Porter SM. Insights into eukaryogenesis from the fossil record. Interface Focus 2020;10:20190105. [PMID: 32642050 DOI: 10.1098/rsfs.2019.0105] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
112 Brandeis M. Were eukaryotes made by sex?: Sex might have been vital for merging endosymbiont and host genomes giving rise to eukaryotes. Bioessays 2021;43:e2000256. [PMID: 33860546 DOI: 10.1002/bies.202000256] [Reference Citation Analysis]
113 Bang C, Schmitz RA. Archaea: forgotten players in the microbiome. Emerg Top Life Sci 2018;2:459-68. [PMID: 33525830 DOI: 10.1042/ETLS20180035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
114 Li L, Ma ZS. Species Sorting and Neutral Theory Analyses Reveal Archaeal and Bacterial Communities Are Assembled Differently in Hot Springs. Front Bioeng Biotechnol 2020;8:464. [PMID: 32548097 DOI: 10.3389/fbioe.2020.00464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019;248:634-56. [PMID: 31063648 DOI: 10.1002/dvdy.45] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
116 Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020;77:3503-23. [PMID: 32008087 DOI: 10.1007/s00018-020-03462-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
117 Hove-Jensen B, Brodersen DE, Manav MC. The Prodigal Compound: Return of Ribosyl 1,5-Bisphosphate as an Important Player in Metabolism. Microbiol Mol Biol Rev 2019;83:e00040-18. [PMID: 30567937 DOI: 10.1128/MMBR.00040-18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
118 Nobs SJ, MacLeod FI, Wong HL, Burns BP. Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life? Trends Microbiol 2021:S0966-842X(21)00269-9. [PMID: 34863611 DOI: 10.1016/j.tim.2021.11.003] [Reference Citation Analysis]
119 Edgar JA. L-ascorbic acid and the evolution of multicellular eukaryotes. Journal of Theoretical Biology 2019;476:62-73. [DOI: 10.1016/j.jtbi.2019.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
120 Nasir A, Mughal F, Caetano-Anollés G. The tree of life describes a tripartite cellular world. Bioessays 2021;43:e2000343. [PMID: 33837594 DOI: 10.1002/bies.202000343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
121 Baluška F, Lyons S. Energide-cell body as smallest unit of eukaryotic life. Ann Bot 2018;122:741-5. [PMID: 29474513 DOI: 10.1093/aob/mcy022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
122 Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim Biophys Acta Mol Cell Res 2021;1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
123 Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018;34:1038-55. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
124 Fiore M, Chieffo C, Lopez A, Fayolle D, Ruiz J, Soulère L, Oger P, Altamura E, Popowycz F, Buchet R. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. Astrobiology 2022. [PMID: 35196460 DOI: 10.1089/ast.2021.0059] [Reference Citation Analysis]
125 Susko E, Steel M, Roger AJ. Conditions under which distributions of edge length ratios on phylogenetic trees can be used to order evolutionary events. J Theor Biol 2021;526:110788. [PMID: 34097914 DOI: 10.1016/j.jtbi.2021.110788] [Reference Citation Analysis]
126 Blombach F, Matelska D, Fouqueau T, Cackett G, Werner F. Key Concepts and Challenges in Archaeal Transcription. J Mol Biol 2019;431:4184-201. [PMID: 31260691 DOI: 10.1016/j.jmb.2019.06.020] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
127 Bell PJ. Evidence supporting a viral origin of the eukaryotic nucleus. Virus Research 2020;289:198168. [DOI: 10.1016/j.virusres.2020.198168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
128 Damiati S, Schuster B. Electrochemical Biosensors Based on S-Layer Proteins. Sensors (Basel) 2020;20:E1721. [PMID: 32204503 DOI: 10.3390/s20061721] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
129 Yue L, Li J, Zhang B, Qi L, Li Z, Zhao F, Li L, Zheng X, Dong X. The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3'-end cleavage mode. Nucleic Acids Res 2020;48:9589-605. [PMID: 32857850 DOI: 10.1093/nar/gkaa702] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
130 Parra FL, Caimi AT, Altube MJ, Cargnelutti DE, Vermeulen ME, de Farias MA, Portugal RV, Morilla MJ, Romero EL. Make It Simple: (SR-A1+TLR7) Macrophage Targeted NANOarchaeosomes. Front Bioeng Biotechnol 2018;6:163. [PMID: 30460231 DOI: 10.3389/fbioe.2018.00163] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
131 Liu Y, Makarova KS, Huang WC, Wolf YI, Nikolskaya AN, Zhang X, Cai M, Zhang CJ, Xu W, Luo Z, Cheng L, Koonin EV, Li M. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021;593:553-7. [PMID: 33911286 DOI: 10.1038/s41586-021-03494-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
132 Mallik S, Tawfik DS. Determining the interaction status and evolutionary fate of duplicated homomeric proteins. PLoS Comput Biol 2020;16:e1008145. [PMID: 32853212 DOI: 10.1371/journal.pcbi.1008145] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
133 De Anda V, Chen LX, Dombrowski N, Hua ZS, Jiang HC, Banfield JF, Li WJ, Baker BJ. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nat Commun 2021;12:2404. [PMID: 33893309 DOI: 10.1038/s41467-021-22736-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Cohen PA, Kodner RB. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol Evol 2021:S0169-5347(21)00308-6. [PMID: 34949483 DOI: 10.1016/j.tree.2021.11.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Kaushik V, Anchal, Goel M. Characterization of Cyclophilin from Thaumarchaeota Nitrosopumilus maritimus: Implications on the Diversity of Chaperone-like Activity in the Archaeal Domain. ACS Omega 2022;7:70-84. [PMID: 35036680 DOI: 10.1021/acsomega.1c03216] [Reference Citation Analysis]
136 Rambo IM, Langwig MV, Leão P, De Anda V, Baker BJ. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat Microbiol 2022;7:953-61. [PMID: 35760837 DOI: 10.1038/s41564-022-01150-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
137 Tamarit D, Caceres EF, Krupovic M, Nijland R, Eme L, Robinson NP, Ettema TJG. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat Microbiol 2022;7:948-52. [PMID: 35760836 DOI: 10.1038/s41564-022-01122-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
138 Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Erratum: Archaea and the origin of eukaryotes. Nat Rev Microbiol 2018;16:120-120. [DOI: 10.1038/nrmicro.2017.154] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 4.4] [Reference Citation Analysis]
139 Muñoz-Gómez SA, Susko E, Williamson K, Eme L, Slamovits CH, Moreira D, López-García P, Roger AJ. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol 2022. [PMID: 35027725 DOI: 10.1038/s41559-021-01638-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
140 Hoshino Y, Gaucher EA. On the Origin of Isoprenoid Biosynthesis. Mol Biol Evol 2018;35:2185-97. [PMID: 29905874 DOI: 10.1093/molbev/msy120] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
141 Raina JB, Eme L, Pollock FJ, Spang A, Archibald JM, Williams TA. Symbiosis in the microbial world: from ecology to genome evolution. Biol Open 2018;7:bio032524. [PMID: 29472284 DOI: 10.1242/bio.032524] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
142 Kumar V, Sarma VV, Thambugala KM, Huang JJ, Li XY, Hao GF. Ecology and Evolution of Marine Fungi With Their Adaptation to Climate Change. Front Microbiol 2021;12:719000. [PMID: 34512597 DOI: 10.3389/fmicb.2021.719000] [Reference Citation Analysis]
143 Inturi R, Lara S, Derweesh M, Chi CN. Structural Characterization of a Thorarchaeota Profilin Indicates Eukaryotic‐Like Features but with an Extended N‐Terminus. Advanced Biology. [DOI: 10.1002/adbi.202101323] [Reference Citation Analysis]
144 Knopp M, Stockhorst S, van der Giezen M, Garg SG, Gould SB. The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3. Genome Biol Evol 2021;13:evab085. [PMID: 33892498 DOI: 10.1093/gbe/evab085] [Reference Citation Analysis]
145 Banciu HL, Gridan IM, Zety AV, Baricz A. Asgard archaea in saline environments. Extremophiles 2022;26:21. [PMID: 35761090 DOI: 10.1007/s00792-022-01266-z] [Reference Citation Analysis]
146 Harmer J, Yurchenko V, Nenarokova A, Lukeš J, Ginger ML. Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018;145:1311-23. [PMID: 29895336 DOI: 10.1017/S0031182018000781] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
147 Van Holle S, Van Damme EJM. Messages From the Past: New Insights in Plant Lectin Evolution. Front Plant Sci 2019;10:36. [PMID: 30761173 DOI: 10.3389/fpls.2019.00036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
148 Villanueva L, von Meijenfeldt FAB, Westbye AB, Yadav S, Hopmans EC, Dutilh BE, Damsté JSS. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J 2021;15:168-82. [PMID: 32929208 DOI: 10.1038/s41396-020-00772-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
149 Erwin DH. Tempos and modes of collectivity in the history of life. Theory Biosci 2019. [PMID: 31529373 DOI: 10.1007/s12064-019-00303-4] [Reference Citation Analysis]
150 Wenck BR, Santangelo TJ. Archaeal transcription. Transcription 2020;11:199-210. [PMID: 33112729 DOI: 10.1080/21541264.2020.1838865] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
151 Stairs CW, Ettema TJ. The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton. Current Biology 2020;30:R521-6. [DOI: 10.1016/j.cub.2020.02.074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
152 Zhang L, Jiang D, Wu M, Yang Z, Oger PM. New Insights Into DNA Repair Revealed by NucS Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2020;11:1263. [PMID: 32714287 DOI: 10.3389/fmicb.2020.01263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
153 Roger AJ, Susko E, Leger MM. Evolution: Reconstructing the Timeline of Eukaryogenesis. Curr Biol 2021;31:R193-6. [PMID: 33621507 DOI: 10.1016/j.cub.2020.12.035] [Reference Citation Analysis]
154 Robinson NP. Archaea, from obscurity to superhero microbes: 40 years of surprises and critical biological insights. Emerg Top Life Sci 2018;2:453-8. [PMID: 33525822 DOI: 10.1042/ETLS20180022] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
155 Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Heras-Márquez D, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Structural foundations of sticholysin functionality. Biochim Biophys Acta Proteins Proteom 2021;1869:140696. [PMID: 34246789 DOI: 10.1016/j.bbapap.2021.140696] [Reference Citation Analysis]
156 Chen J, Wang N. Tissue cell differentiation and multicellular evolution via cytoskeletal stiffening in mechanically stressed microenvironments. Acta Mech Sin 2019;35:270-4. [PMID: 31736534 DOI: 10.1007/s10409-018-0814-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
157 Verma D, Kumar V, Satyanarayana T. Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022;38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Reference Citation Analysis]
158 Sanders TJ, Marshall CJ, Santangelo TJ. The Role of Archaeal Chromatin in Transcription. J Mol Biol 2019;431:4103-15. [PMID: 31082442 DOI: 10.1016/j.jmb.2019.05.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
159 Williams TA, Schrempf D, Szöllősi GJ, Cox CJ, Foster PG, Embley TM. Inferring the deep past from molecular data. Genome Biol Evol 2021:evab067. [PMID: 33772552 DOI: 10.1093/gbe/evab067] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
160 Aouad M, Flandrois JP, Jauffrit F, Gouy M, Gribaldo S, Brochier-Armanet C. A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea. BMC Ecol Evol 2022;22:1. [PMID: 34986784 DOI: 10.1186/s12862-021-01952-0] [Reference Citation Analysis]
161 Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022;298:101984. [PMID: 35487246 DOI: 10.1016/j.jbc.2022.101984] [Reference Citation Analysis]
162 Lewis WH, Ettema TJG. A microbial marriage reminiscent of mitochondrial evolution. Nature 2021;591:375-6. [PMID: 33658670 DOI: 10.1038/d41586-021-00500-6] [Reference Citation Analysis]
163 Sandmann G. Carotenoids and Their Biosynthesis in Fungi. Molecules 2022;27:1431. [PMID: 35209220 DOI: 10.3390/molecules27041431] [Reference Citation Analysis]
164 Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochimica et Biophysica Acta (BBA) - General Subjects 2018;1862:2451-62. [DOI: 10.1016/j.bbagen.2018.04.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
165 Yen CY, Lin MG, Chen BW, Ng IW, Read N, Kabli AF, Wu CT, Shen YY, Chen CH, Barillà D, Sun YJ, Hsiao CD. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly. Nucleic Acids Res 2021;49:13150-64. [PMID: 34850144 DOI: 10.1093/nar/gkab1155] [Reference Citation Analysis]
166 Van Etten J, Keddis R, Lisa J, Rauschenbach I. The Diverse World of Protists—an Ideal Community with which to Introduce Microscopy in the Microbiology Teaching Laboratory. J Microbiol Biol Educ . [DOI: 10.1128/jmbe.00142-21] [Reference Citation Analysis]
167 López-García P, Moreira D. Eukaryogenesis, a syntrophy affair. Nat Microbiol 2019;4:1068-70. [PMID: 31222170 DOI: 10.1038/s41564-019-0495-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
168 Coker OO, Wu WKK, Wong SH, Sung JJY, Yu J. Altered Gut Archaea Composition and Interaction With Bacteria Are Associated With Colorectal Cancer. Gastroenterology 2020; 159: 1459-1470. e5. [PMID: 32569776 DOI: 10.1053/j.gastro.2020.06.042] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
169 Devaux CA, Mediannikov O, Medkour H, Raoult D. Infectious Disease Risk Across the Growing Human-Non Human Primate Interface: A Review of the Evidence. Front Public Health 2019;7:305. [PMID: 31828053 DOI: 10.3389/fpubh.2019.00305] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
170 Raina J, Fernandez V, Lambert B, Stocker R, Seymour JR. The role of microbial motility and chemotaxis in symbiosis. Nat Rev Microbiol 2019;17:284-94. [DOI: 10.1038/s41579-019-0182-9] [Cited by in Crossref: 67] [Cited by in F6Publishing: 48] [Article Influence: 22.3] [Reference Citation Analysis]
171 Jurado V, Gonzalez-pimentel JL, Miller AZ, Hermosin B, D’angeli IM, Tognini P, De Waele J, Saiz-jimenez C. Microbial Communities in Vermiculation Deposits from an Alpine Cave. Front Earth Sci 2020;8:586248. [DOI: 10.3389/feart.2020.586248] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
172 Ibrahim A, Colson P, Merhej V, Zgheib R, Maatouk M, Naud S, Bittar F, Raoult D. Rhizomal Reclassification of Living Organisms. Int J Mol Sci 2021;22:5643. [PMID: 34073251 DOI: 10.3390/ijms22115643] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
173 Ul-Hasan S, Rodríguez-Román E, Reitzel AM, Adams RMM, Herzig V, Nobile CJ, Saviola AJ, Trim SA, Stiers EE, Moschos SA, Keiser CN, Petras D, Moran Y, Colston TJ. The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP). Toxicon X 2019;4:100016. [PMID: 32550573 DOI: 10.1016/j.toxcx.2019.100016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
174 Hofer U. Asgard archaeon rises from the mud. Nat Rev Microbiol 2020;18:122-3. [PMID: 31988492 DOI: 10.1038/s41579-020-0334-y] [Reference Citation Analysis]
175 Levitskii SA, Baleva MV, Chicherin IV, Krasheninnikov IA, Kamenski PA. Protein Biosynthesis in Mitochondria: Past Simple, Present Perfect, Future Indefinite. Biochemistry (Mosc) 2020;85:257-63. [PMID: 32564730 DOI: 10.1134/S0006297920030013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. FEMS Microbiol Rev 2018;42:579-613. [PMID: 29684129 DOI: 10.1093/femsre/fuy016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 7.8] [Reference Citation Analysis]
177 Demongeot J, Henrion-Caude A. Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life. Biology (Basel) 2020;9:E88. [PMID: 32344921 DOI: 10.3390/biology9050088] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
178 Wilson DF, Matschinsky FM. Metabolic Homeostasis in Life as We Know It: Its Origin and Thermodynamic Basis. Front Physiol 2021;12:658997. [PMID: 33967829 DOI: 10.3389/fphys.2021.658997] [Reference Citation Analysis]
179 McIntyre WD, Nemati R, Salehi M, Aldrich CC, FitzGibbon M, Deng L, Pazos MA, Rose RE, Toro B, Netzband RE, Pager CT, Robinson IP, Bialosuknia SM, Ciota AT, Fabris D. Agnostic Framework for the Classification/Identification of Organisms Based on RNA Post-Transcriptional Modifications. Anal Chem 2021;93:7860-9. [PMID: 34043326 DOI: 10.1021/acs.analchem.1c00359] [Reference Citation Analysis]
180 Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020;120:4848-78. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 14.5] [Reference Citation Analysis]
181 Zilber-Rosenberg I, Rosenberg E. Microbial driven genetic variation in holobionts. FEMS Microbiol Rev 2021:fuab022. [PMID: 33930136 DOI: 10.1093/femsre/fuab022] [Reference Citation Analysis]
182 Zhang C, Atashgahi S, Bosma TNP, Peng P, Smidt H. Organohalide respiration potential in marine sediments from Aarhus Bay. FEMS Microbiol Ecol 2022;98:fiac073. [PMID: 35689665 DOI: 10.1093/femsec/fiac073] [Reference Citation Analysis]
183 Jiang L, Lu Y, Zheng L, Li G, Chen L, Zhang M, Ni J, Liu Q, Zhang Y. The algal selenoproteomes. BMC Genomics 2020;21:699. [PMID: 33028229 DOI: 10.1186/s12864-020-07101-z] [Reference Citation Analysis]
184 Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol 2020;4:138-47. [PMID: 31819234 DOI: 10.1038/s41559-019-1040-x] [Cited by in Crossref: 75] [Cited by in F6Publishing: 50] [Article Influence: 25.0] [Reference Citation Analysis]
185 Malfatti MC, Henneke G, Balachander S, Koh KD, Newnam G, Uehara R, Crouch RJ, Storici F, Tell G. Unlike the Escherichia coli counterpart, archaeal RNase HII cannot process ribose monophosphate abasic sites and oxidized ribonucleotides embedded in DNA. J Biol Chem 2019;294:13061-72. [PMID: 31300556 DOI: 10.1074/jbc.RA119.009493] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
186 Tang S. The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA : To Carl Woese (1928-2012), for his Conceptual Breakthrough of Cellular Evolution. J Mol Evol 2021;89:427-47. [PMID: 34173011 DOI: 10.1007/s00239-021-10014-4] [Reference Citation Analysis]
187 Grau-Bové X, Navarrete C, Chiva C, Pribasnig T, Antó M, Torruella G, Galindo LJ, Lang BF, Moreira D, López-Garcia P, Ruiz-Trillo I, Schleper C, Sabidó E, Sebé-Pedrós A. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nat Ecol Evol 2022. [PMID: 35680998 DOI: 10.1038/s41559-022-01771-6] [Reference Citation Analysis]
188 Bateman A. Division of labour in a matrix, rather than phagocytosis or endosymbiosis, as a route for the origin of eukaryotic cells. Biol Direct 2020;15:8. [PMID: 32345370 DOI: 10.1186/s13062-020-00260-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
189 Tihelka E, Cai C, Pisani D, Donoghue PCJ. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera). Sci Rep 2020;10:14515. [PMID: 32884034 DOI: 10.1038/s41598-020-71393-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
190 Schramm F, Borst A, Linne U, Soppa J. Elucidation of the Translation Initiation Factor Interaction Network of Haloferax volcanii Reveals Coupling of Transcription and Translation in Haloarchaea. Front Microbiol 2021;12:742806. [PMID: 34764944 DOI: 10.3389/fmicb.2021.742806] [Reference Citation Analysis]
191 Phung DK, Etienne C, Batista M, Langendijk-Genevaux P, Moalic Y, Laurent S, Liuu S, Morales V, Jebbar M, Fichant G, Bouvier M, Flament D, Clouet-d'Orval B. RNA processing machineries in Archaea: the 5'-3' exoribonuclease aRNase J of the β-CASP family is engaged specifically with the helicase ASH-Ski2 and the 3'-5' exoribonucleolytic RNA exosome machinery. Nucleic Acids Res 2020;48:3832-47. [PMID: 32030412 DOI: 10.1093/nar/gkaa052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
192 Giordana L, Nowicki C. Two phylogenetically divergent isocitrate dehydrogenases are encoded in Leishmania parasites. Molecular and functional characterization of Leishmania mexicana isoenzymes with specificity towards NAD+ and NADP.. Mol Biochem Parasitol 2020;240:111320. [PMID: 32980452 DOI: 10.1016/j.molbiopara.2020.111320] [Reference Citation Analysis]
193 Brzáčová Z, Peťková M, Veljačiková K, Zajičková T, Tomáška Ľ. Reconstruction of human genome evolution in yeast: an educational primer for use with "systematic humanization of the yeast cytoskeleton discerns functionally replaceable from divergent human genes". Genetics 2021;219:iyab118. [PMID: 34849890 DOI: 10.1093/genetics/iyab118] [Reference Citation Analysis]
194 Chuvochina M, Rinke C, Parks DH, Rappé MS, Tyson GW, Yilmaz P, Whitman WB, Hugenholtz P. The importance of designating type material for uncultured taxa. Syst Appl Microbiol 2019;42:15-21. [PMID: 30098831 DOI: 10.1016/j.syapm.2018.07.003] [Cited by in Crossref: 88] [Cited by in F6Publishing: 30] [Article Influence: 22.0] [Reference Citation Analysis]
195 Khan S, Scholey JM. Assembly, Functions and Evolution of Archaella, Flagella and Cilia. Curr Biol 2018;28:R278-92. [PMID: 29558648 DOI: 10.1016/j.cub.2018.01.085] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 10.3] [Reference Citation Analysis]
196 Daum B, Gold V. Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint. Biol Chem 2018;399:799-808. [PMID: 29894297 DOI: 10.1515/hsz-2018-0157] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
197 Li J, Yue L, Li Z, Zhang W, Zhang B, Zhao F, Dong X. aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. Elife 2021;10:e70464. [PMID: 34964713 DOI: 10.7554/eLife.70464] [Reference Citation Analysis]
198 Zhao S, Banerjee S, White JF, Liu J, Zhou N, Tian C. High salt stress increases archaeal abundance and network connectivity in saline agricultural soils. CATENA 2022;217:106520. [DOI: 10.1016/j.catena.2022.106520] [Reference Citation Analysis]
199 Pavlova ON, Izosimova ON, Chernitsyna SM, Ivanov VG, Pogodaeva TV, Khabuev AV, Gorshkov AG, Zemskaya TI. Anaerobic oxidation of petroleum hydrocarbons in enrichment cultures from sediments of the Gorevoy Utes natural oil seep under methanogenic and sulfate-reducing conditions. Microb Ecol 2021. [PMID: 34255112 DOI: 10.1007/s00248-021-01802-y] [Reference Citation Analysis]
200 López-garcía P, Moreira D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat Microbiol 2020;5:655-67. [DOI: 10.1038/s41564-020-0710-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
201 Vasanthakumar N, Bhakta-Guha D, Guha G, Arunachalam J. Friend turned foe: A curious case of disrupted endosymbiotic homeostasis promoting the Warburg effect in sepsis. Med Hypotheses 2020;141:109702. [PMID: 32289643 DOI: 10.1016/j.mehy.2020.109702] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
202 Feng S, Wang R, Pastor RW, Klauda JB, Im W. Location and Conformational Ensemble of Menaquinone and Menaquinol, and Protein-Lipid Modulations in Archaeal Membranes. J Phys Chem B 2021;125:4714-25. [PMID: 33913729 DOI: 10.1021/acs.jpcb.1c01930] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
203 Bell PJL. Eukaryogenesis: The Rise of an Emergent Superorganism. Front Microbiol 2022;13:858064. [PMID: 35633668 DOI: 10.3389/fmicb.2022.858064] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
204 Daruwalla A, Zhang J, Lee HJ, Khadka N, Farquhar ER, Shi W, von Lintig J, Kiser PD. Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. Proc Natl Acad Sci U S A 2020;117:19914-25. [PMID: 32747548 DOI: 10.1073/pnas.2004116117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
205 Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021;29:405-15. [PMID: 33121898 DOI: 10.1016/j.tim.2020.09.009] [Cited by in F6Publishing: 3] [Reference Citation Analysis]