BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507-518. [PMID: 23881033 DOI: 10.1038/nrclinonc.2013.123] [Cited by in Crossref: 714] [Cited by in F6Publishing: 664] [Article Influence: 79.3] [Reference Citation Analysis]
Number Citing Articles
1 Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N. NIR-fluorescent dye doped silica nanoparticles for in vivo imaging, sensing and theranostic. Methods Appl Fluoresc 2018;6:022002. [DOI: 10.1088/2050-6120/aa8f57] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
2 Mondal SB, Tsen SD, Achilefu S. Head‐Mounted Devices for Noninvasive Cancer Imaging and Intraoperative Image‐Guided Surgery. Adv Funct Mater 2020;30:2000185. [DOI: 10.1002/adfm.202000185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Dong Y, Chen Z, Hou M, Qi L, Yan C, Lu X, Liu R, Xu Y. Mitochondria-targeted aggregation-induced emission active near infrared fluorescent probe for real-time imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020;224:117456. [DOI: 10.1016/j.saa.2019.117456] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 van Manen L, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AL, Mieog JSD. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol 2018;118:283-300. [PMID: 29938401 DOI: 10.1002/jso.25105] [Cited by in Crossref: 90] [Cited by in F6Publishing: 75] [Article Influence: 22.5] [Reference Citation Analysis]
5 Yuan Y, Hou W, Qin W, Wu C. Recent advances in semiconducting polymer dots as optical probes for biosensing. Biomater Sci 2021;9:328-46. [DOI: 10.1039/d0bm01038c] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
6 Zhao X, He S, Tan MC. Advancements in infrared imaging platforms: complementary imaging systems and contrast agents. J Mater Chem B 2017;5:4266-75. [PMID: 32263958 DOI: 10.1039/c7tb00123a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
7 Al-khedhairy AA, Wahab R. Silver Nanoparticles: An Instantaneous Solution for Anticancer Activity against Human Liver (HepG2) and Breast (MCF-7) Cancer Cells. Metals 2022;12:148. [DOI: 10.3390/met12010148] [Reference Citation Analysis]
8 Tichauer KM, Wang Y, Pogue BW, Liu JT. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys Med Biol 2015;60:R239-69. [PMID: 26134619 DOI: 10.1088/0031-9155/60/14/R239] [Cited by in Crossref: 61] [Cited by in F6Publishing: 37] [Article Influence: 8.7] [Reference Citation Analysis]
9 Cho MK, Juvekar V, Lim CS, Noh C, Shin SJ, Kim HM. A Highly Sensitive Two‐Photon Ratiometric Probe for Rapid Detection of the hNQO1 Enzyme in Colon Cancer Tissue. Asian J Org Chem 2019;8:1707-12. [DOI: 10.1002/ajoc.201800694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
10 Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018;47:675-89. [PMID: 29894417 DOI: 10.1097/MPA.0000000000001075] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
11 Mahalingam SM, Kularatne SA, Myers CH, Gagare P, Norshi M, Liu X, Singhal S, Low PS. Evaluation of Novel Tumor-Targeted Near-Infrared Probe for Fluorescence-Guided Surgery of Cancer. J Med Chem 2018;61:9637-46. [DOI: 10.1021/acs.jmedchem.8b01115] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
12 Tian JY, Guo FJ, Zheng GY, Ahmad A. Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 2018;39:307-17. [PMID: 29216344 DOI: 10.1093/carcin/bgx141] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
13 Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjugate Chem 2019;30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
14 Boonstra MC, Prakash J, Van De Velde CJ, Mesker WE, Kuppen PJ, Vahrmeijer AL, Sier CF. Stromal Targets for Fluorescent-Guided Oncologic Surgery. Front Oncol 2015;5:254. [PMID: 26636036 DOI: 10.3389/fonc.2015.00254] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
15 Wang Z, Ni K, Zhang X, Ai S, Guan W, Cai H, Wang Y, Lu Q, Lane LA. Method for Real-Time Tissue Quantification of Indocyanine Green Revealing Optimal Conditions for Near Infrared Fluorescence Guided Surgery. Anal Chem 2018;90:7922-9. [PMID: 29864280 DOI: 10.1021/acs.analchem.8b00480] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
16 van Schaik JE, Halmos GB, Witjes MJH, Plaat BEC. An overview of the current clinical status of optical imaging in head and neck cancer with a focus on Narrow Band imaging and fluorescence optical imaging. Oral Oncol 2021;121:105504. [PMID: 34454339 DOI: 10.1016/j.oraloncology.2021.105504] [Reference Citation Analysis]
17 Nguyen DT, van Horssen P, Derriks H, van de Giessen M, van Leeuwen T. Autofluorescence imaging for improved visualization of joint structures during arthroscopic surgery. J Exp Orthop 2017;4:19. [PMID: 28577187 DOI: 10.1186/s40634-017-0094-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Du Z, Qi Y, He J, Zhong D, Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1672. [PMID: 33073511 DOI: 10.1002/wnan.1672] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Sato K, Gorka AP, Nagaya T, Michie MS, Nani RR, Nakamura Y, Coble VL, Vasalatiy OV, Swenson RE, Choyke PL, Schnermann MJ, Kobayashi H. Role of Fluorophore Charge on the In Vivo Optical Imaging Properties of Near-Infrared Cyanine Dye/Monoclonal Antibody Conjugates. Bioconjug Chem 2016;27:404-13. [PMID: 26444497 DOI: 10.1021/acs.bioconjchem.5b00492] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
20 Qi J, Ou H, Liu Q, Ding D. Gathering brings strength: How organic aggregates boost disease phototheranostics. Aggregate 2021;2:95-113. [DOI: 10.1002/agt2.25] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
21 Blair S, Garcia M, Davis T, Zhu Z, Liang Z, Konopka C, Kauffman K, Colanceski R, Ferati I, Kondov B, Stojanoski S, Todorovska MB, Dimitrovska NT, Jakupi N, Miladinova D, Petrusevska G, Kondov G, Dobrucki WL, Nie S, Gruev V. Hexachromatic bioinspired camera for image-guided cancer surgery. Sci Transl Med 2021;13:eaaw7067. [PMID: 33952675 DOI: 10.1126/scitranslmed.aaw7067] [Reference Citation Analysis]
22 Cwalinski T, Polom W, Marano L, Roviello G, D'Angelo A, Cwalina N, Matuszewski M, Roviello F, Jaskiewicz J, Polom K. Methylene Blue-Current Knowledge, Fluorescent Properties, and Its Future Use. J Clin Med 2020;9:E3538. [PMID: 33147796 DOI: 10.3390/jcm9113538] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
23 Wang J, Ma Q, Hu X, Liu H, Zheng W, Chen X, Yuan Q, Tan W. Autofluorescence-Free Targeted Tumor Imaging Based on Luminous Nanoparticles with Composition-Dependent Size and Persistent Luminescence. ACS Nano 2017;11:8010-7. [DOI: 10.1021/acsnano.7b02643] [Cited by in Crossref: 85] [Cited by in F6Publishing: 57] [Article Influence: 17.0] [Reference Citation Analysis]
24 Hillary SL, Guillermet S, Brown NJ, Balasubramanian SP. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Arch Surg 2018;403:111-8. [PMID: 29230539 DOI: 10.1007/s00423-017-1641-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 6.6] [Reference Citation Analysis]
25 Wang Y, Kang S, Khan A, Ruttner G, Leigh SY, Murray M, Abeytunge S, Peterson G, Rajadhyaksha M, Dintzis S, Javid S, Liu JT. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep 2016;6:21242. [PMID: 26878888 DOI: 10.1038/srep21242] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 10.7] [Reference Citation Analysis]
26 Tummers WS, Miller SE, Teraphongphom NT, Gomez A, Steinberg I, Huland DM, Hong S, Kothapalli SR, Hasan A, Ertsey R, Bonsing BA, Vahrmeijer AL, Swijnenburg RJ, Longacre TA, Fisher GA, Gambhir SS, Poultsides GA, Rosenthal EL. Intraoperative Pancreatic Cancer Detection using Tumor-Specific Multimodality Molecular Imaging. Ann Surg Oncol 2018;25:1880-8. [PMID: 29667116 DOI: 10.1245/s10434-018-6453-2] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 17.0] [Reference Citation Analysis]
27 Zhu B, Sevick-Muraca EM. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol 2015;88:20140547. [PMID: 25410320 DOI: 10.1259/bjr.20140547] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 11.4] [Reference Citation Analysis]
28 Wu Y, Zhang F. Exploiting molecular probes to perform near‐infrared fluorescence‐guided surgery. View 2020;1:20200068. [DOI: 10.1002/viw.20200068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
29 Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman G, Todorich B, Shieh C, Hahn P, Farsiu S, Kuo AN, Toth CA, Izatt JA. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep 2016;6:31689. [PMID: 27538478 DOI: 10.1038/srep31689] [Cited by in Crossref: 62] [Cited by in F6Publishing: 47] [Article Influence: 10.3] [Reference Citation Analysis]
30 Han Z, Zhou Z, Shi X, Wang J, Wu X, Sun D, Chen Y, Zhu H, Magi-Galluzzi C, Lu ZR. EDB Fibronectin Specific Peptide for Prostate Cancer Targeting. Bioconjug Chem 2015;26:830-8. [PMID: 25848940 DOI: 10.1021/acs.bioconjchem.5b00178] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 7.6] [Reference Citation Analysis]
31 Ximendes E, Benayas A, Jaque D, Marin R. Quo Vadis , Nanoparticle-Enabled In Vivo Fluorescence Imaging? ACS Nano 2021;15:1917-41. [DOI: 10.1021/acsnano.0c08349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
32 Fan X, Li Y, Feng Z, Chen G, Zhou J, He M, Wu L, Li S, Qian J, Lin H. Nanoprobes-Assisted Multichannel NIR-II Fluorescence Imaging-Guided Resection and Photothermal Ablation of Lymph Nodes. Adv Sci (Weinh) 2021;8:2003972. [PMID: 33977058 DOI: 10.1002/advs.202003972] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
33 Peyrat P, Blanc E, Guillermet S, Chen Y, Ferlay C, Perol D, Basso V, Rivoire M, Dupré A. HEPATOFLUO: A prospective monocentric study assessing the benefits of indocyanine green (ICG) fluorescence for hepatic surgery. J Surg Oncol 2018;117:922-7. [DOI: 10.1002/jso.25011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
34 Muynck LDAN, Gaarenstroom KN, Sier CFM, Duijvenvoorde MV, Bosse T, Mieog JSD, Kroon CD, Vahrmeijer AL, Peters ITA. Novel Molecular Targets for Tumor-Specific Imaging of Epithelial Ovarian Cancer Metastases. Cancers (Basel) 2020;12:E1562. [PMID: 32545676 DOI: 10.3390/cancers12061562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Qi J, Li J, Liu R, Li Q, Zhang H, Lam JW, Kwok RT, Liu D, Ding D, Tang BZ. Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. Chem 2019;5:2657-77. [DOI: 10.1016/j.chempr.2019.07.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 22] [Article Influence: 12.7] [Reference Citation Analysis]
36 Jing L, Yang C, Zhang P, Zeng J, Li Z, Gao M. Nanoparticles weaponized with built‐in functions for imaging‐guided cancer therapy. View 2020;1. [DOI: 10.1002/viw2.19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
37 Cornella KN, Repper DC, Palafox BA, Razavi MK, Loh CT, Markle KM, Openshaw LE. A Surgeon's Guide for Various Lung Nodule Localization Techniques and the Newest Technologies. Innovations (Phila) 2021;16:26-33. [PMID: 33124923 DOI: 10.1177/1556984520966999] [Reference Citation Analysis]
38 Gao J, Li J, Wei D, Yang H, Duan Y, Zhang Y, Gong X, Wang H, Ding D, Wu X, Chang J. Enabling AIEgens close assembly in tumor-overexpressed protein cluster for boosted image-guided cancer surgery. Sci China Chem 2020;63:1694-702. [DOI: 10.1007/s11426-020-9829-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Wang S, Fan Y, Li D, Sun C, Lei Z, Lu L, Wang T, Zhang F. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun 2019;10:1058. [PMID: 30837470 DOI: 10.1038/s41467-019-09043-x] [Cited by in Crossref: 164] [Cited by in F6Publishing: 136] [Article Influence: 54.7] [Reference Citation Analysis]
40 Hübner R, Benkert V, Cheng X, Wängler B, Krämer R, Wängler C. Probing two PESIN-indocyanine-dye-conjugates: significance of the used fluorophore. J Mater Chem B 2020;8:1302-9. [PMID: 31967633 DOI: 10.1039/c9tb01794a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
41 Grabarz AM, Ośmiałowski B. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes. Molecules 2021;26:7434. [PMID: 34946515 DOI: 10.3390/molecules26247434] [Reference Citation Analysis]
42 Liyanaarachchi MR, Shimazoe K, Takahashi H, Nakagawa K, Kobayashi E, Sakuma I. Development and evaluation of a prototype detector for an intraoperative laparoscopic coincidence imaging system with PET tracers. Int J Comput Assist Radiol Surg 2021;16:29-39. [PMID: 33159670 DOI: 10.1007/s11548-020-02282-0] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Jansen-Winkeln B, Barberio M, Chalopin C, Schierle K, Diana M, Köhler H, Gockel I, Maktabi M. Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy. Cancers (Basel) 2021;13:967. [PMID: 33669082 DOI: 10.3390/cancers13050967] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
44 Zhou Y, Wang M, Dai Z. The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Mater Chem Front 2020;4:2223-34. [DOI: 10.1039/d0qm00232a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
45 Mao Y, Wang K, He K, Ye J, Yang F, Zhou J, Li H, Chen X, Wang J, Chi C, Tian J. Development and application of the near-infrared and white-light thoracoscope system for minimally invasive lung cancer surgery. J Biomed Opt 2017;22:1. [DOI: 10.1117/1.jbo.22.6.066002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
46 Myochin T, Hanaoka K, Iwaki S, Ueno T, Komatsu T, Terai T, Nagano T, Urano Y. Development of a series of near-infrared dark quenchers based on Si-rhodamines and their application to fluorescent probes. J Am Chem Soc 2015;137:4759-65. [PMID: 25764154 DOI: 10.1021/jacs.5b00246] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 9.6] [Reference Citation Analysis]
47 Dalli J, Loughman E, Hardy N, Sarkar A, Khan MF, Khokhar HA, Huxel P, O'Shea DF, Cahill RA. Digital dynamic discrimination of primary colorectal cancer using systemic indocyanine green with near-infrared endoscopy. Sci Rep 2021;11:11349. [PMID: 34059705 DOI: 10.1038/s41598-021-90089-7] [Reference Citation Analysis]
48 Chen C, Tian R, Zeng Y, Chu C, Liu G. Activatable Fluorescence Probes for “Turn-On” and Ratiometric Biosensing and Bioimaging: From NIR-I to NIR-II. Bioconjugate Chem 2020;31:276-92. [DOI: 10.1021/acs.bioconjchem.9b00734] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 22.5] [Reference Citation Analysis]
49 Tummers QRJG, Boogerd LSF, de Steur WO, Verbeek FPR, Boonstra MC, Handgraaf HJM, Frangioni JV, van de Velde CJH, Hartgrink HH, Vahrmeijer AL. Near-infrared fluorescence sentinel lymph node detection in gastric cancer: A pilot study. World J Gastroenterol 2016; 22(13): 3644-3651 [PMID: 27053856 DOI: 10.3748/wjg.v22.i13.3644] [Cited by in CrossRef: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
50 Li X, Peng XH, Zheng BD, Tang J, Zhao Y, Zheng BY, Ke MR, Huang JD. New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chem Sci 2018;9:2098-104. [PMID: 29675251 DOI: 10.1039/c7sc05115h] [Cited by in Crossref: 96] [Cited by in F6Publishing: 19] [Article Influence: 24.0] [Reference Citation Analysis]
51 Li B, Lu L, Zhao M, Lei Z, Zhang F. An Efficient 1064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging. Angew Chem 2018;130:7605-9. [DOI: 10.1002/ange.201801226] [Cited by in Crossref: 63] [Cited by in F6Publishing: 48] [Article Influence: 15.8] [Reference Citation Analysis]
52 Gao H, Duan X, Jiao D, Zeng Y, Zheng X, Zhang J, Ou H, Qi J, Ding D. Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2021;60:21047-55. [PMID: 34309160 DOI: 10.1002/anie.202109048] [Reference Citation Analysis]
53 Ma L, Huang S, He S, Wang Z, Cheng Z. Polydopamine-coated downconversion nanoparticle as an efficient dual-modal near-infrared-II fluorescence and photoacoustic contrast agent for non-invasive visualization of gastrointestinal tract in vivo. Biosens Bioelectron 2020;151:112000. [PMID: 31999595 DOI: 10.1016/j.bios.2019.112000] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
54 Chen Q, Shang W, Zeng C, Wang K, Liang X, Chi C, Liang X, Yang J, Fang C, Tian J. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Oncotarget. 2017;8:32741-32751. [PMID: 28416757 DOI: 10.18632/oncotarget.15642] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
55 Cha J, Broch A, Mudge S, Kim K, Namgoong JM, Oh E, Kim P. Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques. Biomed Opt Express 2018;9:1097-110. [PMID: 29541506 DOI: 10.1364/BOE.9.001097] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
56 Cui J, Turcotte R, Hampson KM, Wincott M, Schmidt CC, Emptage NJ, Charalampaki P, Booth MJ. Compact and contactless reflectance confocal microscope for neurosurgery. Biomed Opt Express 2020;11:4772-85. [PMID: 32923077 DOI: 10.1364/BOE.397832] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
57 Reijers SJM, Heerink WJ, Van Veen R, Nijkamp J, Hoetjes NJ, Schrage Y, Van Akkooi A, Beets GL, Van Coevorden F, Ruers TJM, Groen HC, Van Houdt WJ. Surgical navigation for challenging recurrent or pretreated intra-abdominal and pelvic soft tissue sarcomas. J Surg Oncol 2021. [PMID: 34320228 DOI: 10.1002/jso.26624] [Reference Citation Analysis]
58 Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A Promising NIR-II Fluorescent Sensor for Peptide-Mediated Long-Term Monitoring of Kidney Dysfunction. Angew Chem Int Ed Engl 2021;60:15809-15. [PMID: 33876514 DOI: 10.1002/anie.202103071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
59 Chen H, Zhang M, Li B, Chen D, Dong X, Wang Y, Gu Y. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials 2015;53:532-44. [DOI: 10.1016/j.biomaterials.2015.02.105] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 9.6] [Reference Citation Analysis]
60 DeLong JC, Hoffman RM, Bouvet M. Current status and future perspectives of fluorescence-guided surgery for cancer. Expert Rev Anticancer Ther 2016;16:71-81. [PMID: 26567611 DOI: 10.1586/14737140.2016.1121109] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
61 Cocco E, Shapiro EM, Gasparrini S, Lopez S, Schwab CL, Bellone S, Bortolomai I, Sumi NJ, Bonazzoli E, Nicoletti R, Deng Y, Saltzman WM, Zeiss CJ, Centritto F, Black JD, Silasi DA, Ratner E, Azodi M, Rutherford TJ, Schwartz PE, Pecorelli S, Santin AD. Clostridium perfringens enterotoxin C-terminal domain labeled to fluorescent dyes for in vivo visualization of micrometastatic chemotherapy-resistant ovarian cancer. Int J Cancer 2015;137:2618-29. [PMID: 26060989 DOI: 10.1002/ijc.29632] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
62 Chen C, Ou H, Liu R, Ding D. Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Adv Mater 2020;32:e1806331. [PMID: 30924971 DOI: 10.1002/adma.201806331] [Cited by in Crossref: 140] [Cited by in F6Publishing: 116] [Article Influence: 46.7] [Reference Citation Analysis]
63 Handgraaf HJ, Boonstra MC, Van Erkel AR, Bonsing BA, Putter H, Van De Velde CJ, Vahrmeijer AL, Mieog JS. Current and future intraoperative imaging strategies to increase radical resection rates in pancreatic cancer surgery. Biomed Res Int 2014;2014:890230. [PMID: 25157372 DOI: 10.1155/2014/890230] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
64 Le‐vinh B, Akkuş‐dağdeviren ZB, Le NN, Nazir I, Bernkop‐schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics. [DOI: 10.1002/adtp.202100219] [Reference Citation Analysis]
65 Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol. 2019;21:200-218. [PMID: 29942988 DOI: 10.1007/s11307-018-1239-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
66 Ofori LO, Withana NP, Prestwood TR, Verdoes M, Brady JJ, Winslow MM, Sorger J, Bogyo M. Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chem Biol 2015;10:1977-88. [PMID: 26039341 DOI: 10.1021/acschembio.5b00205] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 10.1] [Reference Citation Analysis]
67 De Leeuw F, Breuskin I, Abbaci M, Casiraghi O, Mirghani H, Ben Lakhdar A, Laplace-Builhé C, Hartl D. Intraoperative Near-infrared Imaging for Parathyroid Gland Identification by Auto-fluorescence: A Feasibility Study. World J Surg 2016;40:2131-8. [PMID: 27220510 DOI: 10.1007/s00268-016-3571-5] [Cited by in Crossref: 71] [Cited by in F6Publishing: 60] [Article Influence: 14.2] [Reference Citation Analysis]
68 Jermyn M, Kolste K, Pichette J, Sheehy G, Angulo-Rodríguez L, Paulsen KD, Roberts DW, Wilson BC, Petrecca K, Leblond F. Macroscopic-imaging technique for subsurface quantification of near-infrared markers during surgery. J Biomed Opt 2015;20:036014. [PMID: 25793562 DOI: 10.1117/1.JBO.20.3.036014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
69 Broadwater D, Bates M, Jayaram M, Young M, He J, Raithel AL, Hamann TW, Zhang W, Borhan B, Lunt RR, Lunt SY. Modulating cellular cytotoxicity and phototoxicity of fluorescent organic salts through counterion pairing. Sci Rep 2019;9:15288. [PMID: 31653966 DOI: 10.1038/s41598-019-51593-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
70 Buda A, Dell'Anna T, Vecchione F, Verri D, Di Martino G, Milani R. Near-Infrared Sentinel Lymph Node Mapping With Indocyanine Green Using the VITOM II ICG Exoscope for Open Surgery for Gynecologic Malignancies. J Minim Invasive Gynecol. 2016;23:628-632. [PMID: 26921484 DOI: 10.1016/j.jmig.2016.02.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
71 Bai S, Liao J, Zhang B, Zhao M, You B, Li P, Ran H, Wang Z, Shi R, Zhang G. Multimodal and multifunctional nanoparticles with platelet targeting ability and phase transition efficiency for the molecular imaging and thrombolysis of coronary microthrombi. Biomater Sci 2020;8:5047-60. [DOI: 10.1039/d0bm00818d] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Seetharaman S, Dukh M, Tabaczynski WA, Ou Z, Karr PA, Kadish KM, Pandey RK, D'Souza F. Meso-Biphenyl-Linked, Near- and Far-Infrared Emitting, Chlorin and Bacteriochlorin Dimers: Synthesis, Excitation Transfer, and Singlet Oxygen Production. Chempluschem 2021;86:674-80. [PMID: 33881234 DOI: 10.1002/cplu.202100120] [Reference Citation Analysis]
73 Handgraaf HJ, Verbeek FP, Tummers QR, Boogerd LS, van de Velde CJ, Vahrmeijer AL, Gaarenstroom KN. Real-time near-infrared fluorescence guided surgery in gynecologic oncology: a review of the current state of the art. Gynecol Oncol. 2014;135:606-613. [PMID: 25124160 DOI: 10.1016/j.ygyno.2014.08.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 7.1] [Reference Citation Analysis]
74 Du J, Zhang Y, Jin Z, Wu H, Cang J, Shen Y, Miao F, Zhang A, Zhang Y, Zhang J, Teng G. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 2020;116:111188. [PMID: 32806329 DOI: 10.1016/j.msec.2020.111188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
75 Ren Y, Zhou L, Li X. Red-Shift (2-Hydroxyphenyl)-Benzothiazole Emission by Mimicking the Excited-State Intramolecular Proton Transfer Effect. Front Chem 2021;9:807433. [PMID: 35004624 DOI: 10.3389/fchem.2021.807433] [Reference Citation Analysis]
76 Noh Y, Kim S, Kim J, Kim S, Ryu J, Kim I, Lee E, Um SH, Lim YT. Multifaceted Immunomodulatory Nanoliposomes: Reshaping Tumors into Vaccines for Enhanced Cancer Immunotherapy. Adv Funct Mater 2017;27:1605398. [DOI: 10.1002/adfm.201605398] [Cited by in Crossref: 45] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
77 Pèlegrin A, Gutowski M, Cailler F. Les anticorps, outils de choix pour la chirurgie guidée par fluorescence. Med Sci (Paris) 2019;35:1066-71. [DOI: 10.1051/medsci/2019207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Lin Z, Wang C, Li Y, Li R, Gong L, Su Y, Zhai Z, Bai X, Di S, Li Z, Dong A, Zhang Q, Yin Y. Glutathione-Priming Nanoreactors Enable Fluorophore Core/Shell Transition for Precision Cancer Imaging. ACS Appl Mater Interfaces 2019;11:33667-75. [DOI: 10.1021/acsami.9b11063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
79 Schreiber CL, Smith BD. Molecular Imaging of Aminopeptidase N in Cancer and Angiogenesis. Contrast Media Mol Imaging 2018;2018:5315172. [PMID: 30046296 DOI: 10.1155/2018/5315172] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
80 Chen C, Ni X, Tian H, Liu Q, Guo D, Ding D. Calixarene‐Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image‐Guided Cancer Surgery. Angew Chem 2020;132:10094-8. [DOI: 10.1002/ange.201916430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
81 Tummers WS, Warram JM, van den Berg NS, Miller SE, Swijnenburg RJ, Vahrmeijer AL, Rosenthal EL. Recommendations for reporting on emerging optical imaging agents to promote clinical approval. Theranostics 2018;8:5336-47. [PMID: 30555550 DOI: 10.7150/thno.27384] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
82 Dong Y, Zhou L, Shen Z, Ma Q, Zhao Y, Sun Y, Cao J. Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy. Drug Deliv 2022;29:238-53. [PMID: 35001784 DOI: 10.1080/10717544.2021.2023701] [Reference Citation Analysis]
83 Zhang H, Sun Y, Zhou T, Yu Q, Yang Z, Cai Z, Cang H. Poly(2-oxazoline)-based nanoparticles with aggregation-induced emission (AIE) for targeted cell imaging. International Journal of Polymeric Materials and Polymeric Biomaterials 2018;68:1079-88. [DOI: 10.1080/00914037.2018.1525550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
84 Qi B, Crawford AJ, Wojtynek NE, Holmes MB, Souchek JJ, Almeida-Porada G, Ly QP, Cohen SM, Hollingsworth MA, Mohs AM. Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. Nanomedicine 2018;14:769-80. [PMID: 29325740 DOI: 10.1016/j.nano.2017.12.015] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
85 Wang Y, Lan M, Shen D, Fang K, Zhu L, Liu Y, Hao L, Li P. Targeted Nanobubbles Carrying Indocyanine Green for Ultrasound, Photoacoustic and Fluorescence Imaging of Prostate Cancer. Int J Nanomedicine 2020;15:4289-309. [PMID: 32606678 DOI: 10.2147/IJN.S243548] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
86 Zhao J, Jin G, Weng G, Li J, Zhu J, Zhao J. Recent advances in activatable fluorescence imaging probes for tumor imaging. Drug Discovery Today 2017;22:1367-74. [DOI: 10.1016/j.drudis.2017.04.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
87 Wang F, Qu L, Ren F, Baghdasaryan A, Jiang Y, Hsu R, Liang P, Li J, Zhu G, Ma Z, Dai H. High-precision tumor resection down to few-cell level guided by NIR-IIb molecular fluorescence imaging. Proc Natl Acad Sci U S A 2022;119:e2123111119. [PMID: 35380898 DOI: 10.1073/pnas.2123111119] [Reference Citation Analysis]
88 Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. The Lancet Oncology 2019;20:e354-67. [DOI: 10.1016/s1470-2045(19)30317-1] [Cited by in Crossref: 76] [Cited by in F6Publishing: 43] [Article Influence: 25.3] [Reference Citation Analysis]
89 Li X, Wu P, Cao W, Xiong H. Development of pH-activatable fluorescent probes for rapid visualization of metastatic tumours and fluorescence-guided surgery via topical spraying. Chem Commun (Camb) 2021;57:10636-9. [PMID: 34581325 DOI: 10.1039/d1cc04408g] [Reference Citation Analysis]
90 Yang Y, Fan X, Li L, Yang Y, Nuernisha A, Xue D, He C, Qian J, Hu Q, Chen H, Liu J, Huang W. Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano 2020;14:2509-21. [PMID: 32022539 DOI: 10.1021/acsnano.0c00043] [Cited by in Crossref: 69] [Cited by in F6Publishing: 49] [Article Influence: 34.5] [Reference Citation Analysis]
91 Zhou X, Liu Y, Liu Q, Yan L, Xue M, Yuan W, Shi M, Feng W, Xu C, Li F. Point-of-care Ratiometric Fluorescence Imaging of Tissue for the Diagnosis of Ovarian Cancer. Theranostics 2019;9:4597-607. [PMID: 31367243 DOI: 10.7150/thno.35322] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
92 Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat Commun 2018;9:1848. [PMID: 29748611 DOI: 10.1038/s41467-018-04222-8] [Cited by in Crossref: 172] [Cited by in F6Publishing: 160] [Article Influence: 43.0] [Reference Citation Analysis]
93 Zhu B, Rasmussen JC, Litorja M, Sevick-Muraca EM. Determining the Performance of Fluorescence Molecular Imaging Devices Using Traceable Working Standards With SI Units of Radiance. IEEE Trans Med Imaging 2016;35:802-11. [PMID: 26552078 DOI: 10.1109/TMI.2015.2496898] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
94 Tsai WK, Zettlitz KA, Tavaré R, Kobayashi N, Reiter RE, Wu AM. Dual-Modality ImmunoPET/Fluorescence Imaging of Prostate Cancer with an Anti-PSCA Cys-Minibody. Theranostics 2018;8:5903-14. [PMID: 30613270 DOI: 10.7150/thno.27679] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
95 Achbergerová E, Šmejkalová D, Huerta-angeles G, Souček K, Hermannová M, Vágnerová H, Vícha R, Velebný V. In vivo monitoring of tumor distribution of hyaluronan polymeric micelles labeled or loaded with near-infrared fluorescence dye. Carbohydrate Polymers 2018;198:339-47. [DOI: 10.1016/j.carbpol.2018.06.082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
96 Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Theranostics 2014;4:386-98. [PMID: 24578722 DOI: 10.7150/thno.8006] [Cited by in Crossref: 141] [Cited by in F6Publishing: 131] [Article Influence: 17.6] [Reference Citation Analysis]
97 Chen Y. Design and construction of COX-2 specific fluorescent probes. Molecular and Cellular Probes 2019;48:101472. [DOI: 10.1016/j.mcp.2019.101472] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
98 Jain M, Manju, Gundimeda A, Kumar S, Gupta G, Won SO, Chae KH, Vij A, Thakur A. Defect induced broadband visible to near-infrared luminescence in ZnAl2O4 nanocrystals. Applied Surface Science 2019;480:945-50. [DOI: 10.1016/j.apsusc.2019.02.198] [Cited by in Crossref: 30] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
99 Yoon J, Grigoroiu A, Bohndiek SE. A background correction method to compensate illumination variation in hyperspectral imaging. PLoS One 2020;15:e0229502. [PMID: 32168335 DOI: 10.1371/journal.pone.0229502] [Reference Citation Analysis]
100 Takasugi T, Hanaoka K, Sasaki A, Ikeno T, Komatsu T, Ueno T, Yamada K, Urano Y. Development of a platform for activatable fluorescent substrates of glucose transporters (GLUTs). Bioorg Med Chem 2019;27:2122-6. [PMID: 30935790 DOI: 10.1016/j.bmc.2019.02.055] [Reference Citation Analysis]
101 Handgraaf HJM, Boogerd LSF, Höppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, Hartgrink HH, van de Velde CJH, Mieog JSD, Swijnenburg RJ, Putter H, Maestri M, Braat AE, Frangioni JV, Vahrmeijer AL. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: A retrospective multicenter analysis. Eur J Surg Oncol 2017;43:1463-71. [PMID: 28528189 DOI: 10.1016/j.ejso.2017.04.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
102 Gao T, Wang S, Lv W, Liu M, Zeng H, Chen Z, Dong J, Wu Z, Feng X, Zeng W. A self-assembled nanoprobe for long-term cancer cell nucleus-specific staining and two-photon breast cancer imaging. Chem Commun 2018;54:3578-81. [DOI: 10.1039/c7cc09806e] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
103 Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Phys Med Biol 2017;63:01TR01. [PMID: 29240559 DOI: 10.1088/1361-6560/aa98f9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
104 Ogasawara H, Tanaka Y, Taki M, Yamaguchi S. Late-stage functionalisation of alkyne-modified phospha-xanthene dyes: lysosomal imaging using an off-on-off type of pH probe. Chem Sci 2021;12:7902-7. [PMID: 34168843 DOI: 10.1039/d1sc01705e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Kansara V, Shukla R, Flora SJS, Bahadur P, Tiwari S. Graphene quantum dots: synthesis, optical properties and navigational applications against cancer. Materials Today Communications 2022. [DOI: 10.1016/j.mtcomm.2022.103359] [Reference Citation Analysis]
106 Yang J, Wang Z, Dong K, Zhang R, Xiao K, Shang L, Li L. Safety and efficacy of indocyanine green fluorescence imaging-guided radical gastrectomy: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2021;:1-10. [PMID: 34488515 DOI: 10.1080/17474124.2021.1970530] [Reference Citation Analysis]
107 Yang Y, Wang P, Lu L, Fan Y, Sun C, Fan L, Xu C, El-Toni AM, Alhoshan M, Zhang F. Small-Molecule Lanthanide Complexes Probe for Second Near-Infrared Window Bioimaging. Anal Chem 2018;90:7946-52. [PMID: 29865784 DOI: 10.1021/acs.analchem.8b00603] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
108 de Geus SW, Boogerd LS, Swijnenburg RJ, Mieog JS, Tummers WS, Prevoo HA, Sier CF, Morreau H, Bonsing BA, van de Velde CJ, Vahrmeijer AL, Kuppen PJ. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016;18:807-19. [PMID: 27130234 DOI: 10.1007/s11307-016-0959-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 5.6] [Reference Citation Analysis]
109 Tummers WS, Farina-Sarasqueta A, Boonstra MC, Prevoo HA, Sier CF, Mieog JS, Morreau J, van Eijck CH, Kuppen PJ, van de Velde CJ, Bonsing BA, Vahrmeijer AL, Swijnenburg RJ. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget 2017;8:56816-28. [PMID: 28915633 DOI: 10.18632/oncotarget.18232] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
110 Nishino H, Hatano E, Seo S, Nitta T, Saito T, Nakamura M, Hattori K, Takatani M, Fuji H, Taura K, Uemoto S. Real-time Navigation for Liver Surgery Using Projection Mapping With Indocyanine Green Fluorescence: Development of the Novel Medical Imaging Projection System. Ann Surg 2018;267:1134-40. [PMID: 28181939 DOI: 10.1097/SLA.0000000000002172] [Cited by in Crossref: 41] [Cited by in F6Publishing: 18] [Article Influence: 13.7] [Reference Citation Analysis]
111 Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F. Er 3+ Sensitized 1530 nm to 1180 nm Second Near-Infrared Window Upconversion Nanocrystals for In Vivo Biosensing. Angew Chem 2018;130:7640-4. [DOI: 10.1002/ange.201802889] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
112 van Beurden F, van Willigen DM, Vojnovic B, van Oosterom MN, Brouwer OR, der Poel HGV, Kobayashi H, van Leeuwen FWB, Buckle T. Multi-Wavelength Fluorescence in Image-Guided Surgery, Clinical Feasibility and Future Perspectives. Mol Imaging 2020;19:1536012120962333. [PMID: 33125289 DOI: 10.1177/1536012120962333] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
113 Kim HK, Quan YH, Choi BH, Park JH, Han KN, Choi Y, Kim BM, Choi YH. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. Eur J Cardiothorac Surg 2016;49:1497-502. [PMID: 26503731 DOI: 10.1093/ejcts/ezv367] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
114 Chen S, Wang H, Hong Y, Tang BZ. Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater Horiz 2016;3:283-93. [DOI: 10.1039/c6mh00060f] [Cited by in Crossref: 138] [Cited by in F6Publishing: 2] [Article Influence: 23.0] [Reference Citation Analysis]
115 Jo D, Hyun H. Structure-Inherent Targeting of Near-Infrared Fluorophores for Image-Guided Surgery. Chonnam Med J 2017;53:95-102. [PMID: 28584787 DOI: 10.4068/cmj.2017.53.2.95] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
116 Schaafsma BE, Verbeek FP, Elzevier HW, Tummers QR, van der Vorst JR, Frangioni JV, van de Velde CJ, Pelger RC, Vahrmeijer AL. Optimization of sentinel lymph node mapping in bladder cancer using near-infrared fluorescence imaging. J Surg Oncol 2014;110:845-50. [PMID: 25111761 DOI: 10.1002/jso.23740] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
117 Tang Y, Pei F, Lu X, Fan Q, Huang W. Recent Advances on Activatable NIR‐II Fluorescence Probes for Biomedical Imaging. Adv Optical Mater 2019;7:1900917. [DOI: 10.1002/adom.201900917] [Cited by in Crossref: 47] [Cited by in F6Publishing: 27] [Article Influence: 15.7] [Reference Citation Analysis]
118 Li L, Dong X, Li J, Wei J. A short review on NIR-II organic small molecule dyes. Dyes and Pigments 2020;183:108756. [DOI: 10.1016/j.dyepig.2020.108756] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
119 Rijs Z, Jeremiasse B, Shifai N, Gelderblom H, Sier CFM, Vahrmeijer AL, van Leeuwen FWB, van der Steeg AFW, van de Sande MAJ. Introducing Fluorescence-Guided Surgery for Pediatric Ewing, Osteo-, and Rhabdomyosarcomas: A Literature Review. Biomedicines 2021;9:1388. [PMID: 34680505 DOI: 10.3390/biomedicines9101388] [Reference Citation Analysis]
120 Sheng Z, Guo B, Hu D, Xu S, Wu W, Liew WH, Yao K, Jiang J, Liu C, Zheng H, Liu B. Bright Aggregation-Induced-Emission Dots for Targeted Synergetic NIR-II Fluorescence and NIR-I Photoacoustic Imaging of Orthotopic Brain Tumors. Adv Mater 2018;:e1800766. [PMID: 29806179 DOI: 10.1002/adma.201800766] [Cited by in Crossref: 184] [Cited by in F6Publishing: 165] [Article Influence: 46.0] [Reference Citation Analysis]
121 Gao M, Yu F, Lv C, Choo J, Chen L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev 2017;46:2237-71. [DOI: 10.1039/c6cs00908e] [Cited by in Crossref: 404] [Cited by in F6Publishing: 70] [Article Influence: 80.8] [Reference Citation Analysis]
122 Wei W, Rosenkrans ZT, Liu J, Huang G, Luo QY, Cai W. ImmunoPET: Concept, Design, and Applications. Chem Rev 2020;120:3787-851. [PMID: 32202104 DOI: 10.1021/acs.chemrev.9b00738] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 28.5] [Reference Citation Analysis]
123 Buqué A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015;4:e1008814. [PMID: 26137403 DOI: 10.1080/2162402X.2015.1008814] [Cited by in Crossref: 65] [Cited by in F6Publishing: 47] [Article Influence: 9.3] [Reference Citation Analysis]
124 Cong BB, Sun X, Song XR, Liu YB, Zhao T, Cao XS, Qiu PF, Tian CL, Yu JM, Wang YS. Preparation study of indocyanine green-rituximab: A new receptor-targeted tracer for sentinel lymph node in breast cancer. Oncotarget 2016;7:47526-35. [PMID: 27374088 DOI: 10.18632/oncotarget.10204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
125 Beringhs AO, Sadabad RK, Lu X. Advances and clinical challenges in biomaterials for in vivo tumor imaging. Biomaterials for Cancer Therapeutics. Elsevier; 2020. pp. 291-329. [DOI: 10.1016/b978-0-08-102983-1.00011-9] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Tazawa H, Hasei J, Yano S, Kagawa S, Ozaki T, Fujiwara T. Bone and Soft-Tissue Sarcoma: A New Target for Telomerase-Specific Oncolytic Virotherapy. Cancers (Basel) 2020;12:E478. [PMID: 32085583 DOI: 10.3390/cancers12020478] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
127 Tan M, del Rosal B, Zhang Y, Martín Rodríguez E, Hu J, Zhou Z, Fan R, Ortgies DH, Fernández N, Chaves-coira I, Núñez Á, Jaque D, Chen G. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 2018;10:17771-80. [DOI: 10.1039/c8nr02382d] [Cited by in Crossref: 47] [Cited by in F6Publishing: 11] [Article Influence: 11.8] [Reference Citation Analysis]
128 Huang S, Yang C, Huang J, Wang X, Wang M. Near-infrared fluorescent pyrrolopyrrole cyanine derivatives and colloidal nanoparticles with tunable optical properties for in vivo bioimaging. Dyes and Pigments 2018;154:269-74. [DOI: 10.1016/j.dyepig.2018.02.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
129 He B, Situ B, Zhao Z, Zheng L. Promising Applications of AIEgens in Animal Models. Small Methods 2020;4:1900583. [DOI: 10.1002/smtd.201900583] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
130 Barth CW, Gibbs SL. Visualizing Oxazine 4 nerve-specific fluorescence ex vivo in frozen tissue sections. Proc SPIE Int Soc Opt Eng 2016;9696:96960R. [PMID: 32255889 DOI: 10.1117/12.2214204] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
131 Rho J, Quan YH, Choi BH, Han KN, Kim BM, Choi YH, Kim HK. Near-infrared fluorescent imaging with indocyanine green in rabbit and patient specimens of esophageal cancer. J Thorac Dis 2021;13:6314-22. [PMID: 34992811 DOI: 10.21037/jtd-21-790] [Reference Citation Analysis]
132 Hyun H, Owens EA, Wada H, Levitz A, Park G, Park MH, Frangioni JV, Henary M, Choi HS. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging. Angew Chem 2015;127:8772-6. [DOI: 10.1002/ange.201502287] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
133 Oosting SF, de Vries EGE, Witjes MJH. Molecular Imaging in Head and Neck Squamous Cell Carcinoma Patients. In: Vermorken JB, Budach V, Leemans CR, Machiels J, Nicolai P, O'sullivan B, editors. Critical Issues in Head and Neck Oncology. Cham: Springer International Publishing; 2017. pp. 77-96. [DOI: 10.1007/978-3-319-42909-0_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
134 Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. Photoacoustics 2019;14:77-98. [PMID: 31293884 DOI: 10.1016/j.pacs.2019.05.001] [Cited by in Crossref: 125] [Cited by in F6Publishing: 94] [Article Influence: 41.7] [Reference Citation Analysis]
135 Achterberg FB, Deken MM, Meijer RPJ, Mieog JSD, Burggraaf J, van de Velde CJH, Swijnenburg RJ, Vahrmeijer AL. Clinical translation and implementation of optical imaging agents for precision image-guided cancer surgery. Eur J Nucl Med Mol Imaging 2021;48:332-9. [PMID: 32783112 DOI: 10.1007/s00259-020-04970-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
136 Wei Z, Zou H, Liu G, Song C, Tang C, Chen S, Zhang G, Ran J, Wang Y, Yin X, Cai Y, Han W. Peroxidase-mimicking evodiamine/indocyanine green nanoliposomes for multimodal imaging-guided theranostics for oral squamous cell carcinoma. Bioact Mater 2021;6:2144-57. [PMID: 33511313 DOI: 10.1016/j.bioactmat.2020.12.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
137 Kim T, O'brien C, Choi HS, Jeong MY. Fluorescence molecular imaging systems for intraoperative image-guided surgery. Applied Spectroscopy Reviews 2017;53:349-59. [DOI: 10.1080/05704928.2017.1323311] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
138 Visgauss JD, Eward WC, Brigman BE. Innovations in Intraoperative Tumor Visualization. Orthop Clin North Am 2016;47:253-64. [PMID: 26614939 DOI: 10.1016/j.ocl.2015.08.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
139 Ma Z, Wang F, Wang W, Zhong Y, Dai H. Deep learning for in vivo near-infrared imaging. Proc Natl Acad Sci U S A 2021;118:e2021446118. [PMID: 33372162 DOI: 10.1073/pnas.2021446118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
140 Cohen AS, Patek R, Enkemann SA, Johnson JO, Chen T, Toloza E, Vagner J, Morse DL. Delta-Opioid Receptor (δOR) Targeted Near-Infrared Fluorescent Agent for Imaging of Lung Cancer: Synthesis and Evaluation In Vitro and In Vivo. Bioconjug Chem 2016;27:427-38. [PMID: 26488422 DOI: 10.1021/acs.bioconjchem.5b00516] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
141 Jung JS, Jo D, Jo G, Hyun H. Near-Infrared Contrast Agents for Bone-Targeted Imaging. Tissue Eng Regen Med 2019;16:443-50. [PMID: 31624700 DOI: 10.1007/s13770-019-00208-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
142 Zhang NN, Lu CY, Chen MJ, Xu XL, Shu GF, Du YZ, Ji JS. Recent advances in near-infrared II imaging technology for biological detection. J Nanobiotechnology 2021;19:132. [PMID: 33971910 DOI: 10.1186/s12951-021-00870-z] [Reference Citation Analysis]
143 Del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM. Overcoming Autofluorescence: Long-Lifetime Infrared Nanoparticles for Time-Gated In Vivo Imaging. Adv Mater 2016;28:10188-93. [PMID: 27711997 DOI: 10.1002/adma.201603583] [Cited by in Crossref: 70] [Cited by in F6Publishing: 53] [Article Influence: 11.7] [Reference Citation Analysis]
144 Wang X, Wang X, Qu B, Alifu N, Qi J, Liu R, Fu Q, Shen R, Xia Q, Wu L, Sun B, Song J, Lin Y, Huang X, Qin A, Qian J, Tang BZ, Chen G. A Class of Biocompatible Dye-Protein Complex Optical Nanoprobes. ACS Nano 2021. [PMID: 34939417 DOI: 10.1021/acsnano.1c06536] [Reference Citation Analysis]
145 Tummers WS, Groen JV, Sibinga Mulder BG, Farina-Sarasqueta A, Morreau J, Putter H, van de Velde CJ, Vahrmeijer AL, Bonsing BA, Mieog JS, Swijnenburg RJ. Impact of resection margin status on recurrence and survival in pancreatic cancer surgery. Br J Surg. 2019;106:1055-1065. [PMID: 30883699 DOI: 10.1002/bjs.11115] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 21.0] [Reference Citation Analysis]
146 An FF, Chan M, Kommidi H, Ting R. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology. AJR Am J Roentgenol 2016;207:266-73. [PMID: 27223168 DOI: 10.2214/AJR.16.16181] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
147 Uren RF, Howman-giles R, Chung D, Thompson JF. Imaging Sentinel Lymph Nodes. The Cancer Journal 2015;21:25-32. [DOI: 10.1097/ppo.0000000000000092] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 2.1] [Reference Citation Analysis]
148 Predina JD, Newton AD, Xia L, Corbett C, Connolly C, Shin M, Sulyok LF, Litzky L, Deshpande C, Nie S, Kularatne SA, Low PS, Singhal S. An open label trial of folate receptor-targeted intraoperative molecular imaging to localize pulmonary squamous cell carcinomas. Oncotarget 2018;9:13517-29. [PMID: 29568374 DOI: 10.18632/oncotarget.24399] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
149 Lu HD, Lim TL, Javitt S, Heinmiller A, Prud’homme RK. Assembly of Macrocycle Dye Derivatives into Particles for Fluorescence and Photoacoustic Applications. ACS Comb Sci 2017;19:397-406. [DOI: 10.1021/acscombsci.7b00031] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 4.6] [Reference Citation Analysis]
150 Jia Q, Zhang R, Wang Y, Yan H, Li Z, Feng Y, Ji Y, Yang Z, Yang Y, Pu K, Wang Z. A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Science Bulletin 2022;67:288-98. [DOI: 10.1016/j.scib.2021.11.003] [Reference Citation Analysis]
151 Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, Tian J, Chen X. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics 2014;4:1072-84. [PMID: 25250092 DOI: 10.7150/thno.9899] [Cited by in Crossref: 197] [Cited by in F6Publishing: 185] [Article Influence: 24.6] [Reference Citation Analysis]
152 Wellens LM, Deken MM, Sier CFM, Johnson HR, de la Jara Ortiz F, Bhairosingh SS, Houvast RD, Kholosy WM, Baart VM, Pieters AMMJ, de Krijger RR, Molenaar JJ, Wehrens EJ, Dekkers JF, Wijnen MHWA, Vahrmeijer AL, Rios AC. Anti-GD2-IRDye800CW as a targeted probe for fluorescence-guided surgery in neuroblastoma. Sci Rep 2020;10:17667. [PMID: 33077751 DOI: 10.1038/s41598-020-74464-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
153 He H, Wang Z, Cheng T, Liu X, Wang X, Wang J, Ren H, Sun Y, Song Y, Yang J, Xia Y, Wang S, Zhang X, Huang F. Visible and Near-Infrared Dual-Emission Carbogenic Small Molecular Complex with High RNA Selectivity and Renal Clearance for Nucleolus and Tumor Imaging. ACS Appl Mater Interfaces 2016;8:28529-37. [DOI: 10.1021/acsami.6b10737] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
154 Yano S, Tazawa H, Kishimoto H, Kagawa S, Fujiwara T, Hoffman RM. Real-Time Fluorescence Image-Guided Oncolytic Virotherapy for Precise Cancer Treatment. Int J Mol Sci 2021;22:E879. [PMID: 33477279 DOI: 10.3390/ijms22020879] [Reference Citation Analysis]
155 Heuker M, Gomes A, van Dijl JM, van Dam GM, Friedrich AW, Sinha B, van Oosten M. Preclinical studies and prospective clinical applications for bacteria-targeted imaging: the future is bright. Clin Transl Imaging 2016;4:253-64. [PMID: 27512688 DOI: 10.1007/s40336-016-0190-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
156 Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020;8:8507-18. [DOI: 10.1039/d0tb00987c] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
157 Meijer RPJ, de Valk KS, Deken MM, Boogerd LSF, Hoogstins CES, Bhairosingh SS, Swijnenburg RJ, Bonsing BA, Framery B, Fariña Sarasqueta A, Putter H, Hilling DE, Burggraaf J, Cailler F, Mieog JSD, Vahrmeijer AL. Intraoperative detection of colorectal and pancreatic liver metastases using SGM-101, a fluorescent antibody targeting CEA. Eur J Surg Oncol 2021;47:667-73. [PMID: 33158638 DOI: 10.1016/j.ejso.2020.10.034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
158 Li YX, Su SP, Yang CH, Liu MH, Lo PH, Chen YC, Hsu CP, Lee YJ, Chiang HK, Chan YH. Molecular Design of Ultrabright Semiconducting Polymer Dots with High NIR-II Fluorescence for 3D Tumor Mapping. Adv Healthc Mater 2021;10:e2100993. [PMID: 34549550 DOI: 10.1002/adhm.202100993] [Reference Citation Analysis]
159 Sun B, Hettie KS, Zhu S. Near-infrared Fluorophores for Thrombosis Diagnosis and Therapy. Adv Ther (Weinh) 2021;4:2000278. [PMID: 33997270 DOI: 10.1002/adtp.202000278] [Reference Citation Analysis]
160 Feroldi F, Verlaan M, Knaus H, Davidoiu V, Vugts DJ, van Dongen GAMS, Molthoff CFM, de Boer JF. High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model. Biomed Opt Express 2018;9:6186-204. [PMID: 31065422 DOI: 10.1364/BOE.9.006186] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
161 Yang Y, Zhang F. Molecular fluorophores for in vivo bioimaging in the second near-infrared window. Eur J Nucl Med Mol Imaging 2022. [PMID: 35088125 DOI: 10.1007/s00259-022-05688-x] [Reference Citation Analysis]
162 Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, Ma H. Xanthene-Based NIR-II Dyes for In Vivo Dynamic Imaging of Blood Circulation. J Am Chem Soc 2021;143:17136-43. [PMID: 34632770 DOI: 10.1021/jacs.1c07711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
163 Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020;10:2631-44. [PMID: 32194825 DOI: 10.7150/thno.40808] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
164 Starodubov VI, Kurakova NG, Tsvetkova LA, Polyakova YV. [Achieving global academic leadership: an analysis of the highly cited segment of surgery publications]. Khirurgiia (Mosk) 2020;:115-23. [PMID: 33301265 DOI: 10.17116/hirurgia2020121115] [Reference Citation Analysis]
165 Mahalingam SM, Dudkin VY, Goldberg S, Klein D, Yi F, Singhal S, O’neil KT, Low PS. Evaluation of a Centyrin-Based Near-Infrared Probe for Fluorescence-Guided Surgery of Epidermal Growth Factor Receptor Positive Tumors. Bioconjugate Chem 2017;28:2865-73. [DOI: 10.1021/acs.bioconjchem.7b00566] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
166 Usama SM, Zhao B, Burgess K. A Near-IR Fluorescent Dasatinib Derivative That Localizes in Cancer Cells. Bioconjug Chem 2019;30:1175-81. [PMID: 30931563 DOI: 10.1021/acs.bioconjchem.9b00118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
167 Murphy PS, Patel N, McCarthy TJ. Has molecular imaging delivered to drug development? Philos Trans A Math Phys Eng Sci 2017;375:20170112. [PMID: 29038381 DOI: 10.1098/rsta.2017.0112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
168 Torres VC, Vuong VD, Wilson T, Wewel J, Byrne RW, Tichauer KM. Cranial nerve contrast using nerve-specific fluorophores improved by paired-agent imaging with indocyanine green as a control agent. J Biomed Opt 2017;22:1. [DOI: 10.1117/1.jbo.22.9.096012] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
169 Bardhan NM, Belcher AM. Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections. In: Benayas A, Hemmer E, Hong G, Jaque D, editors. Near Infrared-Emitting Nanoparticles for Biomedical Applications. Cham: Springer International Publishing; 2020. pp. 231-77. [DOI: 10.1007/978-3-030-32036-2_10] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Gu W, Zhang Q, Zhang T, Li Y, Xiang J, Peng R, Liu J. Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. J Mater Chem B 2016;4:910-9. [PMID: 32263164 DOI: 10.1039/c5tb01619c] [Cited by in Crossref: 30] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
171 Muntean V, Tantau A, Strilciuc S, Muntean MV. Intraoperative near-infrared fluorescence visualization of the duodenal gastrinoma in a patient with Zollinger-Ellison syndrome. Surgery 2016;159:1474-6. [PMID: 26209566 DOI: 10.1016/j.surg.2015.06.029] [Reference Citation Analysis]
172 Mieog JSD, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg RJ, Gioux S, Vahrmeijer AL. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2021. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Reference Citation Analysis]
173 Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. Adv Mater 2019;31:e1900321. [PMID: 31025403 DOI: 10.1002/adma.201900321] [Cited by in Crossref: 200] [Cited by in F6Publishing: 160] [Article Influence: 66.7] [Reference Citation Analysis]
174 Derks YHW, Löwik DWPM, Sedelaar JPM, Gotthardt M, Boerman OC, Rijpkema M, Lütje S, Heskamp S. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery. Theranostics 2019;9:6824-39. [PMID: 31660071 DOI: 10.7150/thno.36739] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
175 Yang C, Wang X, Wang M, Xu K, Xu C. Robust Colloidal Nanoparticles of Pyrrolopyrrole Cyanine J-Aggregates with Bright Near-Infrared Fluorescence in Aqueous Media: From Spectral Tailoring to Bioimaging Applications. Chemistry 2017;23:4310-9. [PMID: 27918633 DOI: 10.1002/chem.201604741] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
176 Liu Y, Gunda V, Zhu X, Xu X, Wu J, Askhatova D, Farokhzad OC, Parangi S, Shi J. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc Natl Acad Sci U S A 2016;113:7750-5. [PMID: 27342857 DOI: 10.1073/pnas.1605841113] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 8.3] [Reference Citation Analysis]
177 Kusada T, Ito M, Karube K, Shimoji S, Oota Y, Zaha M, Maemoto H, Makino W, Ishikawa K, Takehara S, Ariga T, Heianna J, Murayama S. Indocyanine green fluorescence angiography for detection of cutaneous angiosarcoma of the scalp: A case report. Photodiagnosis Photodyn Ther 2020;32:102087. [PMID: 33160062 DOI: 10.1016/j.pdpdt.2020.102087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
178 Wu D, Cheung S, Devocelle M, Zhang L, Chen Z, O'shea DF. Synthesis and assessment of a maleimide functionalized BF 2 azadipyrromethene near-infrared fluorochrome. Chem Commun 2015;51:16667-70. [DOI: 10.1039/c5cc06137g] [Cited by in Crossref: 26] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
179 Oleneva E, Panchenko A, Khaydukova M, Gubareva E, Bibikova O, Artyushenko V, Legin A, Kirsanov D. In vivo and in vitro application of near-infrared fiber optic probe for Ehrlich carcinoma distinction: Towards the development of real-time tumor margins assessment tool. Spectrochim Acta A Mol Biomol Spectrosc 2019;213:12-8. [PMID: 30677734 DOI: 10.1016/j.saa.2019.01.061] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
180 Han J, Zhang L, Cui M, Su Y, He Y. Rapid and Accurate Detection of Lymph Node Metastases Enabled through Fluorescent Silicon Nanoparticles-Based Exosome Probes. Anal Chem 2021;93:10122-31. [PMID: 34255475 DOI: 10.1021/acs.analchem.1c01010] [Reference Citation Analysis]
181 Cahill RA, O'Shea DF, Khan MF, Khokhar HA, Epperlein JP, Mac Aonghusa PG, Nair R, Zhuk SM. Artificial intelligence indocyanine green (ICG) perfusion for colorectal cancer intra-operative tissue classification. Br J Surg. 2021;108:5-9. [PMID: 33640921 DOI: 10.1093/bjs/znaa004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
182 Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthcare Mater 2018;7:1800477. [DOI: 10.1002/adhm.201800477] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 21.8] [Reference Citation Analysis]
183 Onda N, Kimura M, Yoshida T, Shibutani M. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging. Int J Cancer 2016;139:673-82. [PMID: 27006261 DOI: 10.1002/ijc.30102] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 6.7] [Reference Citation Analysis]
184 Lin X, He J, Li W, Qi Y, Hu H, Zhang D, Xu F, Chen X, Zhou M. Lung-Targeting Lysostaphin Microspheres for Methicillin-Resistant Staphylococcus aureus Pneumonia Treatment and Prevention. ACS Nano 2021;15:16625-41. [PMID: 34582183 DOI: 10.1021/acsnano.1c06460] [Reference Citation Analysis]
185 Gamache RF, Zettlitz KA, Tsai WK, Collins J, Wu AM, Murphy JM. Tri-functional platform for construction of modular antibody fragments for in vivo 18F-PET or NIRF molecular imaging. Chem Sci 2020;11:1832-8. [PMID: 34123276 DOI: 10.1039/c9sc05007h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
186 Missios S, Abbassy M, Vogelbaum MA, Recinos PF. Use of Image Fluorescence in the Resection of Gliomas. Curr Surg Rep 2015;3. [DOI: 10.1007/s40137-014-0076-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
187 Kong S, Bae S, Suh Y, Lee H, Yang H. Near-Infrared Fluorescence Lymph Node Navigation Using Indocyanine Green for Gastric Cancer Surgery. J Minim Invasive Surg 2018;21:95-105. [DOI: 10.7602/jmis.2018.21.3.95] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
188 [DOI: 10.1117/12.2038377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
189 Best QA, Johnson AE, Prasai B, Rouillere A, McCarley RL. Environmentally Robust Rhodamine Reporters for Probe-based Cellular Detection of the Cancer-linked Oxidoreductase hNQO1. ACS Chem Biol 2016;11:231-40. [PMID: 26555574 DOI: 10.1021/acschembio.5b00792] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
190 Watson JR, Gainer CF, Martirosyan N, Skoch J, Lemole GM Jr, Anton R, Romanowski M. Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images. J Biomed Opt 2015;20:106002. [PMID: 26440760 DOI: 10.1117/1.JBO.20.10.106002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
191 Gao X, Zhao C, Wei K, Hu B, Chen Y, Xu K, Tang B. A differential study on oxidized/reduced ascorbic acid induced tumor cells’ apoptosis under hypoxia. Analyst 2020;145:6363-8. [DOI: 10.1039/d0an01011a] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
192 Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, Pei R. Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS Appl Mater Interfaces 2017;9:12217-26. [DOI: 10.1021/acsami.6b16705] [Cited by in Crossref: 83] [Cited by in F6Publishing: 66] [Article Influence: 16.6] [Reference Citation Analysis]
193 Han YB, Song SH, Kang HG, Lee H, Hong SJ. SiPM-based gamma detector with a central GRIN lens for a visible/NIRF/gamma multi-modal laparoscope. Opt Express 2021;29:2364. [DOI: 10.1364/oe.415732] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
194 Schols RM, Connell NJ, Stassen LPS. Near-Infrared Fluorescence Imaging for Real-Time Intraoperative Anatomical Guidance in Minimally Invasive Surgery: A Systematic Review of the Literature. World J Surg 2015;39:1069-79. [DOI: 10.1007/s00268-014-2911-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 6.5] [Reference Citation Analysis]
195 Van Den Hoven P, Goncalves LN, Quax PHA, Van Rijswijk CSP, Van Schaik J, Schepers A, Vahrmeijer AL, Hamming JF, Van Der Vorst JR. Perfusion Patterns in Patients with Chronic Limb-Threatening Ischemia versus Control Patients Using Near-Infrared Fluorescence Imaging with Indocyanine Green. Biomedicines 2021;9:1417. [PMID: 34680534 DOI: 10.3390/biomedicines9101417] [Reference Citation Analysis]
196 Geyer A, Taschauer A, Alioglu F, Anton M, Maier J, Drothler E, Simlinger M, Yavuz S, Sami H, Ogris M. Multimodal Fluorescence and Bioluminescence Imaging Reveals Transfection Potential of Intratracheally Administered Polyplexes for Breast Cancer Lung Metastases. Hum Gene Ther 2017;28:1202-13. [PMID: 28874076 DOI: 10.1089/hum.2017.137] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
197 Sier VQ, de Vries MR, van der Vorst JR, Vahrmeijer AL, van Kooten C, Cruz LJ, de Geus-Oei LF, Ferreira V, Sier CFM, Alves F, Muthana M. Cell-Based Tracers as Trojan Horses for Image-Guided Surgery. Int J Mol Sci 2021;22:E755. [PMID: 33451116 DOI: 10.3390/ijms22020755] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
198 Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, Barroso EM, Koljenović S, Vahrmeijer AL, Baatenburg de Jong RJ, Puppels GJ, Keereweer S. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles. Eur J Nucl Med Mol Imaging 2022. [PMID: 35102436 DOI: 10.1007/s00259-022-05705-z] [Reference Citation Analysis]
199 Bourgeois P, Veys I, Noterman D, De Neubourg F, Chintinne M, Vankerckhove S, Nogaret JM. Near-Infrared Fluorescence Imaging of Breast Cancer and Axillary Lymph Nodes After Intravenous Injection of Free Indocyanine Green. Front Oncol 2021;11:602906. [PMID: 33767980 DOI: 10.3389/fonc.2021.602906] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
200 Pang HY, Liang XW, Chen XL, Zhou Q, Zhao LY, Liu K, Zhang WH, Yang K, Chen XZ, Hu JK. Assessment of indocyanine green fluorescence lymphography on lymphadenectomy during minimally invasive gastric cancer surgery: a systematic review and meta-analysis. Surg Endosc 2022. [PMID: 35079880 DOI: 10.1007/s00464-021-08830-2] [Reference Citation Analysis]
201 Asha Krishnan M, Yadav K, Roach P, Chelvam V. A targeted near-infrared nanoprobe for deep-tissue penetration and imaging of prostate cancer. Biomater Sci 2021;9:2295-312. [PMID: 33554988 DOI: 10.1039/d0bm01970d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
202 Meijer RPJ, van Manen L, Hartgrink HH, Burggraaf J, Gioux S, Vahrmeijer AL, Mieog JSD. Quantitative dynamic near-infrared fluorescence imaging using indocyanine green for analysis of bowel perfusion after mesenteric resection. J Biomed Opt 2021;26. [PMID: 34109769 DOI: 10.1117/1.JBO.26.6.060501] [Reference Citation Analysis]
203 van den Hoven P, Ooms S, van Manen L, van der Bogt KEA, van Schaik J, Hamming JF, Vahrmeijer AL, van der Vorst JR, Mieog JSD. A systematic review of the use of near-infrared fluorescence imaging in patients with peripheral artery disease. J Vasc Surg 2019;70:286-297.e1. [PMID: 31230648 DOI: 10.1016/j.jvs.2018.11.023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
204 Mao Y, Chi C, Yang F, Zhou J, He K, Li H, Chen X, Ye J, Wang J, Tian J. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. European Journal of Cardio-Thoracic Surgery 2017;52:1190-6. [DOI: 10.1093/ejcts/ezx207] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
205 Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry, Yu Q, Song Z, Liu B, Li M. Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics 2019;9:1264-79. [PMID: 30867829 DOI: 10.7150/thno.29101] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
206 van Driel PB, Boonstra MC, Prevoo HA, van de Giessen M, Snoeks TJ, Tummers QR, Keereweer S, Cordfunke RA, Fish A, van Eendenburg JD, Lelieveldt BP, Dijkstra J, van de Velde CJ, Kuppen PJ, Vahrmeijer AL, Löwik CW, Sier CF. EpCAM as multi-tumour target for near-infrared fluorescence guided surgery. BMC Cancer 2016;16:884. [PMID: 27842504 DOI: 10.1186/s12885-016-2932-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
207 Li B, Lu L, Zhao M, Lei Z, Zhang F. An Efficient 1064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging. Angew Chem Int Ed Engl 2018;57:7483-7. [PMID: 29493057 DOI: 10.1002/anie.201801226] [Cited by in Crossref: 267] [Cited by in F6Publishing: 224] [Article Influence: 66.8] [Reference Citation Analysis]
208 Yang L, Sajja HK, Cao Z, Qian W, Bender L, Marcus AI, Lipowska M, Wood WC, Wang YA. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection. Theranostics. 2013;4:106-118. [PMID: 24396518 DOI: 10.7150/thno.7409] [Cited by in Crossref: 41] [Cited by in F6Publishing: 53] [Article Influence: 4.6] [Reference Citation Analysis]
209 Liberale G, Vankerckhove S, Caldon MG, Ahmed B, Moreau M, Nakadi IE, Larsimont D, Donckier V, Bourgeois P; Group R&D for the Clinical Application of Fluorescence Imaging of the Jules Bordetʼs Institute. Fluorescence Imaging After Indocyanine Green Injection for Detection of Peritoneal Metastases in Patients Undergoing Cytoreductive Surgery for Peritoneal Carcinomatosis From Colorectal Cancer: A Pilot Study. Ann Surg 2016;264:1110-5. [PMID: 27828822 DOI: 10.1097/SLA.0000000000001618] [Cited by in Crossref: 66] [Cited by in F6Publishing: 40] [Article Influence: 13.2] [Reference Citation Analysis]
210 Liu Y, Zeng J, Li Q, Miao M, Song Z, Zhao M, Miao Q, Gao M. An APN‐Activated Chemiluminescent Probe for Image‐Guided Surgery of Malignant Tumors. Advanced Optical Materials. [DOI: 10.1002/adom.202102709] [Reference Citation Analysis]
211 Zian W, Yang L, Peng W, Yifei J, Min J. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging. Nanomedicine 2020;15:115-29. [DOI: 10.2217/nnm-2019-0233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
212 Zhang K, Sun Y, Wu S, Zhou M, Zhang X, Zhou R, Zhang T, Gao Y, Chen T, Chen Y, Yao X, Watanabe Y, Tian M, Zhang H. Systematic imaging in medicine: a comprehensive review. Eur J Nucl Med Mol Imaging 2021;48:1736-58. [PMID: 33210241 DOI: 10.1007/s00259-020-05107-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
213 Tummers QR, Verbeek FP, Schaafsma BE, Boonstra MC, van der Vorst JR, Liefers GJ, van de Velde CJ, Frangioni JV, Vahrmeijer AL. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and Methylene Blue. Eur J Surg Oncol 2014;40:850-8. [PMID: 24862545 DOI: 10.1016/j.ejso.2014.02.225] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 9.1] [Reference Citation Analysis]
214 Liu M, Chen T, Vicente JR, Yao C, Yang Y, Chen C, Lin P, Ho Y, Chen J, Lin S, Chan Y. Cyanine-Based Polymer Dots with Long-Wavelength Excitation and Near-Infrared Fluorescence beyond 900 nm for In Vivo Biological Imaging. ACS Appl Bio Mater 2020;3:3846-58. [DOI: 10.1021/acsabm.0c00417] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
215 Lee SH, Quan YH, Kim MS, Kwon KH, Choi BH, Kim HK, Kim BM. Design and Testing of Augmented Reality-Based Fluorescence Imaging Goggle for Intraoperative Imaging-Guided Surgery. Diagnostics (Basel) 2021;11:927. [PMID: 34064205 DOI: 10.3390/diagnostics11060927] [Reference Citation Analysis]
216 Koralli P, D. Nega A, Vagiaki LE, Pavlou A, Siskos MG, Dimitrakopoulou-strauss A, Gregoriou VG, Chochos CL. New conjugated polymer nanoparticles with high photoluminescence quantum yields for far-red and near infrared fluorescence bioimaging. Mater Chem Front 2020;4:2357-69. [DOI: 10.1039/d0qm00195c] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
217 Yu S, Zhang H, Zhang S, Zhong M, Fan H. Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Front Chem 2021;9:651053. [PMID: 33987168 DOI: 10.3389/fchem.2021.651053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
218 Yao S, Kim B, Yue X, Colon Gomez MY, Bondar MV, Belfield KD. Synthesis of Near-Infrared Fluorescent Two-Photon-Absorbing Fluorenyl Benzothiadiazole and Benzoselenadiazole Derivatives. ACS Omega 2016;1:1149-56. [PMID: 31457186 DOI: 10.1021/acsomega.6b00289] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
219 Grossi M, Morgunova M, Cheung S, Scholz D, Conroy E, Terrile M, Panarella A, Simpson JC, Gallagher WM, O'Shea DF. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time. Nat Commun 2016;7:10855. [PMID: 26927507 DOI: 10.1038/ncomms10855] [Cited by in Crossref: 113] [Cited by in F6Publishing: 102] [Article Influence: 18.8] [Reference Citation Analysis]
220 Mukherjee A, Kumar B, Hatano K, Russell LM, Trock BJ, Searson PC, Meeker AK, Pomper MG, Lupold SE. Development and Application of a Novel Model System to Study "Active" and "Passive" Tumor Targeting. Mol Cancer Ther 2016;15:2541-50. [PMID: 27486224 DOI: 10.1158/1535-7163.MCT-16-0051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
221 Blau R, Epshtein Y, Pisarevsky E, Tiram G, Israeli Dangoor S, Yeini E, Krivitsky A, Eldar-Boock A, Ben-Shushan D, Gibori H, Scomparin A, Green O, Ben-Nun Y, Merquiol E, Doron H, Blum G, Erez N, Grossman R, Ram Z, Shabat D, Satchi-Fainaro R. Image-guided surgery using near-infrared Turn-ON fluorescent nanoprobes for precise detection of tumor margins. Theranostics 2018;8:3437-60. [PMID: 30026858 DOI: 10.7150/thno.23853] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
222 Cao S, Pei Z, Xu Y, Pei Y. Glyco-Nanovesicles with Activatable Near-Infrared Probes for Real-Time Monitoring of Drug Release and Targeted Delivery. Chem Mater 2016;28:4501-6. [DOI: 10.1021/acs.chemmater.6b01857] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
223 Gutowski M, Framery B, Boonstra MC, Garambois V, Quenet F, Dumas K, Scherninski F, Cailler F, Vahrmeijer AL, Pèlegrin A. SGM-101: An innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surgical Oncology 2017;26:153-62. [DOI: 10.1016/j.suronc.2017.03.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
224 Chen C, Ni X, Tian HW, Liu Q, Guo DS, Ding D. Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2020;59:10008-12. [PMID: 31981392 DOI: 10.1002/anie.201916430] [Cited by in Crossref: 106] [Cited by in F6Publishing: 69] [Article Influence: 53.0] [Reference Citation Analysis]
225 Ding F, Fan Y, Sun Y, Zhang F. Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deep‐Tissue Molecular Imaging. Adv Healthcare Mater 2019;8:1900260. [DOI: 10.1002/adhm.201900260] [Cited by in Crossref: 78] [Cited by in F6Publishing: 59] [Article Influence: 26.0] [Reference Citation Analysis]
226 Miyata A, Ishizawa T, Tani K, Shimizu A, Kaneko J, Aoki T, Sakamoto Y, Sugawara Y, Hasegawa K, Kokudo N. Reappraisal of a Dye-Staining Technique for Anatomic Hepatectomy by the Concomitant Use of Indocyanine Green Fluorescence Imaging. J Am Coll Surg 2015;221:e27-36. [PMID: 26206659 DOI: 10.1016/j.jamcollsurg.2015.05.005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 7.3] [Reference Citation Analysis]
227 El-Sayed A, Bernhard W, Barreto K, Gonzalez C, Hill W, Pastushok L, Fonge H, Geyer CR. Evaluation of antibody fragment properties for near-infrared fluorescence imaging of HER3-positive cancer xenografts. Theranostics 2018;8:4856-69. [PMID: 30279742 DOI: 10.7150/thno.24252] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
228 Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021. [PMID: 33594473 DOI: 10.1007/s00259-021-05207-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
229 Zheng S, Zhang Y, Chen S, Zhang Z, Chen F, Zhang Z, Hu Z, Tian J, Wang L. A preliminary study of dual-band confocal laser endomicroscopy combined with image mosaic in the diagnosis of liver cancer. Nanomedicine 2020;29:102250. [PMID: 32619706 DOI: 10.1016/j.nano.2020.102250] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
230 Kusada T, Yogi A, Hirakawa H, Yasutomi Y, Aoyama H, Matsuo Y, Oota Y, Zaha M, Ariga T, Heianna J, Murayama S. Different indocyanine green fluorescence patterns of two skin metastases of hypopharyngeal squamous carcinoma: A case report. Photodiagnosis Photodyn Ther 2021;34:102211. [PMID: 33588057 DOI: 10.1016/j.pdpdt.2021.102211] [Reference Citation Analysis]
231 Saccomano M, Dullin C, Alves F, Napp J. Preclinical evaluation of near-infrared (NIR) fluorescently labeled cetuximab as a potential tool for fluorescence-guided surgery. Int J Cancer 2016;139:2277-89. [PMID: 27428782 DOI: 10.1002/ijc.30277] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
232 Daly HC, Conroy E, Todor M, Wu D, Gallagher WM, O'Shea DF. An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging. Theranostics 2020;10:3064-82. [PMID: 32194855 DOI: 10.7150/thno.42702] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
233 Yan K, Zhang Y, Mu C, Xu Q, Jing X, Wang D, Dang D, Meng L, Ma J. Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics 2020;10:7287-318. [PMID: 32641993 DOI: 10.7150/thno.46288] [Cited by in Crossref: 20] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
234 Barth CW, Gibbs SL. Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy. Theranostics 2017;7:573-93. [PMID: 28255352 DOI: 10.7150/thno.17433] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
235 Bahmani B, Guerrero Y, Bacon D, Kundra V, Vullev VI, Anvari B. Functionalized polymeric nanoparticles loaded with indocyanine green as theranostic materials for targeted molecular near infrared fluorescence imaging and photothermal destruction of ovarian cancer cells: FUNCTIONALIZED POLYMERIC NANOPARTICLES. Lasers Surg Med 2014;46:582-92. [DOI: 10.1002/lsm.22269] [Cited by in F6Publishing: 36] [Reference Citation Analysis]
236 Furman JL, Kang M, Choi S, Cao Y, Wold ED, Sun SB, Smider VV, Schultz PG, Kim CH. A genetically encoded aza-Michael acceptor for covalent cross-linking of protein-receptor complexes. J Am Chem Soc 2014;136:8411-7. [PMID: 24846839 DOI: 10.1021/ja502851h] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
237 Shou K, Qu C, Sun Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z. Multifunctional biomedical imaging in physiological and pathological conditions using a NIR-II probe. Adv Funct Mater 2017;27:1700995. [PMID: 29623009 DOI: 10.1002/adfm.201700995] [Cited by in Crossref: 107] [Cited by in F6Publishing: 102] [Article Influence: 21.4] [Reference Citation Analysis]
238 Yang Y, Zeng Z, Almatrafi E, Huang D, Zhang C, Xiong W, Cheng M, Zhou C, Wang W, Song B, Tang X, Zeng G, Xiao R, Li Z. Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews 2022;458:214427. [DOI: 10.1016/j.ccr.2022.214427] [Reference Citation Analysis]
239 Xu Z, Wang Y, Han J, Xu Q, Ren J, Xu J, Wang Y, Chai Z. Noninvasive Multimodal Imaging of Osteosarcoma and Lymph Nodes Using a 99m Tc-Labeled Biomineralization Nanoprobe. Anal Chem 2018;90:4529-34. [DOI: 10.1021/acs.analchem.7b04925] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
240 Liu H, Xu G, Zhu T, Wang R, Tan J, Zhao C, Gu X. Rational design of water-dispersible and biocompatible nanoprobes with H2S-triggered NIR emission for cancer cell imaging. J Mater Chem B 2020;8:6013-6. [PMID: 32633308 DOI: 10.1039/d0tb00173b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 Wang X, Xia J, Wang C, Liu L, Zhu S, Feng W, Li L. Preparation of Novel Fluorescent Nanocomposites Based on Au Nanoclusters and Their Application in Targeted Detection of Cancer Cells. ACS Appl Mater Interfaces 2017;9:44856-63. [DOI: 10.1021/acsami.7b16457] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
242 Zhou J, Yang F, Jiang G, Wang J. Applications of indocyanine green based near-infrared fluorescence imaging in thoracic surgery. J Thorac Dis 2016;8:S738-43. [PMID: 28066677 DOI: 10.21037/jtd.2016.09.49] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
243 Boogerd LSF, Boonstra MC, Prevoo HAJM, Handgraaf HJM, Kuppen PJK, van de Velde CJH, Fish A, Cordfunke RA, Valentijn ARPM, Terwisscha van Scheltinga AG, MacDonald GC, Cizeau J, Premsukh A, Vinkenburg van Slooten ML, Burggraaf J, Sier CFM, Vahrmeijer AL. Fluorescence-guided tumor detection with a novel anti-EpCAM targeted antibody fragment: Preclinical validation. Surg Oncol. 2019;28:1-8. [PMID: 30851880 DOI: 10.1016/j.suronc.2018.10.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
244 van der Laan JJH, van der Waaij AM, Gabriëls RY, Festen EAM, Dijkstra G, Nagengast WB. Endoscopic imaging in inflammatory bowel disease: current developments and emerging strategies. Expert Rev Gastroenterol Hepatol 2021;15:115-26. [PMID: 33094654 DOI: 10.1080/17474124.2021.1840352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
245 Li H, Conde J, Guerreiro A, Bernardes GJL. Tetrazine Carbon Nanotubes for Pretargeted In Vivo "Click-to-Release" Bioorthogonal Tumour Imaging. Angew Chem Int Ed Engl 2020;59:16023-32. [PMID: 32558207 DOI: 10.1002/anie.202008012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
246 Naczynski DJ, Stafford JH, Türkcan S, Jenkins C, Koh AL, Sun C, Xing L. Rare-Earth-Doped Nanoparticles for Short-Wave Infrared Fluorescence Bioimaging and Molecular Targeting of αVβ3-Expressing Tumors. Mol Imaging 2018;17:1536012118799131. [PMID: 30246593 DOI: 10.1177/1536012118799131] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
247 Yu S, Tu D, Lian W, Xu J, Chen X. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci China Mater 2019;62:1071-86. [DOI: 10.1007/s40843-019-9414-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 12.3] [Reference Citation Analysis]
248 Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 2017;1. [DOI: 10.1038/s41551-016-0010] [Cited by in Crossref: 990] [Cited by in F6Publishing: 578] [Article Influence: 198.0] [Reference Citation Analysis]
249 Hom ME, Rosenthal EL. Fluorescence Imaging to Identify Occult and Ectopic Parathyroid Glands-Revealing the Unseen. JAMA Otolaryngol Head Neck Surg 2021;147:671-2. [PMID: 33956090 DOI: 10.1001/jamaoto.2021.0628] [Reference Citation Analysis]
250 Crawford T, Moshnikova A, Roles S, Weerakkody D, DuPont M, Carter LM, Shen J, Engelman DM, Lewis JS, Andreev OA, Reshetnyak YK. pHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Sci Rep 2020;10:18356. [PMID: 33110131 DOI: 10.1038/s41598-020-75443-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
251 Shin K, Choi JW, Ko G, Baik S, Kim D, Park OK, Lee K, Cho HR, Han SI, Lee SH, Lee DJ, Lee N, Kim HC, Hyeon T. Multifunctional nanoparticles as a tissue adhesive and an injectable marker for image-guided procedures. Nat Commun 2017;8:15807. [PMID: 28722024 DOI: 10.1038/ncomms15807] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 6.2] [Reference Citation Analysis]
252 Handgraaf HJ, Boogerd LS, Shahbazi Feshtali S, Fariña Sarasqueta A, Snel M, Swijnenburg R, Vahrmeijer AL, Bonsing BA, Mieog JSD. Intraoperative Near-Infrared Fluorescence Imaging of Multiple Pancreatic Neuroendocrine Tumors: A Case Report. Pancreas 2018;47:130-3. [DOI: 10.1097/mpa.0000000000000951] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
253 Chiorazzo MG, Tunset HM, Popov AV, Johansen B, Moestue S, Delikatny EJ. Detection and Differentiation of Breast Cancer Sub-Types using a cPLA2α Activatable Fluorophore. Sci Rep 2019;9:6122. [PMID: 30992473 DOI: 10.1038/s41598-019-41626-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
254 Sun L, Chen L, Yang K, Dai WF, Yang Y, Cui X, Yang B, Wang C. A multiple functional supramolecular system for synergetic treatments of hepatocellular carcinoma. International Journal of Pharmaceutics 2022;619:121716. [DOI: 10.1016/j.ijpharm.2022.121716] [Reference Citation Analysis]
255 Su Y, Yu B, Wang S, Cong H, Shen Y. NIR-II bioimaging of small organic molecule. Biomaterials 2021;271:120717. [PMID: 33610960 DOI: 10.1016/j.biomaterials.2021.120717] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
256 Silindir-Gunay M, Sarcan ET, Ozer AY. Near-infrared imaging of diseases: A nanocarrier approach. Drug Dev Res 2019. [PMID: 30893508 DOI: 10.1002/ddr.21532] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
257 DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 2016;21:80901. [PMID: 27533438 DOI: 10.1117/1.JBO.21.8.080901] [Cited by in Crossref: 184] [Cited by in F6Publishing: 91] [Article Influence: 46.0] [Reference Citation Analysis]
258 Day AH, Domarkas J, Nigam S, Renard I, Cawthorne C, Burke BP, Bahra GS, Oyston PCF, Fallis IA, Archibald SJ, Pope SJA. Towards dual SPECT/optical bioimaging with a mitochondrial targeting, 99mTc(i) radiolabelled 1,8-naphthalimide conjugate. Dalton Trans 2020;49:511-23. [PMID: 31844857 DOI: 10.1039/c9dt04024b] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
259 van Manen L, Tummers QRJG, Inderson A, Bhalla A, Vahrmeijer AL, Bonsing BA, Mieog JSD. Intraoperative detection of the remnant cystic duct during robot-assisted surgery using near-infrared fluorescence imaging: a case report. BMC Surg 2019;19:104. [PMID: 31391103 DOI: 10.1186/s12893-019-0567-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
260 Miller SE, Tummers WS, Teraphongphom N, van den Berg NS, Hasan A, Ertsey RD, Nagpal S, Recht LD, Plowey ED, Vogel H, Harsh GR, Grant GA, Li GH, Rosenthal EL. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800. J Neurooncol 2018;139:135-43. [PMID: 29623552 DOI: 10.1007/s11060-018-2854-0] [Cited by in Crossref: 49] [Cited by in F6Publishing: 55] [Article Influence: 12.3] [Reference Citation Analysis]
261 van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021;13:6088. [PMID: 34885196 DOI: 10.3390/cancers13236088] [Reference Citation Analysis]
262 Houvast RD, Thijse K, Groen JV, Chua J, Vankemmelbeke M, Durrant LG, Mieog JSD, Bonsing BA, Vahrmeijer AL, Kuppen PJK, Crobach ASLP, Sier CFM. An Immunohistochemical Evaluation of Tumor-Associated Glycans and Mucins as Targets for Molecular Imaging of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:5777. [PMID: 34830932 DOI: 10.3390/cancers13225777] [Reference Citation Analysis]
263 Liu L, Wang X, Wang LJ, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. One-for-All Phototheranostic Agent Based on Aggregation-Induced Emission Characteristics for Multimodal Imaging-Guided Synergistic Photodynamic/Photothermal Cancer Therapy. ACS Appl Mater Interfaces 2021;13:19668-78. [PMID: 33896183 DOI: 10.1021/acsami.1c02260] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
264 Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020;20:38. [PMID: 32517801 DOI: 10.1186/s40644-020-00312-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
265 Xia Y, Xiang X, Dong K, Gong Y, Li Z. Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging. Science of The Total Environment 2020;729:138783. [DOI: 10.1016/j.scitotenv.2020.138783] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
266 Mchugh KJ, Jing L, Behrens AM, Jayawardena S, Tang W, Gao M, Langer R, Jaklenec A. Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. Adv Mater 2018;30:1706356. [DOI: 10.1002/adma.201706356] [Cited by in Crossref: 119] [Cited by in F6Publishing: 89] [Article Influence: 29.8] [Reference Citation Analysis]
267 Yang Y, Zhou D, Zhang Y, Zhang C, Tang S, Guo Y, Ma F, Yang H, Xiong L. NIR/photoacoustic imaging of multitype gallbladder cancer using carboxyl/amino functionalized polymer dots. Biomater Sci 2020;8:6657-69. [PMID: 33078791 DOI: 10.1039/d0bm01451f] [Reference Citation Analysis]
268 Wei M, Liang Y, Wang L, Li Z, Chen Y, Yan Z, Sun D, Huang Y, Zhong X, Liu P, Yu W. Clinical Application of Indocyanine Green Fluorescence Technology in Laparoscopic Radical Gastrectomy. Front Oncol 2022;12:847341. [DOI: 10.3389/fonc.2022.847341] [Reference Citation Analysis]
269 Ding F, Zhan Y, Lu X, Sun Y. Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 2018;9:4370-80. [PMID: 29896378 DOI: 10.1039/c8sc01153b] [Cited by in Crossref: 255] [Cited by in F6Publishing: 44] [Article Influence: 63.8] [Reference Citation Analysis]
270 Yan R, Hu Y, Liu F, Wei S, Fang D, Shuhendler AJ, Liu H, Chen HY, Ye D. Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. J Am Chem Soc 2019;141:10331-41. [PMID: 31244188 DOI: 10.1021/jacs.9b03649] [Cited by in Crossref: 108] [Cited by in F6Publishing: 86] [Article Influence: 36.0] [Reference Citation Analysis]
271 Huang X, Chen Q, Li X, Lin C, Wang K, Luo C, Le W, Pi X, Liu Z, Chen B. CKAP4 Antibody-Conjugated Si Quantum Dot Micelles for Targeted Imaging of Lung Cancer. Nanoscale Res Lett 2021;16:124. [PMID: 34331597 DOI: 10.1186/s11671-021-03575-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
272 Morais M, Campello MPC, Xavier C, Heemskerk J, Correia JDG, Lahoutte T, Caveliers V, Hernot S, Santos I. Radiolabeled Mannosylated Dextran Derivatives Bearing an NIR-Fluorophore for Sentinel Lymph Node Imaging. Bioconjugate Chem 2014;25:1963-70. [DOI: 10.1021/bc500336a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
273 Tian R, Zeng Q, Zhu S, Lau J, Chandra S, Ertsey R, Hettie KS, Teraphongphom T, Hu Z, Niu G, Kiesewetter DO, Sun H, Zhang X, Antaris AL, Brooks BR, Chen X. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv 2019;5:eaaw0672. [PMID: 31548981 DOI: 10.1126/sciadv.aaw0672] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 17.7] [Reference Citation Analysis]
274 Suganami A, Iwadate Y, Shibata S, Yamashita M, Tanaka T, Shinozaki N, Aoki I, Saeki N, Shirasawa H, Okamoto Y, Tamura Y. Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection. International Journal of Pharmaceutics 2015;496:401-6. [DOI: 10.1016/j.ijpharm.2015.10.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
275 Zhang X, Yuan Y, Li S, Zeng Q, Guo Q, Liu N, Yang M, Yang Y, Liu M, McMahon MT, Zhou X. Free-base porphyrins as CEST MRI contrast agents with highly upfield shifted labile protons. Magn Reson Med 2019;82:577-85. [PMID: 30968442 DOI: 10.1002/mrm.27753] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
276 Zhang C, Liu T, Luo P, Gao L, Liao X, Ma L, Jiang Z, Liu D, Yang Z, Jiang Q, Wang Y, Tan X, Luo S, Wang Y, Shi C. Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia-targeted imaging and therapy. Sci Adv 2021;7:eabb6104. [PMID: 33523835 DOI: 10.1126/sciadv.abb6104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
277 Gao Y, Wang C, Chi W, Liu X. Molecular Origins of Heteroatom Engineering on the Emission Wavelength Tuning, Quantum Yield Variations and Fluorogenicity of NBD-like SCOTfluors. Chem Asian J 2020;15:4082-6. [PMID: 33029926 DOI: 10.1002/asia.202000966] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
278 Mondal SB, Gao S, Zhu N, Liang R, Gruev V, Achilefu S. Real-time fluorescence image-guided oncologic surgery. Adv Cancer Res 2014;124:171-211. [PMID: 25287689 DOI: 10.1016/B978-0-12-411638-2.00005-7] [Cited by in Crossref: 90] [Cited by in F6Publishing: 46] [Article Influence: 12.9] [Reference Citation Analysis]
279 Kwon IG, Son T, Kim HI, Hyung WJ. Fluorescent Lymphography-Guided Lymphadenectomy During Robotic Radical Gastrectomy for Gastric Cancer.JAMA Surg. 2019;154:150-158. [PMID: 30427990 DOI: 10.1001/jamasurg.2018.4267] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 13.0] [Reference Citation Analysis]
280 Cheng H, Qiu X, Zhao X, Meng W, Huo D, Wei H. Functional Nucleic Acid Probe for Parallel Monitoring K + and Protoporphyrin IX in Living Organisms. Anal Chem 2016;88:2937-43. [DOI: 10.1021/acs.analchem.5b04936] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
281 Wang P, Fan Y, Lu L, Liu L, Fan L, Zhao M, Xie Y, Xu C, Zhang F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun 2018;9:2898. [PMID: 30042434 DOI: 10.1038/s41467-018-05113-8] [Cited by in Crossref: 190] [Cited by in F6Publishing: 170] [Article Influence: 47.5] [Reference Citation Analysis]
282 Yang J, Zheng R, An H, Wang H. In vivo Self-assembled Peptide Nanoprobes for Disease Diagnosis. Chem Res Chin Univ 2021;37:855-69. [DOI: 10.1007/s40242-021-1130-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
283 Zucal I, Geis S, Prantl L, Haerteis S, Aung T. Indocyanine Green for Leakage Control in Isolated Limb Perfusion. J Pers Med 2021;11:1152. [PMID: 34834504 DOI: 10.3390/jpm11111152] [Reference Citation Analysis]
284 Napp J, Stammes MA, Claussen J, Prevoo HA, Sier CF, Hoeben FJ, Robillard MS, Vahrmeijer AL, Devling T, Chan AB, de Geus-oei L, Alves F. Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma: MSOT for preoperative imaging of PDAC. Int J Cancer 2018;142:2118-29. [DOI: 10.1002/ijc.31236] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
285 Chen H, Zheng B, Liang C, Zhao L, Zhang Y, Pan H, Ji W, Gong X, Wang H, Chang J. Near-infrared persistent luminescence phosphors ZnGa2O4:Cr3+ as an accurately tracker to photothermal therapy in vivo for visual treatment. Materials Science and Engineering: C 2017;79:372-81. [DOI: 10.1016/j.msec.2017.05.053] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.8] [Reference Citation Analysis]
286 van Duijnhoven SM, Robillard MS, Langereis S, Grüll H. Bioresponsive probes for molecular imaging: concepts and in vivo applications. Contrast Media Mol Imaging 2015;10:282-308. [PMID: 25873263 DOI: 10.1002/cmmi.1636] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
287 Huang S, Liu W, Huang J, Wang X, Yang C, Bohra H, Liu Q, Wang M. Theranostic Colloidal Nanoparticles of Pyrrolopyrrole Cyanine Derivatives for Simultaneous Near-Infrared Fluorescence Cancer Imaging and Photothermal Therapy. ACS Appl Bio Mater 2018;1:1109-17. [DOI: 10.1021/acsabm.8b00321] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
288 Qi J, Duan X, Liu W, Li Y, Cai Y, Lam JW, Kwok RT, Ding D, Tang BZ. Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials 2020;248:120036. [DOI: 10.1016/j.biomaterials.2020.120036] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
289 Liu H, Wu P, Kuo S, Chen C, Chang E, Wu C, Chan Y. Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J Am Chem Soc 2015;137:10420-9. [DOI: 10.1021/jacs.5b06710] [Cited by in Crossref: 128] [Cited by in F6Publishing: 114] [Article Influence: 18.3] [Reference Citation Analysis]
290 Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021;16:022002. [PMID: 33142272 DOI: 10.1088/1748-605X/abc745] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
291 Zou Y, Li M, Xing Y, Duan T, Zhou X, Yu F. Bioimaging of Glutathione with a Two-Photon Fluorescent Probe and Its Potential Application for Surgery Guide in Laryngeal Cancer. ACS Sens 2020;5:242-9. [PMID: 31815435 DOI: 10.1021/acssensors.9b02118] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
292 Liu TW, Huynh E, Macdonald TD, Zheng G. Porphyrins for Imaging, Photodynamic Therapy, and Photothermal Therapy. Cancer Theranostics. Elsevier; 2014. pp. 229-54. [DOI: 10.1016/b978-0-12-407722-5.00014-1] [Cited by in Crossref: 4] [Article Influence: 0.5] [Reference Citation Analysis]
293 Okusanya OT, Madajewski B, Segal E, Judy BF, Venegas OG, Judy RP, Quatromoni JG, Wang MD, Nie S, Singhal S. Small portable interchangeable imager of fluorescence for fluorescence guided surgery and research. Technol Cancer Res Treat 2015;14:213-20. [PMID: 24354756 DOI: 10.7785/tcrt.2012.500400] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 3.4] [Reference Citation Analysis]
294 Singh N, Kumar P, Riaz U. Applications of near infrared and surface enhanced Raman scattering techniques in tumor imaging: A short review. Spectrochim Acta A Mol Biomol Spectrosc 2019;222:117279. [PMID: 31234091 DOI: 10.1016/j.saa.2019.117279] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
295 Xia H, Qin M, Wang Z, Wang Y, Chen B, Wan F, Tang M, Pan X, Yang Y, Liu J, Zhao R, Zhang Q, Wang Y. A pH-/Enzyme-Responsive Nanoparticle Selectively Targets Endosomal Toll-like Receptors to Potentiate Robust Cancer Vaccination. Nano Lett 2022. [PMID: 35302770 DOI: 10.1021/acs.nanolett.2c00185] [Reference Citation Analysis]
296 Naffouje SA, Goto M, Coward LU, Gorman GS, Christov K, Wang J, Green A, Shilkaitis A, Das Gupta TK, Yamada T. Nontoxic Tumor-Targeting Optical Agents for Intraoperative Breast Tumor Imaging. J Med Chem 2022. [PMID: 35544687 DOI: 10.1021/acs.jmedchem.2c00417] [Reference Citation Analysis]
297 Cheng MHY, Maruani A, Savoie H, Chudasama V, Boyle RW. Synthesis of a novel HER2 targeted aza-BODIPY–antibody conjugate: synthesis, photophysical characterisation and in vitro evaluation. Org Biomol Chem 2018;16:1144-9. [DOI: 10.1039/c7ob02957h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
298 Ueda Y, Ishiwata T, Shinji S, Arai T, Matsuda Y, Aida J, Sugimoto N, Okazaki T, Kikuta J, Ishii M, Sato M. In vivo imaging of T cell lymphoma infiltration process at the colon. Sci Rep 2018;8:3978. [PMID: 29507328 DOI: 10.1038/s41598-018-22399-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
299 Christensen A, Juhl K, Charabi B, Mortensen J, Kiss K, Kjær A, von Buchwald C. Feasibility of Real-Time Near-Infrared Fluorescence Tracer Imaging in Sentinel Node Biopsy for Oral Cavity Cancer Patients. Ann Surg Oncol 2016;23:565-72. [PMID: 26467454 DOI: 10.1245/s10434-015-4883-7] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
300 Ishizawa T, Kokudo N. The beginning of a new era of digestive surgery guided by fluorescence imaging. Liver Cancer. 2014;3:6-8. [PMID: 24804172 DOI: 10.1159/000343853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
301 Zhang K, Zhang J, Xi Z, Li LY, Gu X, Zhang QZ, Yi L. A new H2S-specific near-infrared fluorescence-enhanced probe that can visualize the H2S level in colorectal cancer cells in mice. Chem Sci 2017;8:2776-81. [PMID: 28553513 DOI: 10.1039/c6sc05646f] [Cited by in Crossref: 117] [Cited by in F6Publishing: 15] [Article Influence: 23.4] [Reference Citation Analysis]
302 Miampamba M, Liu J, Harootunian A, Gale AJ, Baird S, Chen SL, Nguyen QT, Tsien RY, González JE. Sensitive in vivo Visualization of Breast Cancer Using Ratiometric Protease-activatable Fluorescent Imaging Agent, AVB-620. Theranostics 2017;7:3369-86. [PMID: 28900516 DOI: 10.7150/thno.20678] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
303 Xi R, Zhang J, Zhang Y, Li S, Li Y, Li X, Chen L, Li C. Near-infrared asymmetrical heptamethine cyanines specifically imaging cancer cells by sensing their acidic lysosomal lumen. RSC Adv 2016;6:68220-6. [DOI: 10.1039/c6ra12381c] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
304 Cao F, Guo Y, Li Y, Tang S, Yang Y, Yang H, Xiong L. Fast and Accurate Imaging of Lymph Node Metastasis with Multifunctional Near-Infrared Polymer Dots. Adv Funct Mater 2018;28:1707174. [DOI: 10.1002/adfm.201707174] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
305 Mills B, Bradley M, Dhaliwal K. Optical imaging of bacterial infections. Clin Transl Imaging 2016;4:163-74. [PMID: 27340649 DOI: 10.1007/s40336-016-0180-0] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 7.7] [Reference Citation Analysis]
306 Gao R, Kodaimati MS, Yan D. Recent advances in persistent luminescence based on molecular hybrid materials. Chem Soc Rev 2021;50:5564-89. [PMID: 33690765 DOI: 10.1039/d0cs01463j] [Cited by in Crossref: 18] [Article Influence: 18.0] [Reference Citation Analysis]
307 Abbasi AZ, Prasad P, Cai P, He C, Foltz WD, Amini MA, Gordijo CR, Rauth AM, Wu XY. Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer. Journal of Controlled Release 2015;209:186-96. [DOI: 10.1016/j.jconrel.2015.04.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
308 Achterberg FB, Sibinga Mulder BG, Meijer RPJ, Bonsing BA, Hartgrink HH, Mieog JSD, Zlitni A, Park SM, Farina Sarasqueta A, Vahrmeijer AL, Swijnenburg RJ. Real-time surgical margin assessment using ICG-fluorescence during laparoscopic and robot-assisted resections of colorectal liver metastases. Ann Transl Med 2020;8:1448. [PMID: 33313193 DOI: 10.21037/atm-20-1999] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
309 Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Sun X, Shi X, Li C, Zhou T, Zhang Y, Chi C, He P, Xia X, Chen Y, Gambhir SS, Cheng Z, Tian J. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng 2020;4:259-71. [PMID: 31873212 DOI: 10.1038/s41551-019-0494-0] [Cited by in Crossref: 149] [Cited by in F6Publishing: 117] [Article Influence: 49.7] [Reference Citation Analysis]
310 Hyun H, Owens EA, Wada H, Levitz A, Park G, Park MH, Frangioni JV, Henary M, Choi HS. Cartilage-Specific Near-Infrared Fluorophores for Biomedical Imaging. Angew Chem Int Ed Engl 2015;54:8648-52. [PMID: 26095685 DOI: 10.1002/anie.201502287] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 10.1] [Reference Citation Analysis]
311 Ren Y, Winter H, Rosch JG, Jung K, Duross AN, Landry MR, Pratx G, Sun C. PEGylated β-NaGdF 4 /Tb@CaF 2 Core/Shell Nanophosphors for Enhanced Radioluminescence and Folate Receptor Targeting. ACS Appl Nano Mater 2019;2:3718-27. [DOI: 10.1021/acsanm.9b00629] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
312 Quarin S, Strobbia P. Recent Advances Towards Point-Of-Care Applications of Surface-Enhanced Raman Scattering Sensing. Front Chem 2021;9:714113. [PMID: 34434918 DOI: 10.3389/fchem.2021.714113] [Reference Citation Analysis]
313 Guria S, Ghosh A, Upadhyay P, Das MK, Mishra T, Adhikary A, Adhikari S. Small-Molecule Probe for Sensing Serum Albumin with Consequential Self-Assembly as a Fluorescent Organic Nanoparticle for Bioimaging and Drug-Delivery Applications. ACS Appl Bio Mater 2020;3:3099-113. [DOI: 10.1021/acsabm.0c00146] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
314 Kim JH, Byeon HK, Kim DH, Kim SH, Choi EC, Koh YW. ICG-Guided Sentinel Lymph Node Sampling during Robotic Retroauricular Neck Dissection in cN0 Oral Cancer. Otolaryngol Head Neck Surg 2020;162:410-3. [PMID: 32043908 DOI: 10.1177/0194599819900264] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
315 Roberts DW. Editorial: Applications of fluorescent technology in neurosurgery. FOC 2014;36:E2. [DOI: 10.3171/2013.12.focus13546] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
316 Huisman BW, Cankat M, Bosse T, Vahrmeijer AL, Rissmann R, Burggraaf J, Sier CFM, van Poelgeest MIE. Integrin αvβ6 as a Target for Tumor-Specific Imaging of Vulvar Squamous Cell Carcinoma and Adjacent Premalignant Lesions. Cancers (Basel) 2021;13:6006. [PMID: 34885116 DOI: 10.3390/cancers13236006] [Reference Citation Analysis]
317 Li Y, Fan X, Li Y, Zhu L, Chen R, Zhang Y, Ni H, Xia Q, Feng Z, Tang BZ, Qian J, Lin H. Biologically excretable AIE nanoparticles wear tumor cell-derived “exosome caps” for efficient NIR-II fluorescence imaging-guided photothermal therapy. Nano Today 2021;41:101333. [DOI: 10.1016/j.nantod.2021.101333] [Reference Citation Analysis]
318 De Rose F, Braeuer M, Braesch-Andersen S, Otto AM, Steiger K, Reder S, Mall S, Nekolla S, Schwaiger M, Weber WA, Bartolazzi A, D'Alessandria C. Galectin-3 Targeting in Thyroid Orthotopic Tumors Opens New Ways to Characterize Thyroid Cancer. J Nucl Med 2019;60:770-6. [PMID: 30361380 DOI: 10.2967/jnumed.118.219105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
319 Zhang W, Hu Z, Tian J, Fang C. A narrative review of near-infrared fluorescence imaging in hepatectomy for hepatocellular carcinoma. Ann Transl Med 2021;9:171. [PMID: 33569473 DOI: 10.21037/atm-20-5341] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
320 Wang S, Liu L, Fan Y, El-toni AM, Alhoshan MS, li D, Zhang F. In Vivo High-resolution Ratiometric Fluorescence Imaging of Inflammation Using NIR-II Nanoprobes with 1550 nm Emission. Nano Lett 2019;19:2418-27. [DOI: 10.1021/acs.nanolett.8b05148] [Cited by in Crossref: 103] [Cited by in F6Publishing: 77] [Article Influence: 34.3] [Reference Citation Analysis]
321 Wu D, Daly HC, Grossi M, Conroy E, Li B, Gallagher WM, Elmes R, O'Shea DF. RGD conjugated cell uptake off to on responsive NIR-AZA fluorophores: applications toward intraoperative fluorescence guided surgery. Chem Sci 2019;10:6944-56. [PMID: 31588261 DOI: 10.1039/c9sc02197c] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
322 Thavornpradit S, Usama SM, Park GK, Dinh J, Choi HS, Burgess K. QuatCy-I 2 and MHI-I 2 in Photodynamic Therapy. ACS Med Chem Lett . [DOI: 10.1021/acsmedchemlett.1c00640] [Reference Citation Analysis]
323 Khalid A, Norello R, N Abraham A, Tetienne JP, J Karle T, W C Lui E, Xia K, A Tran P, J O'Connor A, G Mann B, de Boer R, He Y, Man Ching Ng A, B Djurisic A, Shukla R, Tomljenovic-Hanic S. Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. Nanomaterials (Basel) 2019;9:E1360. [PMID: 31547487 DOI: 10.3390/nano9101360] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
324 Vuijk FA, de Muynck LDAN, Franken LC, Busch OR, Wilmink JW, Besselink MG, Bonsing BA, Bhairosingh SS, Kuppen PJK, Mieog JSD, Sier CFM, Vahrmeijer AL, Verheij J, Fariňa-Sarasqueta A, Swijnenburg RJ. Molecular targets for diagnostic and intraoperative imaging of pancreatic ductal adenocarcinoma after neoadjuvant FOLFIRINOX treatment. Sci Rep 2020;10:16211. [PMID: 33004930 DOI: 10.1038/s41598-020-73242-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
325 Korb ML, Warram JM, Grudzinski J, Weichert J, Jeffery J, Rosenthal EL. Breast cancer imaging using the near-infrared fluorescent agent, CLR1502. Mol Imaging 2014;13. [PMID: 25743270 DOI: 10.2310/7290.2014.00040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
326 Han KN, Kim HK. Imaging techniques for minimally invasive thoracic surgery-Korea University Guro Hospital experiences. J Thorac Dis 2018;10:S731-8. [PMID: 29732194 DOI: 10.21037/jtd.2018.03.114] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
327 Boogerd LSF, Handgraaf HJM, Huurman VAL, Lam HD, Mieog JSD, van der Made WJ, van de Velde CJH, Vahrmeijer AL. The Best Approach for Laparoscopic Fluorescence Cholangiography: Overview of the Literature and Optimization of Dose and Dosing Time. Surg Innov 2017;24:386-96. [PMID: 28457194 DOI: 10.1177/1553350617702311] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
328 Boogerd LS, Handgraaf HJ, Lam HD, Huurman VA, Farina-Sarasqueta A, Frangioni JV, van de Velde CJ, Braat AE, Vahrmeijer AL. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg Endosc. 2017;31:952-961. [PMID: 27357928 DOI: 10.1007/s00464-016-5007-6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
329 Ji S, Gao H, Mu W, Ni X, Yi X, Shen J, Liu Q, Bao P, Ding D. Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells. J Mater Chem B 2018;6:2566-73. [DOI: 10.1039/c7tb02685d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
330 Sheng D, Liu T, Deng L, Zhang L, Li X, Xu J, Hao L, Li P, Ran H, Chen H, Wang Z. Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018;165:1-13. [PMID: 29500978 DOI: 10.1016/j.biomaterials.2018.02.041] [Cited by in Crossref: 104] [Cited by in F6Publishing: 100] [Article Influence: 26.0] [Reference Citation Analysis]
331 An HW, Li LL, Wang Y, Wang Z, Hou D, Lin YX, Qiao SL, Wang MD, Yang C, Cong Y, Ma Y, Zhao XX, Cai Q, Chen WT, Lu CQ, Xu W, Wang H, Zhao Y. A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging. Nat Commun 2019;10:4861. [PMID: 31649241 DOI: 10.1038/s41467-019-12848-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 16.0] [Reference Citation Analysis]
332 Cilliers C, Nessler I, Christodolu N, Thurber GM. Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of Dye Structure and Degree of Labeling on Plasma Clearance. Mol Pharm 2017;14:1623-33. [PMID: 28294622 DOI: 10.1021/acs.molpharmaceut.6b01091] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 10.2] [Reference Citation Analysis]
333 Homulle HA, Powolny F, Stegehuis PL, Dijkstra J, Li DU, Homicsko K, Rimoldi D, Muehlethaler K, Prior JO, Sinisi R, Dubikovskaya E, Charbon E, Bruschini C. Compact solid-state CMOS single-photon detector array for in vivo NIR fluorescence lifetime oncology measurements. Biomed Opt Express 2016;7:1797-814. [PMID: 27231622 DOI: 10.1364/BOE.7.001797] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
334 Hoogstins CE, Weixler B, Boogerd LS, Hoppener DJ, Prevoo HA, Sier CF, Burger JW, Verhoef C, Bhairosingh S, Farina Sarasqueta A. In Search for Optimal Targets for Intraoperative Fluorescence Imaging of Peritoneal Metastasis From Colorectal Cancer. Biomark Cancer. 2017;9:1179299X17728254. [PMID: 28874886 DOI: 10.1177/1179299x17728254] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
335 Tang Y, Li Y, Li S, Hu H, Wu Y, Xiao C, Chu Z, Li Z, Yang X. Transformable nanotherapeutics enabled by ICG: towards enhanced tumor penetration under NIR light irradiation. Nanoscale 2019;11:6217-27. [DOI: 10.1039/c9nr01049a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
336 Capistrano G, Sousa-junior AA, Silva RA, Mello-andrade F, Cintra ER, Santos S, Nunes AD, Lima RM, Zufelato N, Oliveira AS, Pereira M, Castro CH, Lima EM, Cardoso CG, Silveira-lacerda E, Mendanha SA, Bakuzis AF. IR-780-Albumin-Based Nanocarriers Promote Tumor Regression Not Only from Phototherapy but Also by a Nonirradiation Mechanism. ACS Biomater Sci Eng 2020;6:4523-38. [DOI: 10.1021/acsbiomaterials.0c00164] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
337 Dai J, Xue H, Chen D, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for assisted cancer surgery. Coordination Chemistry Reviews 2022;464:214552. [DOI: 10.1016/j.ccr.2022.214552] [Reference Citation Analysis]
338 Miller J, Wang ST, Orukari I, Prior J, Sudlow G, Su X, Liang K, Tang R, Hillman EMC, Weilbaecher KN, Culver JP, Berezin MY, Achilefu S. Perfusion-based fluorescence imaging method delineates diverse organs and identifies multifocal tumors using generic near-infrared molecular probes. J Biophotonics 2018;11:e201700232. [PMID: 29206348 DOI: 10.1002/jbio.201700232] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
339 Nishino H, Seo S, Hatano E, Nitta T, Morino K, Toda R, Fukumitsu K, Ishii T, Taura K, Uemoto S. What is a precise anatomic resection of the liver? Proposal of a new evaluation method in the era of fluorescence navigation surgery. J Hepatobiliary Pancreat Sci 2021;28:479-88. [PMID: 32896953 DOI: 10.1002/jhbp.824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
340 Zhang X, Wang B, Zhao N, Tian Z, Dai Y, Nie Y, Tian J, Wang Z, Chen X. Improved Tumor Targeting and Longer Retention Time of NIR Fluorescent Probes Using Bioorthogonal Chemistry. Theranostics 2017;7:3794-802. [PMID: 29109777 DOI: 10.7150/thno.20912] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
341 Usama SM, Thapaliya ER, Luciano MP, Schnermann MJ. Not so innocent: Impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 2021;63:38-45. [PMID: 33684856 DOI: 10.1016/j.cbpa.2021.01.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
342 Romanzi A, Mancini R, Ioni L, Picconi T, Pernazza G. ICG-NIR-guided lymph node dissection during robotic subtotal gastrectomy for gastric cancer. A single-centre experience. Int J Med Robot 2021;17:e2213. [PMID: 33372409 DOI: 10.1002/rcs.2213] [Reference Citation Analysis]
343 Duan X, Zhang G, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging‐Modality Transformable Characteristics for Improved Biological Applications**. Angewandte Chemie. [DOI: 10.1002/ange.202116174] [Reference Citation Analysis]
344 Liu L, Liu R, Wang X, Cui Q, Yao C, Zhu S, Li L. Facile Preparation of Fluorescent Nanoparticles with Tunable Exciplex Emission and Their Application to Targeted Cellular Imaging. ACS Appl Bio Mater 2018;1:185-92. [DOI: 10.1021/acsabm.8b00116] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
345 Kumar AT, Carp SA, Yang J, Ross A, Medarova Z, Ran C. Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors. J Biomed Opt 2017;22:40501. [PMID: 28397959 DOI: 10.1117/1.JBO.22.4.040501] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
346 Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Reference Citation Analysis]
347 Wang P, Wang X, Luo Q, Li Y, Lin X, Fan L, Zhang Y, Liu J, Liu X. Fabrication of Red Blood Cell-Based Multimodal Theranostic Probes for Second Near-Infrared Window Fluorescence Imaging-Guided Tumor Surgery and Photodynamic Therapy. Theranostics 2019;9:369-80. [PMID: 30809280 DOI: 10.7150/thno.29817] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 15.3] [Reference Citation Analysis]
348 Barth CW, Shah VM, Wang LG, Antaris AL, Klaassen A, Sorger J, Rao DA, Kerr DA, Henderson ER, Alani AWG, Gibbs SL. Clinically translatable formulation strategies for systemic administration of nerve-specific probes. Adv Ther (Weinh) 2021;4:2100002. [PMID: 34423111 DOI: 10.1002/adtp.202100002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
349 Zhang X, Wang B, Xia Y, Zhao S, Tian Z, Ning P, Wang Z. In Vivo and in Situ Activated Aggregation-Induced Emission Probes for Sensitive Tumor Imaging Using Tetraphenylethene-Functionalized Trimethincyanines-Encapsulated Liposomes. ACS Appl Mater Interfaces 2018;10:25146-53. [DOI: 10.1021/acsami.8b07727] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
350 Elliott JT, Dsouza AV, Marra K, Pogue BW, Roberts DW, Paulsen KD. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules. Biomed Opt Express 2016;7:3280-8. [PMID: 27699098 DOI: 10.1364/BOE.7.003280] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
351 Zhang M, Jiang H, Zhang R, Jiang H, Xu H, Pan W, Gao X, Sun Z. Near-infrared fluorescence-labeled anti-PD-L1-mAb for tumor imaging in human colorectal cancer xenografted mice. J Cell Biochem 2019;120:10239-47. [PMID: 30609118 DOI: 10.1002/jcb.28308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
352 Newton AD, Predina JD, Nie S, Low PS, Singhal S. Intraoperative fluorescence imaging in thoracic surgery. J Surg Oncol 2018;118:344-55. [PMID: 30098293 DOI: 10.1002/jso.25149] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
353 Chan Y, Wu P. Semiconducting Polymer Nanoparticles as Fluorescent Probes for Biological Imaging and Sensing. Part Part Syst Charact 2015;32:11-28. [DOI: 10.1002/ppsc.201400123] [Cited by in Crossref: 98] [Cited by in F6Publishing: 66] [Article Influence: 12.3] [Reference Citation Analysis]
354 Sun H, Zhang Q, Li J, Peng S, Wang X, Cai R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 2021;37:101073. [DOI: 10.1016/j.nantod.2020.101073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
355 Yi X, Li J, Zhu Z, Liu Q, Xue Q, Ding D. In vivo cancer research using aggregation-induced emission organic nanoparticles. Drug Discovery Today 2017;22:1412-20. [DOI: 10.1016/j.drudis.2017.04.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
356 Xie B, Stammes MA, van Driel PB, Cruz LJ, Knol-Blankevoort VT, Löwik MA, Mezzanotte L, Que I, Chan A, van den Wijngaard JP, Siebes M, Gottschalk S, Razansky D, Ntziachristos V, Keereweer S, Horobin RW, Hoehn M, Kaijzel EL, van Beek ER, Snoeks TJ, Löwik CW. Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models. Oncotarget 2015;6:39036-49. [PMID: 26472022 DOI: 10.18632/oncotarget.5498] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
357 Zhang C, Jiang D, Huang B, Wang C, Zhao L, Xie X, Zhang Z, Wang K, Tian J, Luo Y. Methylene Blue-Based Near-Infrared Fluorescence Imaging for Breast Cancer Visualization in Resected Human Tissues. Technol Cancer Res Treat 2019;18:1533033819894331. [PMID: 31835962 DOI: 10.1177/1533033819894331] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
358 Kang S, Wang YW, Xu X, Navarro E, Tichauer KM, Liu JTC. Microscopic investigation of" topically applied nanoparticles for molecular imaging of fresh tissue surfaces. J Biophotonics 2018;11:e201700246. [PMID: 29227576 DOI: 10.1002/jbio.201700246] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
359 Modicano P, Neumann PR, Schüller M, Holthof J, Kyrilis FL, Hamdi F, Kastritis PL, Mäder K, Ann Dailey L. Enhanced optical imaging properties of lipid nanocapsules as vehicles for fluorescent conjugated polymers. Eur J Pharm Biopharm 2020;154:297-308. [PMID: 32707286 DOI: 10.1016/j.ejpb.2020.07.017] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
360 Zapardiel I, Alvarez J, Barahona M, Barri P, Boldo A, Bresco P, Gasca I, Jaunarena I, Kucukmetin A, Mancebo G, Otero B, Roldan F, Rovira R, Suarez E, Tejerizo A, Torrent A, Gorostidi M. Utility of Intraoperative Fluorescence Imaging in Gynecologic Surgery: Systematic Review and Consensus Statement. Ann Surg Oncol 2021;28:3266-78. [PMID: 33095359 DOI: 10.1245/s10434-020-09222-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
361 Zeng X, Xue L, Chen D, Li S, Nong J, Wang B, Tang L, Li Q, Li Y, Deng Z, Hong X, Wu M, Xiao Y. A bright NIR-II fluorescent probe for breast carcinoma imaging and image-guided surgery. Chem Commun (Camb) 2019;55:14287-90. [PMID: 31712798 DOI: 10.1039/c9cc07694h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
362 Al-Taher M, Barberio M, Felli E, Agnus V, Ashoka AH, Gioux S, Klymchenko A, Bouvy N, Stassen L, Marescaux J, Diana M. Simultaneous multipurpose fluorescence imaging with IRDye® 800BK during laparoscopic surgery. Surg Endosc 2021;35:4840-8. [PMID: 32860134 DOI: 10.1007/s00464-020-07931-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
363 Rowe SP, Pomper MG. Molecular imaging in oncology: Current impact and future directions. CA Cancer J Clin 2021. [PMID: 34902160 DOI: 10.3322/caac.21713] [Reference Citation Analysis]
364 Wu D, Daly HC, Conroy E, Li B, Gallagher WM, Cahill RA, O'Shea DF. PEGylated BF2-Azadipyrromethene (NIR-AZA) fluorophores, for intraoperative imaging. Eur J Med Chem. 2019;161:343-353. [PMID: 30368132 DOI: 10.1016/j.ejmech.2018.10.046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
365 Budner O, Cwalinski T, Skokowski J, Marano L, Resca L, Cwalina N, Kalinowski L, Hoveling R, Roviello F, Polom K. Methylene Blue Near-Infrared Fluorescence Imaging in Breast Cancer Sentinel Node Biopsy. Cancers 2022;14:1817. [DOI: 10.3390/cancers14071817] [Reference Citation Analysis]
366 Siegenthaler F, Imboden S, Knabben L, Mohr S, Papadia A, Mueller MD. Exploratory Study of the Clinical Value of Near-Infrared Sentinel Lymph Node Mapping With Indocyanine Green in Vulvar Cancer Patients. Front Oncol 2021;11:652458. [PMID: 33968754 DOI: 10.3389/fonc.2021.652458] [Reference Citation Analysis]
367 Sarkaria IS, Luketich JD. Seeing green…augmentation of lymph node assessment with near-infrared imaging in esophageal cancer resections. The Journal of Thoracic and Cardiovascular Surgery 2016;152:555-6. [DOI: 10.1016/j.jtcvs.2016.05.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
368 Zhao Q, Shi M, Yin C, Zhao Z, Zhang J, Wang J, Shen K, Zhang L, Tang H, Xiao Y, Zhang Y. Dual-Wavelength Photosensitive Nano-in-Micro Scaffold Regulates Innate and Adaptive Immune Responses for Osteogenesis. Nanomicro Lett 2020;13:28. [PMID: 34138183 DOI: 10.1007/s40820-020-00540-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
369 Baart VM, van der Horst G, Deken MM, Bhairosingh SS, Schomann T, Sier VQ, van der Mark MH, Iamele L, de Jonge H, Resnati M, Mazar AP, Pelger RCM, van der Pluijm G, Kuppen PJK, Vahrmeijer AL, Sier CFM. A multimodal molecular imaging approach targeting urokinase plasminogen activator receptor for the diagnosis, resection and surveillance of urothelial cell carcinoma. Eur J Cancer 2021;146:11-20. [PMID: 33561783 DOI: 10.1016/j.ejca.2021.01.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
370 Lin W, Li Y, Zhang W, Liu S, Xie Z, Jing X. Near-Infrared Polymeric Nanoparticles with High Content of Cyanine for Bimodal Imaging and Photothermal Therapy. ACS Appl Mater Interfaces 2016;8:24426-32. [PMID: 27504738 DOI: 10.1021/acsami.6b07103] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
371 Thavornpradit S, Usama SM, Park GK, Shrestha JP, Nomura S, Baek Y, Choi HS, Burgess K. QuatCy: A Heptamethine Cyanine Modification With Improved Characteristics. Theranostics 2019;9:2856-67. [PMID: 31244928 DOI: 10.7150/thno.33595] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
372 Hou D, Wang M, Hu X, Wang Z, Zhang N, Lv G, Wang J, Wu X, Wang L, Wang H, Xu W. An activated excretion-retarded tumor imaging strategy towards metabolic organs. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.12.003] [Reference Citation Analysis]
373 Li H, Lee C, Shin I. Preparation of a Multiple-Targeting NIR-Based Fluorogenic Probe and Its Application for Selective Cancer Cell Imaging. Org Lett 2019;21:4628-31. [DOI: 10.1021/acs.orglett.9b01530] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
374 Li D, Qu C, Liu Q, Wu Y, Hu X, Qian K, Chang B, He S, Yuan Y, Li Y, Ko T, Yu A, Cheng Z. Monitoring the Real‐Time Circulatory System‐Related Physiological and Pathological Processes In Vivo Using a Multifunctional NIR‐II Probe. Adv Funct Mater 2019;30:1906343. [DOI: 10.1002/adfm.201906343] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 8.7] [Reference Citation Analysis]
375 Numasawa K, Hanaoka K, Saito N, Yamaguchi Y, Ikeno T, Echizen H, Yasunaga M, Komatsu T, Ueno T, Miura M, Nagano T, Urano Y. A Fluorescent Probe for Rapid, High‐Contrast Visualization of Folate‐Receptor‐Expressing Tumors In Vivo. Angew Chem Int Ed 2020;59:6015-20. [DOI: 10.1002/anie.201914826] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
376 Lukianova-hleb EY, Kim Y, Belatsarkouski I, Gillenwater AM, O'neill BE, Lapotko DO. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nature Nanotech 2016;11:525-32. [DOI: 10.1038/nnano.2015.343] [Cited by in Crossref: 100] [Cited by in F6Publishing: 84] [Article Influence: 16.7] [Reference Citation Analysis]
377 Sato K, Nagaya T, Nakamura Y, Harada T, Nani RR, Shaum JB, Gorka AP, Kim I, Paik CH, Choyke PL, Schnermann MJ, Kobayashi H. Impact of C4'-O-Alkyl Linker on in Vivo Pharmacokinetics of Near-Infrared Cyanine/Monoclonal Antibody Conjugates. Mol Pharm 2015;12:3303-11. [PMID: 26261913 DOI: 10.1021/acs.molpharmaceut.5b00472] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
378 Chen J, Zhang C, Guo Y, Chang X, Ma R, Ye X, Cheng H, Li Y, Cui H. Evaluation of a novel ovarian cancer-specific fluorescent antibody probe for targeted near-infrared fluorescence imaging. World J Surg Oncol 2020;18:66. [PMID: 32252772 DOI: 10.1186/s12957-020-01843-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
379 Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 2018;115:4465-70. [DOI: 10.1073/pnas.1718917115] [Cited by in Crossref: 242] [Cited by in F6Publishing: 201] [Article Influence: 60.5] [Reference Citation Analysis]
380 Boogerd LSF, Vuijk FA, Hoogstins CES, Handgraaf HJM, van der Valk MJM, Kuppen PJK, Sier CFM, van de Velde CJH, Burggraaf J, Fariña-Sarasqueta A, Vahrmeijer AL. Correlation Between Preoperative Serum Carcinoembryonic Antigen Levels and Expression on Pancreatic and Rectal Cancer Tissue. Biomark Cancer 2017;9:1179299X17710016. [PMID: 28579847 DOI: 10.1177/1179299X17710016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
381 Onda N, Mizutani-Morita R, Yamashita S, Nagahara R, Matsumoto S, Yoshida T, Shibutani M. Fluorescence contrast-enhanced proliferative lesion imaging by enema administration of indocyanine green in a rat model of colon carcinogenesis. Oncotarget 2017;8:90278-90. [PMID: 29163827 DOI: 10.18632/oncotarget.21744] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
382 Shen Q, Wang S, Yang N, Zhang C, Wu Q, Yu C. Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window. Journal of Luminescence 2020;225:117338. [DOI: 10.1016/j.jlumin.2020.117338] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
383 Wang C, Chen X, Hong J, Meng L, Cheng W, Zhu X, Lu J, Li P. Extendable, large-field multi-modal optical imaging system for measuring tissue hemodynamics. Biomed Opt Express 2020;11:2339-51. [PMID: 32499927 DOI: 10.1364/BOE.386197] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
384 Liu S, Ou H, Li Y, Zhang H, Liu J, Lu X, Kwok RT, Lam JW, Ding D, Tang BZ. Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. J Am Chem Soc 2020;142:15146-56. [DOI: 10.1021/jacs.0c07193] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 18.0] [Reference Citation Analysis]
385 Daly HC, Sampedro G, Bon C, Wu D, Ismail G, Cahill RA, O'Shea DF. BF2-azadipyrromethene NIR-emissive fluorophores with research and clinical potential. Eur J Med Chem 2017;135:392-400. [PMID: 28460313 DOI: 10.1016/j.ejmech.2017.04.051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
386 Slooter MD, Mansvelders MSE, Bloemen PR, Gisbertz SS, Bemelman WA, Tanis PJ, Hompes R, van Berge Henegouwen MI, de Bruin DM. Defining indocyanine green fluorescence to assess anastomotic perfusion during gastrointestinal surgery: systematic review. BJS Open. 2021;5. [PMID: 33893811 DOI: 10.1093/bjsopen/zraa074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
387 Kim H, Choi HS, Kim SK, Lee BI, Choi Y. Antigen-responsive molecular sensor enables real-time tumor-specific imaging. Theranostics 2017;7:952-61. [PMID: 28382167 DOI: 10.7150/thno.16647] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
388 Handgraaf HJM, Boonstra MC, Prevoo HAJM, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten ML, Valentijn ARPM, Burggraaf J, van de Velde CJH, Frangioni JV, Vahrmeijer AL. Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 2017;8:21054-66. [PMID: 28416744 DOI: 10.18632/oncotarget.15486] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
389 Yoo JS, Das RK, Jow ZY, Chang YT. In vivo detection of macrophage recruitment in hind-limb ischemia using a targeted near-infrared fluorophore. PLoS One 2014;9:e103721. [PMID: 25072508 DOI: 10.1371/journal.pone.0103721] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
390 Polikarpov DM, Campbell DH, McRobb LS, Wu J, Lund ME, Lu Y, Deyev SM, Davidson AS, Walsh BJ, Zvyagin AV, Gillatt DA. Near-Infrared Molecular Imaging of Glioblastoma by Miltuximab®-IRDye800CW as a Potential Tool for Fluorescence-Guided Surgery. Cancers (Basel) 2020;12:E984. [PMID: 32316186 DOI: 10.3390/cancers12040984] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
391 Kim JJ, Lee YA, Su D, Lee J, Park SJ, Kim B, Jane Lee JH, Liu X, Kim SS, Bae MA, Lee JS, Hong SC, Wang L, Samanta A, Kwon HY, Choi SY, Kim JY, Yu YH, Ha HH, Wang Z, Tam WL, Lim B, Kang NY, Chang YT. A Near-Infrared Probe Tracks and Treats Lung Tumor Initiating Cells by Targeting HMOX2. J Am Chem Soc 2019;141:14673-86. [PMID: 31436967 DOI: 10.1021/jacs.9b06068] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
392 Hyun H, Park MH, Owens EA, Wada H, Henary M, Handgraaf HJ, Vahrmeijer AL, Frangioni JV, Choi HS. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat Med 2015;21:192-7. [PMID: 25559343 DOI: 10.1038/nm.3728] [Cited by in Crossref: 110] [Cited by in F6Publishing: 104] [Article Influence: 15.7] [Reference Citation Analysis]
393 Gao D, Hu D, Liu X, Sheng Z, Zheng H. Recent advances in functional nanomaterials for photoacoustic imaging of glioma. Nanoscale Horiz 2019;4:1037-45. [DOI: 10.1039/c9nh00328b] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
394 Baik FM, Hansen S, Knoblaugh SE, Sahetya D, Mitchell RM, Xu C, Olson JM, Parrish-Novak J, Méndez E. Fluorescence Identification of Head and Neck Squamous Cell Carcinoma and High-Risk Oral Dysplasia With BLZ-100, a Chlorotoxin-Indocyanine Green Conjugate. JAMA Otolaryngol Head Neck Surg 2016;142:330-8. [PMID: 26892902 DOI: 10.1001/jamaoto.2015.3617] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
395 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
396 Garcia M, Edmiston C, York T, Marinov R, Mondal S, Zhu N, Sudlow GP, Akers WJ, Margenthaler J, Achilefu S, Liang R, Zayed MA, Pepino MY, Gruev V. Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery. Optica 2018;5:413-22. [PMID: 30465019 DOI: 10.1364/OPTICA.5.000413] [Cited by in Crossref: 18] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
397 Lei Z, Li X, Luo X, He H, Zheng J, Qian X, Yang Y. Bright, Stable, and Biocompatible Organic Fluorophores Absorbing/Emitting in the Deep Near-Infrared Spectral Region. Angew Chem Int Ed Engl 2017;56:2979-83. [PMID: 28140490 DOI: 10.1002/anie.201612301] [Cited by in Crossref: 77] [Cited by in F6Publishing: 68] [Article Influence: 15.4] [Reference Citation Analysis]
398 Peng X, Li C, Bai Y, Wang X, Zhang Y, An Y, Teng GJ, Ju S. Noninvasive evaluation of the migration effect of transplanted endothelial progenitor cells in ischemic muscle using a multimodal imaging agent. Int J Nanomedicine 2018;13:1819-29. [PMID: 29606873 DOI: 10.2147/IJN.S152976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
399 Walter A, Paul-gilloteaux P, Plochberger B, Sefc L, Verkade P, Mannheim JG, Slezak P, Unterhuber A, Marchetti-deschmann M, Ogris M, Bühler K, Fixler D, Geyer SH, Weninger WJ, Glösmann M, Handschuh S, Wanek T. Correlated Multimodal Imaging in Life Sciences: Expanding the Biomedical Horizon. Front Phys 2020;8:47. [DOI: 10.3389/fphy.2020.00047] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 8.5] [Reference Citation Analysis]
400 Li H, Dong H, Yu M, Liu C, Li Z, Wei L, Sun LD, Zhang H. NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors. Anal Chem 2017;89:8863-9. [PMID: 28707875 DOI: 10.1021/acs.analchem.7b01324] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 7.4] [Reference Citation Analysis]
401 Toh U, Iwakuma N, Mishima M, Okabe M, Nakagawa S, Akagi Y. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res Treat 2015;153:337-44. [DOI: 10.1007/s10549-015-3542-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
402 Souchek JJ, Wojtynek NE, Payne WM, Holmes MB, Dutta S, Qi B, Datta K, LaGrange CA, Mohs AM. Hyaluronic acid formulation of near infrared fluorophores optimizes surgical imaging in a prostate tumor xenograft. Acta Biomater 2018;75:323-33. [PMID: 29890268 DOI: 10.1016/j.actbio.2018.06.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
403 Li Z, Grant KB. DNA photo-cleaving agents in the far-red to near-infrared range – a review. RSC Adv 2016;6:24617-34. [DOI: 10.1039/c5ra28102d] [Cited by in Crossref: 14] [Article Influence: 2.3] [Reference Citation Analysis]
404 Yang L, Huang B, Hu S, An Y, Sheng J, Li Y, Wang Y, Gu N. Indocyanine green assembled free oxygen-nanobubbles towards enhanced near-infrared induced photodynamic therapy. Nano Res . [DOI: 10.1007/s12274-022-4085-0] [Reference Citation Analysis]
405 Zhang C, Wang K, An Y, He K, Tong T, Tian J. Improved generative adversarial networks using the total gradient loss for the resolution enhancement of fluorescence images. Biomed Opt Express 2019;10:4742-56. [PMID: 31565522 DOI: 10.1364/BOE.10.004742] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
406 Cheng K, Chen H, Jenkins CH, Zhang G, Zhao W, Zhang Z, Han F, Fung J, Yang M, Jiang Y, Xing L, Cheng Z. Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe. ACS Nano 2017;11:12276-91. [PMID: 29202225 DOI: 10.1021/acsnano.7b05966] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 18.4] [Reference Citation Analysis]
407 Wang C, Dong Y, Shi X, Guo J, Zhang J, Deng L, Lin Z, Huang P, Shi Y, Wang W, Dong A. "Off/on" fluorescence imaging-guided cancer diagnosis and multi-modal therapy. Biomater Sci 2020;8:1442-54. [PMID: 31960834 DOI: 10.1039/c9bm01854a] [Reference Citation Analysis]
408 He X, Wang X, Yi H, Chen Y, Zhang X, Yu J, He X. Laplacian manifold regularization method for fluorescence molecular tomography. J Biomed Opt 2017;22:045009. [DOI: 10.1117/1.jbo.22.4.045009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
409 Coustets M, Ladurantie C, Bellard E, Prat M, Rols MP, Ecochard V, Ferron G, Chabot S, Golzio M, Paquereau L. Development of a near infrared protein nanoprobe targeting Thomsen-Friedenreich antigen for intraoperative detection of submillimeter nodules in an ovarian peritoneal carcinomatosis mouse model. Biomaterials 2020;241:119908. [PMID: 32126396 DOI: 10.1016/j.biomaterials.2020.119908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
410 Sotiropoulou M, Mulita F, Verras GI, Schizas D, Papalampros A, Tchabashvili L, Kaplanis C, Liolis E, Perdikaris I, Maroulis I, Vailas M. A novel tool for visualization and detection of pancreatic neuroendocrine tumours. A 'fluorescent' world is calling for exploration? Prz Menopauzalny 2021;20:207-10. [PMID: 35069073 DOI: 10.5114/pm.2021.110834] [Reference Citation Analysis]
411 Ashitate Y, Hyun H, Kim SH, Lee JH, Henary M, Frangioni JV, Choi HS. Simultaneous mapping of pan and sentinel lymph nodes for real-time image-guided surgery. Theranostics 2014;4:693-700. [PMID: 24883119 DOI: 10.7150/thno.8721] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
412 Laios A, Volpi D, Tullis ID, Woodward M, Kennedy S, Pathiraja PN, Haldar K, Vojnovic B, Ahmed AA. A prospective pilot study of detection of sentinel lymph nodes in gynaecological cancers using a novel near infrared fluorescence imaging system. BMC Res Notes 2015;8:608. [PMID: 26502876 DOI: 10.1186/s13104-015-1576-z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
413 Ren Y, He S, Huttad L, Chua MS, So SK, Guo Q, Cheng Z. An NIR-II/MR dual modal nanoprobe for liver cancer imaging. Nanoscale 2020;12:11510-7. [PMID: 32428058 DOI: 10.1039/d0nr00075b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
414 Zou Q, Chang R, Xing R, Yuan C, Yan X. Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. Journal of Controlled Release 2020;319:344-51. [DOI: 10.1016/j.jconrel.2020.01.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
415 Vlek SL, Lier MC, Ankersmit M, Ket JC, Dekker JJ, Mijatovic V, Tuynman JB. Laparoscopic Imaging Techniques in Endometriosis Therapy: A Systematic Review. J Minim Invasive Gynecol 2016;23:886-92. [PMID: 27393283 DOI: 10.1016/j.jmig.2016.06.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
416 Oddo L, Cerroni B, Domenici F, Bedini A, Bordi F, Chiessi E, Gerbes S, Paradossi G. Next generation ultrasound platforms for theranostics. J Colloid Interface Sci 2017;491:151-60. [PMID: 28024192 DOI: 10.1016/j.jcis.2016.12.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
417 Wang Q, Qian B, Schäfer M, Groß W, Mehrabi A, Ryschich E. Fluorescence-guided fiber-optic micronavigation using microscopic identification of vascular boundary of liver segment and tumors. Theranostics 2020;10:6136-48. [PMID: 32483444 DOI: 10.7150/thno.45973] [Reference Citation Analysis]
418 Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021;9:5691-702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Reference Citation Analysis]
419 Guo R, Huang F, Zhang B, Yan Y, Che J, Jin Y, Zhuang Y, Dong R, Li Y, Tan B, Song R, Hu Y, Dong X, Li X, Lin N. GSH Activated Biotin-tagged Near-Infrared Probe for Efficient Cancer Imaging. Theranostics 2019;9:3515-25. [PMID: 31281494 DOI: 10.7150/thno.32742] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
420 Cao J, Zhang L, Ding X, Liu D, Su B, Shi J. Dual‐Targeting Peptides RGD10‐NGR9‐Conjugated Lanthanide Nanoparticle@Polydopamine as Upconversion Nanoprobes for In Vivo Imaging of Lung Cancer. Small Methods 2020;4:2000648. [DOI: 10.1002/smtd.202000648] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
421 Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chem Soc Rev 2014;43:4243-68. [DOI: 10.1039/c3cs60433k] [Cited by in Crossref: 193] [Cited by in F6Publishing: 43] [Article Influence: 24.1] [Reference Citation Analysis]
422 Lei Z, Li X, Luo X, He H, Zheng J, Qian X, Yang Y. Bright, Stable, and Biocompatible Organic Fluorophores Absorbing/Emitting in the Deep Near-Infrared Spectral Region. Angew Chem 2017;129:3025-9. [DOI: 10.1002/ange.201612301] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
423 An H, Hou D, Zheng R, Wang M, Zeng X, Xiao W, Yan T, Wang J, Zhao C, Cheng L, Zhang J, Wang L, Wang Z, Wang H, Xu W. A Near-Infrared Peptide Probe with Tumor-Specific Excretion-Retarded Effect for Image-Guided Surgery of Renal Cell Carcinoma. ACS Nano 2020;14:927-36. [DOI: 10.1021/acsnano.9b08209] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
424 Aoki T, Murakami M, Koizumi T, Matsuda K, Fujimori A, Kusano T, Enami Y, Goto S, Watanabe M, Otsuka K. Determination of the surgical margin in laparoscopic liver resections using infrared indocyanine green fluorescence. Langenbecks Arch Surg 2018;403:671-80. [DOI: 10.1007/s00423-018-1685-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
425 de Valk KS, Deken MM, Schaap DP, Meijer RP, Boogerd LS, Hoogstins CE, van der Valk MJ, Kamerling IM, Bhairosingh SS, Framery B, Hilling DE, Peeters KC, Holman FA, Kusters M, Rutten HJ, Cailler F, Burggraaf J, Vahrmeijer AL. Dose-Finding Study of a CEA-Targeting Agent, SGM-101, for Intraoperative Fluorescence Imaging of Colorectal Cancer. Ann Surg Oncol 2021;28:1832-44. [PMID: 33034788 DOI: 10.1245/s10434-020-09069-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
426 Li J, Khalid A, Verma R, Abraham A, Qazi F, Dong X, Liang G, Tomljenovic-Hanic S. Silk Fibroin Coated Magnesium Oxide Nanospheres: A Biocompatible and Biodegradable Tool for Noninvasive Bioimaging Applications. Nanomaterials (Basel) 2021;11:695. [PMID: 33802102 DOI: 10.3390/nano11030695] [Reference Citation Analysis]
427 Hua D, Harizaj A, Wels M, Brans T, Stremersch S, De Keersmaecker H, Bolea-Fernandez E, Vanhaecke F, Roels D, Braeckmans K, Xiong R, Huang C, De Smedt SC, Sauvage F. Bubble Forming Films for Spatial Selective Cell Killing. Adv Mater 2021;33:e2008379. [PMID: 34050986 DOI: 10.1002/adma.202008379] [Reference Citation Analysis]
428 Wen Q, Zhang Y, Li C, Ling S, Yang X, Chen G, Yang Y, Wang Q. NIR‐II Fluorescent Self‐Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis. Angew Chem 2019;131:11117-22. [DOI: 10.1002/ange.201905643] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
429 Yakovliev A, Ziniuk R, Wang D, Xue B, Vretik LO, Nikolaeva OA, Tan M, Chen G, Slominskii YL, Qu J, Ohulchanskyy TY. Hyperspectral Multiplexed Biological Imaging of Nanoprobes Emitting in the Short-Wave Infrared Region. Nanoscale Res Lett 2019;14:243. [PMID: 31325079 DOI: 10.1186/s11671-019-3068-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
430 Wang Y, Luo S, Zhang C, Liao X, Liu T, Jiang Z, Liu D, Tan X, Long L, Wang Y, Chen Z, Liu Y, Yang F, Gan Y, Shi C. An NIR-Fluorophore-Based Therapeutic Endoplasmic Reticulum Stress Inducer. Adv Mater 2018;:e1800475. [PMID: 29961960 DOI: 10.1002/adma.201800475] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
431 Linssen MD, ter Weele EJ, Allersma DP, Lub-de Hooge MN, van Dam GM, Jorritsma-smit A, Nagengast WB. Roadmap for the Development and Clinical Translation of Optical Tracers Cetuximab-800CW and Trastuzumab-800CW. J Nucl Med 2019;60:418-23. [DOI: 10.2967/jnumed.118.216556] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
432 van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for In Vivo Applications. Small 2018;14:1703838. [DOI: 10.1002/smll.201703838] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 17.3] [Reference Citation Analysis]
433 Korber J, Barth C, Gibbs S. Nile Red derivatives enable improved ratiometric imaging for nerve-specific contrast. J Biomed Opt 2018;23:1-13. [PMID: 29981230 DOI: 10.1117/1.JBO.23.7.076002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
434 Hackman KM, Doddapaneni BS, Barth CW, Wierzbicki IH, Alani AW, Gibbs SL. Polymeric Micelles as Carriers for Nerve-Highlighting Fluorescent Probe Delivery. Mol Pharm 2015;12:4386-94. [PMID: 26485440 DOI: 10.1021/acs.molpharmaceut.5b00582] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
435 Chen QY, Zhong Q, Liu ZY, Huang XB, Que SJ, Zheng WZ, Li P, Zheng CH, Huang CM. Advances in laparoscopic surgery for the treatment of advanced gastric cancer in China. Eur J Surg Oncol 2020;46:e7-e13. [PMID: 32709375 DOI: 10.1016/j.ejso.2020.07.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
436 Strobbia P, Cupil-Garcia V, Crawford BM, Fales AM, Pfefer TJ, Liu Y, Maiwald M, Sumpf B, Vo-Dinh T. Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS). Theranostics 2021;11:4090-102. [PMID: 33754050 DOI: 10.7150/thno.53101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
437 Verbeek FP, Troyan SL, Mieog JS, Liefers GJ, Moffitt LA, Rosenberg M, Hirshfield-Bartek J, Gioux S, van de Velde CJ, Vahrmeijer AL. Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Res Treat. 2014;143:333-342. [PMID: 24337507 DOI: 10.1007/s10549-013-2802-9] [Cited by in Crossref: 105] [Cited by in F6Publishing: 92] [Article Influence: 11.7] [Reference Citation Analysis]
438 Qi J, Sun C, Li D, Zhang H, Yu W, Zebibula A, Lam JWY, Xi W, Zhu L, Cai F, Wei P, Zhu C, Kwok RTK, Streich LL, Prevedel R, Qian J, Tang BZ. Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano 2018;12:7936-45. [PMID: 30059201 DOI: 10.1021/acsnano.8b02452] [Cited by in Crossref: 111] [Cited by in F6Publishing: 88] [Article Influence: 27.8] [Reference Citation Analysis]
439 Lee J, Gordon AC, Kim H, Park W, Cho S, Lee B, Larson AC, Rozhkova EA, Kim DH. Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials 2016;109:69-77. [PMID: 27673597 DOI: 10.1016/j.biomaterials.2016.09.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
440 Kennedy GT, Newton A, Predina J, Singhal S. Intraoperative near-infrared imaging of mesothelioma. Transl Lung Cancer Res 2017;6:279-84. [PMID: 28713673 DOI: 10.21037/tlcr.2017.05.01] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
441 Li X, Schumann C, Albarqi HA, Lee CJ, Alani AWG, Bracha S, Milovancev M, Taratula O, Taratula O. A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy. Theranostics 2018;8:767-84. [PMID: 29344305 DOI: 10.7150/thno.21209] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
442 Dukh M, Tabaczynski WA, Seetharaman S, Ou Z, Kadish KM, D'souza F, Pandey RK. meso ‐ and β‐Pyrrole‐Linked Chlorin‐Bacteriochlorin Dyads for Promoting Far‐Red FRET and Singlet Oxygen Production. Chem Eur J 2020;26:14996-5006. [DOI: 10.1002/chem.202003042] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
443 Baljer BC, Kolhe S, Chan CD, Nicoli F, Ghanbasha A, Brookes MJ, Gamie Z, Ghosh KM, Beckingsale TB, Saleh DB, Ragbir M, Gerrand CH, Jeys L, Knight JC, Petrides G, Rankin KS. Advances in image enhancement for sarcoma surgery. Cancer Lett 2020;483:1-11. [PMID: 32247870 DOI: 10.1016/j.canlet.2020.03.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
444 Bu L, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials 2019;219:119182. [DOI: 10.1016/j.biomaterials.2019.04.027] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 14.3] [Reference Citation Analysis]
445 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
446 Bosma SE, van Driel PB, Hogendoorn PC, Dijkstra PS, Sier CF. Introducing fluorescence guided surgery into orthopedic oncology: A systematic review of candidate protein targets for Ewing sarcoma. J Surg Oncol 2018;118:906-14. [PMID: 30212597 DOI: 10.1002/jso.25224] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
447 Pratt EC, Skubal M, Mc Larney B, Causa-andrieu P, Das S, Sawan P, Araji A, Riedl C, Vyas K, Tuch D, Grimm J. Prospective testing of clinical Cerenkov luminescence imaging against standard-of-care nuclear imaging for tumour location. Nat Biomed Eng. [DOI: 10.1038/s41551-022-00876-4] [Reference Citation Analysis]
448 Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021;124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
449 Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish-Novak J. Preclinical Validation of the Utility of BLZ-100 in Providing Fluorescence Contrast for Imaging Spontaneous Solid Tumors. Cancer Res 2015;75:4283-91. [PMID: 26471914 DOI: 10.1158/0008-5472.CAN-15-0471] [Cited by in Crossref: 50] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
450 Egloff-Juras C, Yakavets I, Scherrer V, Francois A, Bezdetnaya L, Lassalle HP, Dolivet G. Validation of a Three-Dimensional Head and Neck Spheroid Model to Evaluate Cameras for NIR Fluorescence-Guided Cancer Surgery. Int J Mol Sci 2021;22:1966. [PMID: 33671198 DOI: 10.3390/ijms22041966] [Reference Citation Analysis]
451 Kang S, Wang Y, Reder NP, Liu JT. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS One 2016;11:e0163473. [PMID: 27685991 DOI: 10.1371/journal.pone.0163473] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
452 Kang M, Kwok RTK, Wang J, Zhang H, Lam JWY, Li Y, Zhang P, Zou H, Gu X, Li F, Tang BZ. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. J Mater Chem B 2018;6:3894-903. [PMID: 32254317 DOI: 10.1039/c8tb00572a] [Cited by in Crossref: 33] [Cited by in F6Publishing: 3] [Article Influence: 8.3] [Reference Citation Analysis]
453 Oe M, Miki K, Mu H, Harada H, Morinibu A, Ohe K. pH-Responsive Cy5 dyes having nucleophilic substituents for molecular imaging. Tetrahedron Letters 2018;59:3317-21. [DOI: 10.1016/j.tetlet.2018.07.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
454 He J, Yang L, Yi W, Fan W, Wen Y, Miao X, Xiong L. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer. Mol Imaging 2017;16:1536012117722911. [PMID: 28849712 DOI: 10.1177/1536012117722911] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
455 Shao J, Liu Y, Yan J, Yan ZY, Wu Y, Ru Z, Liao JY, Miao X, Qian L. Prediction of Maximum Absorption Wavelength Using Deep Neural Networks. J Chem Inf Model 2022. [PMID: 35290042 DOI: 10.1021/acs.jcim.1c01449] [Reference Citation Analysis]
456 Hernandez R, Sun H, England CG, Valdovinos HF, Ehlerding EB, Barnhart TE, Yang Y, Cai W. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Theranostics 2016;6:1918-33. [PMID: 27570560 DOI: 10.7150/thno.15568] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
457 Wang Z, Winkler N, Qian B, Groß W, Mehrabi A, Ryschich E. Endothelial capture using antibodies and nanoparticles in human tissues: Antigen identification and liver segment imaging. Acta Biomater 2019;97:474-89. [PMID: 31398471 DOI: 10.1016/j.actbio.2019.08.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
458 Gui C, Zhao E, Kwok RTK, Leung ACS, Lam JWY, Jiang M, Deng H, Cai Y, Zhang W, Su H, Tang BZ. AIE-active theranostic system: selective staining and killing of cancer cells. Chem Sci 2017;8:1822-30. [PMID: 30155198 DOI: 10.1039/c6sc04947h] [Cited by in Crossref: 131] [Cited by in F6Publishing: 16] [Article Influence: 21.8] [Reference Citation Analysis]
459 Yang R, Hou M, Gao Y, Lu S, Zhang L, Xu Z, Li CM, Kang Y, Xue P. Biomineralization-inspired Crystallization of Manganese Oxide on Silk Fibroin Nanoparticles for in vivo MR/fluorescence Imaging-assisted Tri-modal Therapy of Cancer. Theranostics 2019;9:6314-33. [PMID: 31534553 DOI: 10.7150/thno.36252] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
460 Feng P, Chen Y, Zhang L, Qian C, Xiao X, Han X, Shen Q. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS Appl Mater Interfaces 2018;10:4359-68. [DOI: 10.1021/acsami.7b12005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
461 Bazak J, Korytowski W, Girotti AW. Bystander Effects of Nitric Oxide in Cellular Models of Anti-Tumor Photodynamic Therapy. Cancers (Basel) 2019;11:E1674. [PMID: 31661869 DOI: 10.3390/cancers11111674] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
462 Tummers QR, Hoogstins CE, Gaarenstroom KN, de Kroon CD, van Poelgeest MI, Vuyk J, Bosse T, Smit VT, van de Velde CJ, Cohen AF, Low PS, Burggraaf J, Vahrmeijer AL. Intraoperative imaging of folate receptor alpha positive ovarian and breast cancer using the tumor specific agent EC17. Oncotarget 2016;7:32144-55. [PMID: 27014973 DOI: 10.18632/oncotarget.8282] [Cited by in Crossref: 76] [Cited by in F6Publishing: 72] [Article Influence: 15.2] [Reference Citation Analysis]
463 Wang XQ, Hu Y, Yu YJ, Tian QS, Shen WS, Yang WY, Jiang ZQ, Liao LS. Over 800 nm Emission via Harvesting of Triplet Excitons in Exciplex Organic Light-Emitting Diodes. J Phys Chem Lett 2021;12:6034-40. [PMID: 34165312 DOI: 10.1021/acs.jpclett.1c01609] [Reference Citation Analysis]
464 Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017;25:2017-34. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Cited by in Crossref: 103] [Cited by in F6Publishing: 88] [Article Influence: 20.6] [Reference Citation Analysis]
465 Mondal SB, Gao S, Zhu N, Sudlow GP, Liang K, Som A, Akers WJ, Fields RC, Margenthaler J, Liang R, Gruev V, Achilefu S. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep 2015;5:12117. [PMID: 26179014 DOI: 10.1038/srep12117] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 5.1] [Reference Citation Analysis]
466 Dias GG, King A, de Moliner F, Vendrell M, da Silva Júnior EN. Quinone-based fluorophores for imaging biological processes. Chem Soc Rev 2018;47:12-27. [PMID: 29099127 DOI: 10.1039/c7cs00553a] [Cited by in Crossref: 57] [Cited by in F6Publishing: 11] [Article Influence: 14.3] [Reference Citation Analysis]
467 Liu J, Zhao X, Chen L, Pan L, Yan X. Dual-Emissive Persistent Luminescence Nanoparticle-Based Charge-Reversible Intelligent Nanoprobe for Persistent Luminescence-Ratio Bioimaging along with Chemo-Photothermal Synergic Therapy. Anal Chem 2021;93:7348-54. [DOI: 10.1021/acs.analchem.1c01220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
468 Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green. Mol Pharm 2021;18:1238-46. [PMID: 33502869 DOI: 10.1021/acs.molpharmaceut.0c01107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
469 Wang Z, Wang J, Liu G. Bridging the preoperative gap of precision hepatectomy: Superstable homogeneous iodinated formulation technology. J Interv Med 2021;4:8-10. [PMID: 34805940 DOI: 10.1016/j.jimed.2020.10.010] [Reference Citation Analysis]
470 Song SH, Kang HG, Han YB, Lee HY, Jeong DH, Kim SM, Hong SJ. Characterization and validation of multimodal annihilation-gamma/near-infrared/visible laparoscopic system. J Biomed Opt 2019;24:1-11. [PMID: 31564072 DOI: 10.1117/1.JBO.24.9.096008] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
471 Qian B, Kyuno D, Schäfer M, Gross W, Mehrabi A, Ryschich E. Liver segment imaging using monocyte sequestration: a potential tool for fluorescence-guided liver surgery. Theranostics 2018;8:6101-10. [PMID: 30613285 DOI: 10.7150/thno.29223] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
472 Chi W, Qiao Q, Wang C, Zheng J, Zhou W, Xu N, Wu X, Jiang X, Tan D, Xu Z, Liu X. Descriptor Δ GC‐O Enables the Quantitative Design of Spontaneously Blinking Rhodamines for Live‐Cell Super‐Resolution Imaging. Angew Chem Int Ed 2020;59:20215-23. [DOI: 10.1002/anie.202010169] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
473 Dimitriadis N, Grychtol B, Theuring M, Behr T, Sippel C, Deliolanis NC. Spectral and temporal multiplexing for multispectral fluorescence and reflectance imaging using two color sensors. Opt Express 2017;25:12812-29. [PMID: 28786634 DOI: 10.1364/OE.25.012812] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
474 Wu D, Cheung S, Sampedro G, Chen ZL, Cahill RA, O'Shea DF. A DIE responsive NIR-fluorescent cell membrane probe. Biochim Biophys Acta Biomembr 2018;1860:2272-80. [PMID: 30409523 DOI: 10.1016/j.bbamem.2018.09.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
475 Fan Y, Zhang F. A New Generation of NIR‐II Probes: Lanthanide‐Based Nanocrystals for Bioimaging and Biosensing. Advanced Optical Materials 2019;7:1801417. [DOI: 10.1002/adom.201801417] [Cited by in Crossref: 67] [Cited by in F6Publishing: 38] [Article Influence: 22.3] [Reference Citation Analysis]
476 Phillips WW, Weiss KD, Digesu CS, Gill RR, Mazzola E, Tsukada H, Schumacher LY, Colson YL. Finding the "True" N0 Cohort: Technical Aspects of Near-infrared Sentinel Lymph Node Mapping in Non-small Cell Lung Cancer. Ann Surg 2020;272:583-8. [PMID: 32657925 DOI: 10.1097/SLA.0000000000004176] [Reference Citation Analysis]
477 Iqbal H, Pan Q. Image guided surgery in the management of head and neck cancer. Oral Oncology 2016;57:32-9. [DOI: 10.1016/j.oraloncology.2016.04.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
478 Ferreira R, Limeta A, Nielsen J. Tackling Cancer with Yeast-Based Technologies. Trends in Biotechnology 2019;37:592-603. [DOI: 10.1016/j.tibtech.2018.11.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
479 Daly MJ, Chan H, Muhanna N, Akens MK, Wilson BC, Irish JC, Jaffray DA. Intraoperative cone-beam CT spatial priors for diffuse optical fluorescence tomography. Phys Med Biol 2019;64:215007. [DOI: 10.1088/1361-6560/ab4917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
480 Wang X, Zha J, Zhang W, Zhang W, Tang B. In vivo pharmacodynamic evaluation of antidepressants based on flux mitochondrial Cys in living mice via near infrared fluorescence imaging. Analyst 2020;145:6119-24. [DOI: 10.1039/d0an01364a] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
481 Tian R, Feng X, Wei L, Dai D, Ma Y, Pan H, Ge S, Bai L, Ke C, Liu Y, Lang L, Zhu S, Sun H, Yu Y, Chen X. A genetic engineering strategy for editing near-infrared-II fluorophores. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30304-9] [Reference Citation Analysis]
482 Kim S, Kim S, Kim J, Lee SN, Shin IW, Shin HS, Jin SM, Noh Y, Kang YJ, Kim YS, Kang TH, Park Y, Lim YT. Lyophilizable and Multifaceted Toll-like Receptor 7/8 Agonist-Loaded Nanoemulsion for the Reprogramming of Tumor Microenvironments and Enhanced Cancer Immunotherapy. ACS Nano 2019;13:12671-86. [DOI: 10.1021/acsnano.9b04207] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 8.7] [Reference Citation Analysis]
483 Jagtap J, Sharma G, Parchur AK, Gogineni V, Bergom C, White S, Flister MJ, Joshi A. Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging. Biomed Opt Express 2018;9:543-56. [PMID: 29552392 DOI: 10.1364/BOE.9.000543] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
484 Jansen G, Peters GJ. Novel insights in folate receptors and transporters: implications for disease and treatment of immune diseases and cancer. Pteridines 2015;26:41-53. [DOI: 10.1515/pterid-2015-0005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
485 Tian R, Shen Z, Zhou Z, Munasinghe J, Zhang X, Jacobson O, Zhang M, Niu G, Pang D, Cui R, Zhu S, Chen X. Ultrasmall Quantum Dots with Broad‐Spectrum Metal Doping Ability for Trimodal Molecular Imaging. Adv Funct Mater 2019;29:1901671. [DOI: 10.1002/adfm.201901671] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
486 Fang Y, Shang J, Liu D, Shi W, Li X, Ma H. Design, Synthesis, and Application of a Small Molecular NIR-II Fluorophore with Maximal Emission beyond 1200 nm. J Am Chem Soc 2020;142:15271-5. [DOI: 10.1021/jacs.0c08187] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
487 Ashitate Y, Levitz A, Park MH, Hyun H, Venugopal V, Park G, El Fakhri G, Henary M, Gioux S, Frangioni JV, Choi HS. Endocrine-specific NIR fluorophores for adrenal gland targeting. Chem Commun (Camb) 2016;52:10305-8. [PMID: 27476533 DOI: 10.1039/c6cc03845j] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
488 Tummers QR, Boonstra MC, Frangioni JV, van de Velde CJ, Vahrmeijer AL, Bonsing BA. Intraoperative near-infrared fluorescence imaging of a paraganglioma using methylene blue: A case report. Int J Surg Case Rep 2015;6C:150-3. [PMID: 25541370 DOI: 10.1016/j.ijscr.2014.12.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
489 Cheng P, Pu K. Molecular imaging and disease theranostics with renal-clearable optical agents. Nat Rev Mater. [DOI: 10.1038/s41578-021-00328-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
490 Wang C, Zhou Y, Li W, Liu X, Xi L, Li P, Wei J, Lu J. Dual modal fluorescent colposcope combined with near-infrared fluorescent dye TMTP1-PEG4-ICG to detect cervical lesions. Biomed Opt Express 2020;11:7120-31. [PMID: 33408984 DOI: 10.1364/BOE.410394] [Reference Citation Analysis]
491 Zhang L, Yin T, Zhang B, Yan C, Lu C, Liu L, Chen Z, Ran H, Shi Q, Pan H, Ma A, Cai L. Cancer-macrophage hybrid membrane-camouflaged photochlor for enhanced sonodynamic therapy against triple-negative breast cancer. Nano Res . [DOI: 10.1007/s12274-021-4039-y] [Reference Citation Analysis]
492 Kang HG, Lee H, Kim KM, Song S, Hong GC, Hong SJ. A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping. Med Phys 2017;44:227-39. [DOI: 10.1002/mp.12029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
493 Newton AD, Kennedy GT, Predina JD, Low PS, Singhal S. Intraoperative molecular imaging to identify lung adenocarcinomas. J Thorac Dis 2016;8:S697-704. [PMID: 28066672 DOI: 10.21037/jtd.2016.09.50] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
494 Butte PV, Mamelak A, Parrish-Novak J, Drazin D, Shweikeh F, Gangalum PR, Chesnokova A, Ljubimova JY, Black K. Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus 2014;36:E1. [PMID: 24484247 DOI: 10.3171/2013.11.FOCUS13497] [Cited by in Crossref: 80] [Cited by in F6Publishing: 43] [Article Influence: 10.0] [Reference Citation Analysis]
495 Vuijk FA, Hilling DE, Mieog JSD, Vahrmeijer AL. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer. J Surg Oncol 2018;118:315-23. [PMID: 30216455 DOI: 10.1002/jso.25139] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
496 Boonstra MC, Tolner B, Schaafsma BE, Boogerd LS, Prevoo HA, Bhavsar G, Kuppen PJ, Sier CF, Bonsing BA, Frangioni JV, van de Velde CJ, Chester KA, Vahrmeijer AL. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int J Cancer 2015;137:1910-20. [PMID: 25895046 DOI: 10.1002/ijc.29571] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 5.6] [Reference Citation Analysis]
497 Protic M, Krsmanovic O, Solajic N, Kukic B, Nikolic I, Bogdanovic B, Radovanovic Z, Kresoja M, Mannion C, Man YG, Stojadinovic A. Prospective Non-Randomized Study of Intraoperative Assessment of Surgical Resection Margin of Colo-Rectal Liver Metastases. J Cancer 2021;12:3701-14. [PMID: 33995645 DOI: 10.7150/jca.58580] [Reference Citation Analysis]
498 Tipirneni KE, Warram JM, Moore LS, Prince AC, de Boer E, Jani AH, Wapnir IL, Liao JC, Bouvet M, Behnke NK, Hawn MT, Poultsides GA, Vahrmeijer AL, Carroll WR, Zinn KR, Rosenthal E. Oncologic Procedures Amenable to Fluorescence-guided Surgery. Ann Surg 2017;266:36-47. [PMID: 28045715 DOI: 10.1097/SLA.0000000000002127] [Cited by in Crossref: 72] [Cited by in F6Publishing: 39] [Article Influence: 14.4] [Reference Citation Analysis]
499 Payne WM, Hill TK, Svechkarev D, Holmes MB, Sajja BR, Mohs AM. Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging. Contrast Media Mol Imaging 2017;2017:9616791. [PMID: 29097944 DOI: 10.1155/2017/9616791] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
500 Hyun H, Henary M, Gao T, Narayana L, Owens EA, Lee JH, Park G, Wada H, Ashitate Y, Frangioni JV, Choi HS. 700-nm Zwitterionic Near-Infrared Fluorophores for Dual-Channel Image-Guided Surgery. Mol Imaging Biol 2016;18:52-61. [PMID: 26084246 DOI: 10.1007/s11307-015-0870-4] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
501 Slikboer SR, Pitchumony TS, Banevicius L, Mercanti N, Edem PE, Valliant JF. Imidazole fused phenanthroline (PIP) ligands for the preparation of multimodal Re(I) and 99mTc(I) probes. Dalton Trans 2020;49:14826-36. [PMID: 33034336 DOI: 10.1039/d0dt02829k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
502 Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-Time Imaging of Brain Tumor for Image-Guided Surgery. Adv Healthc Mater 2018;7:e1800066. [PMID: 29719137 DOI: 10.1002/adhm.201800066] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
503 Du J, Liu S, Zhang P, Liu H, Li Y, He W, Li C, Chau JHC, Kwok RTK, Lam JWY, Cai L, Huang Y, Zhang W, Hou J, Tang BZ. Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Appl Mater Interfaces 2020;12:8040-9. [PMID: 31970976 DOI: 10.1021/acsami.9b22957] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
504 Sevick-Muraca EM, Kwon S, Rasmussen JC. Emerging lymphatic imaging technologies for mouse and man. J Clin Invest. 2014;124:905-914. [PMID: 24590275 DOI: 10.1172/jci71612] [Cited by in Crossref: 83] [Cited by in F6Publishing: 41] [Article Influence: 10.4] [Reference Citation Analysis]
505 Wang H, Mu X, Yang J, Liang Y, Zhang X, Ming D. Brain imaging with near-infrared fluorophores. Coordination Chemistry Reviews 2019;380:550-71. [DOI: 10.1016/j.ccr.2018.11.003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 10.7] [Reference Citation Analysis]
506 Zettlitz KA, Waldmann CM, Tsai WK, Tavaré R, Collins J, Murphy JM, Wu AM. A Dual-Modality Linker Enables Site-Specific Conjugation of Antibody Fragments for 18F-Immuno-PET and Fluorescence Imaging. J Nucl Med 2019;60:1467-73. [PMID: 30877181 DOI: 10.2967/jnumed.118.223560] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
507 Boogerd LSF, Hoogstins CES, Gaarenstroom KN, de Kroon CD, Beltman JJ, Bosse T, Stelloo E, Vuyk J, Low PS, Burggraaf J, Vahrmeijer AL. Folate receptor-α targeted near-infrared fluorescence imaging in high-risk endometrial cancer patients: a tissue microarray and clinical feasibility study. Oncotarget 2018;9:791-801. [PMID: 29416655 DOI: 10.18632/oncotarget.23155] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
508 Yan F, Wu H, Liu H, Deng Z, Liu H, Duan W, Liu X, Zheng H. Molecular imaging-guided photothermal/photodynamic therapy against tumor by iRGD-modified indocyanine green nanoparticles. J Control Release 2016;224:217-28. [PMID: 26739551 DOI: 10.1016/j.jconrel.2015.12.050] [Cited by in Crossref: 139] [Cited by in F6Publishing: 141] [Article Influence: 19.9] [Reference Citation Analysis]
509 Juhl K, Christensen A, Persson M, Ploug M, Kjaer A. Peptide-Based Optical uPAR Imaging for Surgery: In Vivo Testing of ICG-Glu-Glu-AE105. PLoS One 2016;11:e0147428. [PMID: 26828431 DOI: 10.1371/journal.pone.0147428] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
510 Guraieb-Trueba M, Frering T, Atallah S. Combined endoscopic and laparoscopic real-time intra-operative evaluation of bowel perfusion using fluorescence angiography. Tech Coloproctol 2016;20:883-4. [PMID: 27848121 DOI: 10.1007/s10151-016-1547-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
511 Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. Ann Transl Med 2021;9:825. [PMID: 34268438 DOI: 10.21037/atm-20-5877] [Reference Citation Analysis]
512 Momcilovic M, Shackelford DB. Imaging Cancer Metabolism. Biomol Ther (Seoul) 2018;26:81-92. [PMID: 29212309 DOI: 10.4062/biomolther.2017.220] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
513 Joyce C, Fothergill S, Xie F. Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Materials Today Advances 2020;7:100073. [DOI: 10.1016/j.mtadv.2020.100073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
514 Guo L, Zhang X, Wei R, Li G, Sun B, Zhang H, Liu D, Wang C, Feng M. Engineering microglia as intraoperative optical imaging agent vehicles potentially for fluorescence-guided surgery in gliomas. Biomater Sci 2020;8:1117-26. [PMID: 31724666 DOI: 10.1039/c9bm01388a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
515 Wen Q, Zhang Y, Li C, Ling S, Yang X, Chen G, Yang Y, Wang Q. NIR-II Fluorescent Self-Assembled Peptide Nanochain for Ultrasensitive Detection of Peritoneal Metastasis. Angew Chem Int Ed Engl 2019;58:11001-6. [PMID: 31162792 DOI: 10.1002/anie.201905643] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
516 Zheng X, Mao H, Huo D, Wu W, Liu B, Jiang X. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat Biomed Eng 2017;1. [DOI: 10.1038/s41551-017-0057] [Cited by in Crossref: 102] [Cited by in F6Publishing: 70] [Article Influence: 20.4] [Reference Citation Analysis]
517 Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19:10901. [PMID: 24441941 DOI: 10.1117/1.jbo.19.1.010901] [Cited by in Crossref: 851] [Cited by in F6Publishing: 203] [Article Influence: 106.4] [Reference Citation Analysis]
518 Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact Mater 2022;11:268-82. [PMID: 34977431 DOI: 10.1016/j.bioactmat.2021.09.029] [Reference Citation Analysis]
519 Desiderio J, Trastulli S, Gemini A, Di Nardo D, Palazzini G, Parisi A, D'Andrea V. Fluorescence image-guided lymphadenectomy using indocyanine green and near infrared technology in robotic gastrectomy. Chin J Cancer Res 2018;30:568-70. [PMID: 30510369 DOI: 10.21147/j.issn.1000-9604.2018.05.11] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
520 Wang S, Liu J, Feng G, Ng LG, Liu B. NIR‐II Excitable Conjugated Polymer Dots with Bright NIR‐I Emission for Deep In Vivo Two‐Photon Brain Imaging Through Intact Skull. Adv Funct Mater 2019;29:1808365. [DOI: 10.1002/adfm.201808365] [Cited by in Crossref: 44] [Cited by in F6Publishing: 25] [Article Influence: 14.7] [Reference Citation Analysis]
521 Wu D, Cheung S, O'sullivan CJ, Gao Y, Chen Z, O'shea DF. Strained alkyne substituted near infrared BF 2 azadipyrromethene fluorochrome. RSC Adv 2016;6:87373-9. [DOI: 10.1039/c6ra19843k] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
522 De Jesus E, Keating JJ, Kularatne SA, Jiang J, Judy R, Predina J, Nie S, Low P, Singhal S. Comparison of Folate Receptor Targeted Optical Contrast Agents for Intraoperative Molecular Imaging. Int J Mol Imaging 2015;2015:469047. [PMID: 26491562 DOI: 10.1155/2015/469047] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 6.4] [Reference Citation Analysis]
523 Wang C, Niu M, Wang W, Su L, Feng H, Lin H, Ge X, Wu R, Li Q, Liu J, Yang H, Song J. In Situ Activatable Ratiometric NIR-II Fluorescence Nanoprobe for Quantitative Detection of H2S in Colon Cancer. Anal Chem 2021;93:9356-63. [PMID: 34192871 DOI: 10.1021/acs.analchem.1c00427] [Reference Citation Analysis]
524 Usama SM, Jiang Z, Pflug K, Sitcheran R, Burgess K. Conjugation of Dasatinib with MHI-148 Has a Significant Advantageous Effect in Viability Assays for Glioblastoma Cells. ChemMedChem 2019;14:1575-9. [PMID: 31322832 DOI: 10.1002/cmdc.201900356] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
525 Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018;8:4141-51. [PMID: 30128042 DOI: 10.7150/thno.27995] [Cited by in Crossref: 95] [Cited by in F6Publishing: 90] [Article Influence: 23.8] [Reference Citation Analysis]
526 Restall BS, Kedarisetti P, Haven NJM, Martell MT, Zemp RJ. Multimodal 3D photoacoustic remote sensing and confocal fluorescence microscopy imaging. J Biomed Opt 2021;26. [PMID: 34523269 DOI: 10.1117/1.JBO.26.9.096501] [Reference Citation Analysis]
527 Lau LW, Luciano M, Schnermann M, Cha J. Ureter Identification In an Inflammatory Pig Model Using a Novel Near-Infrared Fluorescent Dye. Lasers Surg Med 2020;52:537-42. [PMID: 31579963 DOI: 10.1002/lsm.23165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
528 Xin Y, Liu T, Yang C. Development of PLGA-lipid nanoparticles with covalently conjugated indocyanine green as a versatile nanoplatform for tumor-targeted imaging and drug delivery. Int J Nanomedicine 2016;11:5807-21. [PMID: 27853366 DOI: 10.2147/IJN.S119999] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
529 Hoogstins C, Burggraaf JJ, Koller M, Handgraaf H, Boogerd L, van Dam G, Vahrmeijer A, Burggraaf J. Setting Standards for Reporting and Quantification in Fluorescence-Guided Surgery. Mol Imaging Biol 2019;21:11-8. [PMID: 29845427 DOI: 10.1007/s11307-018-1220-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
530 Lukianova-hleb EY, Lapotko DO, Myers JN. Rapid detection and destruction of squamous cell carcinoma of the head and neck by nano-quadrapeutics: Quadrapeutics in the Detection and Destruction of HNSCC. Head Neck 2015;37:1547-55. [DOI: 10.1002/hed.24018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
531 Dai Y, Zhan Z, Chai L, Zhang L, Guo Q, Zhang K, Lv Y. A Two-Photon Excited Near-Infrared Iridium(III) Complex for Multi-signal Detection and Multimodal Imaging of Hypochlorite. Anal Chem 2021;93:4628-34. [PMID: 33656847 DOI: 10.1021/acs.analchem.0c05460] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
532 Zhang X, Zhao N, Wang B, Tian Z, Dai Y, Ning P, Chen D. Structure-inherent near-infrared fluorescent probe mediates apoptosis imaging and targeted drug delivery in vivo. Dyes and Pigments 2017;138:204-12. [DOI: 10.1016/j.dyepig.2016.11.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
533 Zhou Z, Lu Z. Molecular imaging of the tumor microenvironment. Advanced Drug Delivery Reviews 2017;113:24-48. [DOI: 10.1016/j.addr.2016.07.012] [Cited by in Crossref: 92] [Cited by in F6Publishing: 86] [Article Influence: 18.4] [Reference Citation Analysis]
534 Dobrowolski JC, Lipiński PFJ, Karpińska G. Substituent Effect in the First Excited Singlet State of Monosubstituted Benzenes. J Phys Chem A 2018;122:4609-21. [PMID: 29698609 DOI: 10.1021/acs.jpca.8b02209] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
535 Padayachee ER, Biteghe FAN, Malindi Z, Bauerschlag D, Barth S. Human Antibody Fusion Proteins/Antibody Drug Conjugates in Breast and Ovarian Cancer. Transfus Med Hemother 2017;44:303-10. [PMID: 29070975 DOI: 10.1159/000479979] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
536 Upchurch E, Griffiths S, Lloyd GR, Isabelle M, Kendall C, Barr H. Developments in optical imaging for gastrointestinal surgery. Future Oncol 2017;13:2363-82. [PMID: 29121775 DOI: 10.2217/fon-2017-0181] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
537 Winum J. Synthesis and composition of amino acid linking groups conjugated to compounds used for the targeted imaging of tumors: a patent evaluation of US20160011199A1. Expert Opinion on Therapeutic Patents 2016;26:1223-6. [DOI: 10.1080/13543776.2016.1241238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
538 Xiong H, Kos P, Yan Y, Zhou K, Miller JB, Elkassih S, Siegwart DJ. Activatable Water-Soluble Probes Enhance Tumor Imaging by Responding to Dysregulated pH and Exhibiting High Tumor-to-Liver Fluorescence Emission Contrast. Bioconjug Chem 2016;27:1737-44. [PMID: 27285307 DOI: 10.1021/acs.bioconjchem.6b00242] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
539 Verstegen MJT, Tummers QRJG, Schutte PJ, Pereira AM, van Furth WR, van de Velde CJH, Malessy MJA, Vahrmeijer AL. Intraoperative Identification of a Normal Pituitary Gland and an Adenoma Using Near-Infrared Fluorescence Imaging and Low-Dose Indocyanine Green. Oper Neurosurg (Hagerstown) 2016;12:260-8. [PMID: 29506113 DOI: 10.1227/NEU.0000000000001328] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
540 Chen Y, Pei P, Lei Z, Zhang X, Yin D, Zhang F. A Promising NIR‐II Fluorescent Sensor for Peptide‐Mediated Long‐Term Monitoring of Kidney Dysfunction. Angew Chem 2021;133:15943-9. [DOI: 10.1002/ange.202103071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
541 Xu G, Qian Y, Zheng H, Qiao S, Yan D, Lu L, Wu L, Yang X, Luo Q, Zhang Z. Long-Distance Tracing of the Lymphatic System with a Computed Tomography/Fluorescence Dual-Modality Nanoprobe for Surveying Tumor Lymphatic Metastasis. Bioconjugate Chem 2019;30:1199-209. [DOI: 10.1021/acs.bioconjchem.9b00144] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
542 Lee CY, Fujino K, Motooka Y, Gregor A, Bernards N, Ujiie H, Kinoshita T, Chung KY, Han SH, Yasufuku K. Photoacoustic imaging to localize indeterminate pulmonary nodules: A preclinical study. PLoS One 2020;15:e0231488. [PMID: 32315347 DOI: 10.1371/journal.pone.0231488] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
543 Park MH, Hyun H, Ashitate Y, Wada H, Park G, Lee JH, Njiojob C, Henary M, Frangioni JV, Choi HS. Prototype nerve-specific near-infrared fluorophores. Theranostics 2014;4:823-33. [PMID: 24955143 DOI: 10.7150/thno.8696] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 6.5] [Reference Citation Analysis]
544 Ke CS, Fang CC, Yan JY, Tseng PJ, Pyle JR, Chen CP, Lin SY, Chen J, Zhang X, Chan YH. Molecular Engineering and Design of Semiconducting Polymer Dots with Narrow-Band, Near-Infrared Emission for in Vivo Biological Imaging. ACS Nano 2017;11:3166-77. [PMID: 28221751 DOI: 10.1021/acsnano.7b00215] [Cited by in Crossref: 89] [Cited by in F6Publishing: 72] [Article Influence: 17.8] [Reference Citation Analysis]
545 Peters IT, van der Steen MA, Huisman BW, Hilders CG, Smit VT, Vahrmeijer AL, Sier CF, Trimbos JB, Kuppen PJ. Morphological and phenotypical features of ovarian metastases in breast cancer patients. BMC Cancer 2017;17:206. [PMID: 28327103 DOI: 10.1186/s12885-017-3191-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
546 de Valk KS, Handgraaf HJ, Deken MM, Sibinga Mulder BG, Valentijn AR, Terwisscha van Scheltinga AG, Kuil J, van Esdonk MJ, Vuijk J, Bevers RF, Peeters KC, Holman FA, Frangioni JV, Burggraaf J, Vahrmeijer AL. A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery. Nat Commun 2019;10:3118. [PMID: 31311922 DOI: 10.1038/s41467-019-11014-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
547 Sakamoto E, Kodama Pertille Ramos MF, Dias AR, Safatle-Ribeiro AV, Zilberstein B, Nahas SC, Junior UR. Indocyanine green imaging to guide lymphadenectomy in laparoscopic distal gastrectomy - With vídeo. Ann Med Surg (Lond) 2021;69:102657. [PMID: 34408870 DOI: 10.1016/j.amsu.2021.102657] [Reference Citation Analysis]
548 Li X, Xu F, He Y, Li Y, Hou J, Yang G, Zhou S. A Hierarchical Structured Ultrafine Fiber Device for Preventing Postoperative Recurrence and Metastasis of Breast Cancer. Adv Funct Mater 2020;30:2004851. [DOI: 10.1002/adfm.202004851] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
549 Fan M, Xu Z, Liu M, Jiang Y, Zheng X, Yang C, Law W, Ying M, Wang X, Shao Y, Swihart MT, Xu G, Yong K, Tang BZ. Recent advances of luminogens with aggregation-induced emission in multi-photon theranostics. Applied Physics Reviews 2021;8:041328. [DOI: 10.1063/5.0071142] [Reference Citation Analysis]
550 Chi C, Zhang Q, Mao Y, Kou D, Qiu J, Ye J, Wang J, Wang Z, Du Y, Tian J. Increased precision of orthotopic and metastatic breast cancer surgery guided by matrix metalloproteinase-activatable near-infrared fluorescence probes. Sci Rep 2015;5:14197. [PMID: 26395067 DOI: 10.1038/srep14197] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
551 Garland M, Yim JJ, Bogyo M. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chem Biol 2016;23:122-36. [PMID: 26933740 DOI: 10.1016/j.chembiol.2015.12.003] [Cited by in Crossref: 146] [Cited by in F6Publishing: 134] [Article Influence: 24.3] [Reference Citation Analysis]
552 Parrish-Novak J, Holland EC, Olson JM. Image-Guided Tumor Resection. Cancer J 2015;21:206-12. [PMID: 26049700 DOI: 10.1097/PPO.0000000000000113] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
553 Mohapatra SS, Batra SK, Bharadwaj S, Bouvet M, Cosman B, Goel A, Jogunoori W, Kelley MJ, Mishra L, Mishra B, Mohapatra S, Patel B, Pisegna JR, Raufman JP, Rao S, Roy H, Scheuner M, Singh S, Vidyarthi G, White J. Precision Medicine for CRC Patients in the Veteran Population: State-of-the-Art, Challenges and Research Directions. Dig Dis Sci 2018;63:1123-38. [PMID: 29572615 DOI: 10.1007/s10620-018-5000-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
554 Dorval P, Mangeret N, Guillermet S, Atallah I, Righini C, Barabino G, Coll J, Rizo P, Poulet P. A palm-sized high-sensitivity near-infrared fluorescence imager for laparotomy surgery. Physica Medica 2016;32:218-25. [DOI: 10.1016/j.ejmp.2015.11.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
555 Derks YHW, Rijpkema M, Amatdjais-Groenen HIV, Kip A, Franssen GM, Sedelaar JPM, Somford DM, Simons M, Laverman P, Gotthardt M, Löwik DWPM, Lütje S, Heskamp S. Photosensitizer-based multimodal PSMA-targeting ligands for intraoperative detection of prostate cancer. Theranostics 2021;11:1527-41. [PMID: 33408764 DOI: 10.7150/thno.52166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
556 On KC, Rho J, Yoon HY, Chang H, Yhee JY, Yoon JS, Jeong SY, Kim HK, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer. Pharmaceutics 2020;12:E621. [PMID: 32635231 DOI: 10.3390/pharmaceutics12070621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
557 Zhang Z, Xu W, Xiao P, Kang M, Yan D, Wen H, Song N, Wang D, Tang BZ. Molecular Engineering of High-Performance Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics Mediated by Acid-Triggered Nucleus-Targeted Nanovectors. ACS Nano 2021;15:10689-99. [PMID: 34077187 DOI: 10.1021/acsnano.1c03700] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
558 Falahatdoost S, Chambers A, Stacey A, Prawer S, Ahnood A. Towards optical neuromodulation using nitrogen-doped ultrananocrystalline diamond photoelectrodes. Surfaces and Interfaces 2022;30:101850. [DOI: 10.1016/j.surfin.2022.101850] [Reference Citation Analysis]
559 DiMarco A, Chotalia R, Bloxham R, McIntyre C, Tolley N, Palazzo FF. Autofluorescence in Parathyroidectomy: Signal Intensity Correlates with Serum Calcium and Parathyroid Hormone but Routine Clinical Use is Not Justified. World J Surg 2019;43:1532-7. [PMID: 30737552 DOI: 10.1007/s00268-019-04929-9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
560 Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng 2017;1:0008. [PMID: 28649464 DOI: 10.1038/s41551-016-0008] [Cited by in Crossref: 279] [Cited by in F6Publishing: 208] [Article Influence: 55.8] [Reference Citation Analysis]
561 Ni X, Zhang X, Duan X, Zheng HL, Xue XS, Ding D. Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Nano Lett 2019;19:318-30. [PMID: 30556699 DOI: 10.1021/acs.nanolett.8b03936] [Cited by in Crossref: 245] [Cited by in F6Publishing: 193] [Article Influence: 61.3] [Reference Citation Analysis]
562 Muhanna N, Eu D, Chan HH, Daly M, Fricke IB, Douglas CM, Townson JL, Zheng J, Allen C, Jaffray DA, Irish JC. Assessment of a liposomal CT/optical contrast agent for image-guided head and neck surgery. Nanomedicine 2021;32:102327. [PMID: 33220507 DOI: 10.1016/j.nano.2020.102327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
563 Wang J, Meng J, Ran W, Lee RJ, Teng L, Zhang P, Li Y. Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Lett 2019;19:5266-76. [PMID: 31361965 DOI: 10.1021/acs.nanolett.9b01717] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
564 Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Applications of nanoparticles in cancer medicine and beyond: optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv 2015;12:1837-49. [PMID: 26289673 DOI: 10.1517/17425247.2015.1071791] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
565 Zhou Q, Mu K, Jiang L, Xie H, Liu W, Li Z, Qi H, Liang S, Xu H, Zhu Y, Zhu W, Yang X. Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging. Int J Nanomedicine 2015;10:1805-18. [PMID: 25784806 DOI: 10.2147/IJN.S72910] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
566 Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F. Er 3+ Sensitized 1530 nm to 1180 nm Second Near-Infrared Window Upconversion Nanocrystals for In Vivo Biosensing. Angew Chem Int Ed 2018;57:7518-22. [DOI: 10.1002/anie.201802889] [Cited by in Crossref: 149] [Cited by in F6Publishing: 118] [Article Influence: 37.3] [Reference Citation Analysis]
567 Huang C, Zhang Z, Guo Q, Zhang L, Fan F, Qin Y, Wang H, Zhou S, Ou‐yang W, Sun H, Leng X, Pan X, Kong D, Zhang L, Zhu D. A Dual‐Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy. Adv Healthcare Mater 2019;8:1900840. [DOI: 10.1002/adhm.201900840] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
568 Li C, Torres VC, Tichauer KM. Noninvasive detection of cancer spread to lymph nodes: A review of molecular imaging principles and protocols. J Surg Oncol 2018;118:301-14. [PMID: 30196532 DOI: 10.1002/jso.25124] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
569 Wu P, Siegwart DJ, Xiong H. Recent advances in the targeted fluorescent probes for the detection of metastatic bone cancer. Sci China Chem 2021;64:1283-96. [DOI: 10.1007/s11426-021-9990-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
570 Chen Y. Fluorescent probes for detection and bioimaging of leucine aminopeptidase. Materials Today Chemistry 2020;15:100216. [DOI: 10.1016/j.mtchem.2019.100216] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
571 Gao Z, Yang Z, Li Z, Burgess K. Fluorescent PARP Inhibitors Applied To Intracranial Glioblastoma: Accumulation and Persistence In Vivo. ACS Med Chem Lett . [DOI: 10.1021/acsmedchemlett.1c00712] [Reference Citation Analysis]
572 Shen T, Gao Y, Wang C, Xu Z, Liu X. Methine-Quinoidal Fragment Induces Significant Bathochromic Shifts in Organic Dyes. J Phys Chem B 2021;125:1447-52. [PMID: 33530685 DOI: 10.1021/acs.jpcb.0c10752] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
573 Tung CH, Han MS, Shen Z, Gray BD, Pak KY, Wang J. Near-Infrared Fluorogenic Spray for Rapid Tumor Sensing. ACS Sens 2021;6:3657-66. [PMID: 34549942 DOI: 10.1021/acssensors.1c01370] [Reference Citation Analysis]
574 Wang Q, Bian X, Suo Z, Han Y, Li H. Insights into intramolecular charge transfer fluorescent probes for recognizing human serum albumin. Journal of Luminescence 2019;213:530-7. [DOI: 10.1016/j.jlumin.2019.05.041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
575 Kang HG, Song SH, Han YB, Lee HY, Kim KM, Hong SJ. Proof-of-concept of a multimodal laparoscope for simultaneous NIR/gamma/visible imaging using wavelength division multiplexing. Opt Express 2018;26:8325-39. [PMID: 29715801 DOI: 10.1364/OE.26.008325] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
576 Kleinmanns K, Fosse V, Bjørge L, McCormack E. The Emerging Role of CD24 in Cancer Theranostics-A Novel Target for Fluorescence Image-Guided Surgery in Ovarian Cancer and Beyond. J Pers Med 2020;10:E255. [PMID: 33260974 DOI: 10.3390/jpm10040255] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
577 Meyer T, Ackermann R, Kammel R, Schmitt M, Nolte S, Tünnermann A, Popp J. CARS-imaging guidance for fs-laser ablation precision surgery. Analyst 2019;144:7310-7. [PMID: 31686084 DOI: 10.1039/c9an01545k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
578 Kim SE, Jo SD, Kwon KC, Won YY, Lee J. Genetic Assembly of Double-Layered Fluorescent Protein Nanoparticles for Cancer Targeting and Imaging. Adv Sci (Weinh) 2017;4:1600471. [PMID: 28546913 DOI: 10.1002/advs.201600471] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
579 Mao Z, Jiang H, Song X, Hu W, Liu Z. Development of a Silicon-Rhodamine Based Near-Infrared Emissive Two-Photon Fluorescent Probe for Nitric Oxide. Anal Chem 2017;89:9620-4. [PMID: 28845669 DOI: 10.1021/acs.analchem.7b02697] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 12.4] [Reference Citation Analysis]
580 Verbeek FP, Tummers QR, Rietbergen DD, Peters AA, Schaafsma BE, van de Velde CJ, Frangioni JV, van Leeuwen FW, Gaarenstroom KN, Vahrmeijer AL. Sentinel Lymph Node Biopsy in Vulvar Cancer Using Combined Radioactive and Fluorescence Guidance. Int J Gynecol Cancer 2015;25:1086-93. [PMID: 25768079 DOI: 10.1097/IGC.0000000000000419] [Cited by in Crossref: 49] [Cited by in F6Publishing: 20] [Article Influence: 8.2] [Reference Citation Analysis]
581 Kossatz S, Weber W, Reiner T. Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent. Mol Imaging 2017;16:1536012117723786. [PMID: 28856922 DOI: 10.1177/1536012117723786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
582 Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Diagnostic imaging in near-infrared photoimmunotherapy using a commercially available camera for indocyanine green. Cancer Sci 2021;112:1326-30. [PMID: 33543819 DOI: 10.1111/cas.14809] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
583 Lauwerends LJ, Galema HA, Hardillo JAU, Sewnaik A, Monserez D, van Driel PBAA, Verhoef C, Baatenburg de Jong RJ, Hilling DE, Keereweer S. Current Intraoperative Imaging Techniques to Improve Surgical Resection of Laryngeal Cancer: A Systematic Review. Cancers (Basel) 2021;13:1895. [PMID: 33920824 DOI: 10.3390/cancers13081895] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
584 Chi C, Ye J, Ding H, He D, Huang W, Zhang GJ, Tian J. Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: from preclinical evaluation to clinical validation. PLoS One 2013;8:e83927. [PMID: 24358319 DOI: 10.1371/journal.pone.0083927] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
585 Voskuil FJ, Vonk J, van der Vegt B, Kruijff S, Ntziachristos V, van der Zaag PJ, Witjes MJH, van Dam GM. Intraoperative imaging in pathology-assisted surgery. Nat Biomed Eng 2021. [PMID: 34750537 DOI: 10.1038/s41551-021-00808-8] [Reference Citation Analysis]
586 Picchetto A, Diana M, Swanström LL, Magliocca FM, Pronio A, Choppin E, Rocca S, Marescaux J, D'Ambrosio G. Upstaging nodal status in colorectal cancer using ex vivo fluorescence sentinel lymph node mapping: preliminary results. Minim Invasive Ther Allied Technol 2020;:1-7. [PMID: 32734804 DOI: 10.1080/13645706.2020.1798464] [Reference Citation Analysis]
587 Kamimura M. Polymer Conjugated Near-Infrared Fluorescent Probes for <i>in vivo</i> Imaging. KOBUNSHI RONBUNSHU 2018;75:468-74. [DOI: 10.1295/koron.2018-0017] [Reference Citation Analysis]
588 Daly MJ, Wilson BC, Irish JC, Jaffray DA. Navigated non-contact fluorescence tomography. Phys Med Biol 2019;64:135021. [DOI: 10.1088/1361-6560/ab1f33] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
589 Zhang Y, Yan C, Zheng Q, Jia Q, Wang Z, Shi P, Guo Z. Harnessing Hypoxia-Dependent Cyanine Photocages for In Vivo Precision Drug Release. Angew Chem Int Ed Engl 2021;60:9553-61. [PMID: 33569863 DOI: 10.1002/anie.202017349] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
590 Slooter MD, Handgraaf HJM, Boonstra MC, van der Velden LA, Bhairosingh SS, Que I, de Haan LM, Keereweer S, van Driel PBAA, Chan A, Kobayashi H, Vahrmeijer AL, Löwik CWGM. Detecting tumour-positive resection margins after oral cancer surgery by spraying a fluorescent tracer activated by gamma-glutamyltranspeptidase. Oral Oncol 2018;78:1-7. [PMID: 29496035 DOI: 10.1016/j.oraloncology.2017.12.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
591 Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Adv Sci (Weinh) 2021;8:2002545. [PMID: 33854877 DOI: 10.1002/advs.202002545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
592 Zhao H, Song Q, Zheng C, Zhao B, Wu L, Feng Q, Zhang Z, Wang L. Implantable Bioresponsive Nanoarray Enhances Postsurgical Immunotherapy by Activating Pyroptosis and Remodeling Tumor Microenvironment. Adv Funct Mater 2020;30:2005747. [DOI: 10.1002/adfm.202005747] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
593 Usama SM, Lin CM, Burgess K. On the Mechanisms of Uptake of Tumor-Seeking Cyanine Dyes. Bioconjug Chem 2018;29:3886-95. [PMID: 30354072 DOI: 10.1021/acs.bioconjchem.8b00708] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
594 Huang H, Lin Y, Ma W, Liu J, Han J, Hu X, Tang M, Yan S, Abudupataer M, Zhang C, Gao Q, Zhang W. A pre-screening strategy to assess resected tumor margins by imaging cytoplasmic viscosity and hypoxia. Elife 2021;10:e70471. [PMID: 34633289 DOI: 10.7554/eLife.70471] [Reference Citation Analysis]
595 Deng H, Wang H, Wang M, Li Z, Wu Z. Synthesis and Evaluation of 64Cu-DOTA-NT-Cy5.5 as a Dual-Modality PET/Fluorescence Probe to Image Neurotensin Receptor-Positive Tumor. Mol Pharm 2015;12:3054-61. [PMID: 26162008 DOI: 10.1021/acs.molpharmaceut.5b00325] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
596 Framery B, Gutowski M, Dumas K, Evrard A, Muller N, Dubois V, Quinonero J, Scherninski F, Pèlegrin A, Cailler F. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients. Toxicol Rep 2019;6:409-15. [PMID: 31080749 DOI: 10.1016/j.toxrep.2019.04.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
597 Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016;3:55. [PMID: 27800481 DOI: 10.3389/fsurg.2016.00055] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 10.5] [Reference Citation Analysis]
598 Bhattacharyya S, Patel N, Wei L, Riffle LA, Kalen JD, Hill GC, Jacobs PM, Zinn KR, Rosenthal E. Synthesis and biological evaluation of panitumumab-IRDye800 conjugate as a fluorescence imaging probe for EGFR-expressing cancers. Medchemcomm 2014;5:1337-46. [PMID: 25431648 DOI: 10.1039/C4MD00116H] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
599 Mela CA, Patterson C, Thompson WK, Papay F, Liu Y. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance. PLoS One 2015;10:e0141956. [PMID: 26529249 DOI: 10.1371/journal.pone.0141956] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
600 Tummers QR, Schepers A, Hamming JF, Kievit J, Frangioni JV, van de Velde CJ, Vahrmeijer AL. Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose Methylene Blue. Surgery 2015;158:1323-30. [PMID: 25958068 DOI: 10.1016/j.surg.2015.03.027] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 7.6] [Reference Citation Analysis]
601 Zeng X, Chen Z, Tang L, Yang H, Liu N, Zhou H, Li Y, Wu J, Deng Z, Yu Y, Deng H, Hong X, Xiao Y. A novel near-infrared fluorescent light-up probe for tumor imaging and drug-induced liver injury detection. Chem Commun (Camb) 2019;55:2541-4. [PMID: 30742156 DOI: 10.1039/c8cc10286d] [Cited by in Crossref: 19] [Cited by in F6Publishing: 3] [Article Influence: 6.3] [Reference Citation Analysis]
602 Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021;22:4804. [PMID: 33946583 DOI: 10.3390/ijms22094804] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
603 Carrasco-Zevallos OM, Viehland C, Keller B, Draelos M, Kuo AN, Toth CA, Izatt JA. Review of intraoperative optical coherence tomography: technology and applications [Invited]. Biomed Opt Express 2017;8:1607-37. [PMID: 28663853 DOI: 10.1364/BOE.8.001607] [Cited by in Crossref: 69] [Cited by in F6Publishing: 30] [Article Influence: 13.8] [Reference Citation Analysis]
604 Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa-Shah P, Azad BB, Pomper MG, Nimmagadda S. A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors. Oncotarget 2016;7:10215-27. [PMID: 26848870 DOI: 10.18632/oncotarget.7143] [Cited by in Crossref: 101] [Cited by in F6Publishing: 93] [Article Influence: 16.8] [Reference Citation Analysis]
605 Wang H, Li X, Tse BW, Yang H, Thorling CA, Liu Y, Touraud M, Chouane JB, Liu X, Roberts MS, Liang X. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics 2018;8:1227-42. [PMID: 29507616 DOI: 10.7150/thno.22872] [Cited by in Crossref: 112] [Cited by in F6Publishing: 112] [Article Influence: 28.0] [Reference Citation Analysis]
606 Hameed S, Dai Z. Near-infrared fluorescence probes for surgical navigation. Materials Today Chemistry 2018;10:90-103. [DOI: 10.1016/j.mtchem.2018.07.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
607 Thangudu S, Kaur N, Korupalli C, Sharma V, Kalluru P, Vankayala R. Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomater Sci 2021;9:5472-83. [PMID: 34269365 DOI: 10.1039/d1bm00631b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
608 Bio M, Rajaputra P, You Y. Photodynamic therapy via FRET following bioorthogonal click reaction in cancer cells. Bioorganic & Medicinal Chemistry Letters 2016;26:145-8. [DOI: 10.1016/j.bmcl.2015.11.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
609 Mangeolle T, Yakavets I, Marchal S, Debayle M, Pons T, Bezdetnaya L, Marchal F. Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. Nanomaterials (Basel) 2018;8:E572. [PMID: 30050022 DOI: 10.3390/nano8080572] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
610 Chen QY, Xie JW, Zhong Q, Wang JB, Lin JX, Lu J, Cao LL, Lin M, Tu RH, Huang ZN, Lin JL, Zheng HL, Li P, Zheng CH, Huang CM. Safety and Efficacy of Indocyanine Green Tracer-Guided Lymph Node Dissection During Laparoscopic Radical Gastrectomy in Patients With Gastric Cancer: A Randomized Clinical Trial.JAMA Surg. 2020;155:300-311. [PMID: 32101269 DOI: 10.1001/jamasurg.2019.6033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
611 Cui L, Gao Y, Yu H, Li M, Wang B, Zhou T, Hu Q. Intraoperative Parathyroid Localization with Near-Infrared Fluorescence Imaging Using Indocyanine Green during Total Parathyroidectomy for Secondary Hyperparathyroidism. Sci Rep 2017;7:8193. [PMID: 28811539 DOI: 10.1038/s41598-017-08347-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
612 Handgraaf HJ, Boogerd LS, Verbeek FP, Tummers QR, Hardwick JC, Baeten CI, Frangioni JV, van de Velde CJ, Vahrmeijer AL. Intraoperative fluorescence imaging to localize tumors and sentinel lymph nodes in rectal cancer. Minim Invasive Ther Allied Technol 2016;25:48-53. [PMID: 25950124 DOI: 10.3109/13645706.2015.1042389] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
613 Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics 2019;8:99-116. [PMID: 31187017 DOI: 10.1515/nanoph-2018-0134] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
614 Stammes MA, Bugby SL, Porta T, Pierzchalski K, Devling T, Otto C, Dijkstra J, Vahrmeijer AL, de Geus-Oei LF, Mieog JSD. Modalities for image- and molecular-guided cancer surgery. Br J Surg 2018;105:e69-83. [PMID: 29341161 DOI: 10.1002/bjs.10789] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
615 Kelkar SS, Hill TK, Marini FC, Mohs AM. Near infrared fluorescent nanoparticles based on hyaluronic acid: Self-assembly, optical properties, and cell interaction. Acta Biomater 2016;36:112-21. [PMID: 26995504 DOI: 10.1016/j.actbio.2016.03.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
616 Miner RC. Image-Guided Neurosurgery. J Med Imaging Radiat Sci 2017;48:328-35. [PMID: 31047466 DOI: 10.1016/j.jmir.2017.06.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
617 Kolste KK, Kanick SC, Valdés PA, Jermyn M, Wilson BC, Roberts DW, Paulsen KD, Leblond F. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance. J Biomed Opt 2015;20:26002. [PMID: 25652704 DOI: 10.1117/1.JBO.20.2.026002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
618 Gu X, Zhang X, Ma H, Jia S, Zhang P, Zhao Y, Liu Q, Wang J, Zheng X, Lam JWY, Ding D, Tang BZ. Corannulene-Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. Adv Mater 2018;30:1801065. [DOI: 10.1002/adma.201801065] [Cited by in Crossref: 97] [Cited by in F6Publishing: 82] [Article Influence: 24.3] [Reference Citation Analysis]
619 Grootendorst MR, Fitzgerald AJ, Brouwer de Koning SG, Santaolalla A, Portieri A, Van Hemelrijck M, Young MR, Owen J, Cariati M, Pepper M, Wallace VP, Pinder SE, Purushotham A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomed Opt Express 2017;8:2932-45. [PMID: 28663917 DOI: 10.1364/BOE.8.002932] [Cited by in Crossref: 35] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
620 Liu P, Mu X, Zhang X, Ming D. The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjugate Chem 2020;31:260-75. [DOI: 10.1021/acs.bioconjchem.9b00610] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 8.7] [Reference Citation Analysis]
621 Hu D, Gong Y, Seibel EJ, Sekhar LN, Hannaford B. Semi-autonomous image-guided brain tumour resection using an integrated robotic system: A bench-top study. Int J Med Robot 2018;14. [PMID: 29105281 DOI: 10.1002/rcs.1872] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
622 Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, Agostini M, Tasciotti E. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem 2018;25:4208-23. [PMID: 28933296 DOI: 10.2174/0929867324666170920160030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
623 Hettie KS, Klockow JL, Glass TE, Chin FT. Near-Infrared Fluorescent Rosol Dye Tailored toward Lymphatic Mapping Applications. Anal Chem 2019;91:3110-7. [PMID: 30669835 DOI: 10.1021/acs.analchem.8b05709] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
624 Dong P, Rakesh K, Manukumar H, Mohammed YHE, Karthik C, Sumathi S, Mallu P, Qin H. Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorganic Chemistry 2019;85:325-36. [DOI: 10.1016/j.bioorg.2019.01.019] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 17.7] [Reference Citation Analysis]
625 Chen D, Wu IC, Liu Z, Tang Y, Chen H, Yu J, Wu C, Chiu DT. Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chem Sci 2017;8:3390-8. [PMID: 28507710 DOI: 10.1039/c7sc00441a] [Cited by in Crossref: 47] [Cited by in F6Publishing: 5] [Article Influence: 9.4] [Reference Citation Analysis]
626 Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Fan L. Downshifting nanoprobes with follicle stimulating hormone peptide fabrication for highly efficient NIR II fluorescent bioimaging guided ovarian tumor surgery. Nanomedicine 2020;28:102198. [PMID: 32334101 DOI: 10.1016/j.nano.2020.102198] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
627 Hill TK, Mohs AM. Image-guided tumor surgery: will there be a role for fluorescent nanoparticles? Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016;8:498-511. [PMID: 26585556 DOI: 10.1002/wnan.1381] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
628 Le Guével X, Henry M, Motto-Ros V, Longo E, Montañez MI, Pelascini F, de La Rochefoucauld O, Zeitoun P, Coll JL, Josserand V, Sancey L. Elemental and optical imaging evaluation of zwitterionic gold nanoclusters in glioblastoma mouse models. Nanoscale 2018;10:18657-64. [PMID: 30264838 DOI: 10.1039/c8nr05299a] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
629 Gu Y, Guo Z, Yuan W, Kong M, Liu Y, Liu Y, Gao Y, Feng W, Wang F, Zhou J, Jin D, Li F. High-sensitivity imaging of time-domain near-infrared light transducer. Nat Photonics 2019;13:525-31. [DOI: 10.1038/s41566-019-0437-z] [Cited by in Crossref: 59] [Cited by in F6Publishing: 27] [Article Influence: 19.7] [Reference Citation Analysis]
630 de Moliner F, Biazruchka I, Konsewicz K, Benson S, Singh S, Lee J, Vendrell M. Near-infrared benzodiazoles as small molecule environmentally-sensitive fluorophores. Front Chem Sci Eng 2022;16:128-35. [DOI: 10.1007/s11705-021-2080-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
631 Gao S, Mondal SB, Zhu N, Liang R, Achilefu S, Gruev V. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system. J Biomed Opt 2015;20:016018. [PMID: 25607724 DOI: 10.1117/1.JBO.20.1.016018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
632 Ashoka AH, Kong S, Seeliger B, Andreiuk B, Soares RV, Barberio M, Diana M, Klymchenko AS. Near-infrared fluorescent coatings of medical devices for image-guided surgery. Biomaterials 2020;261:120306. [DOI: 10.1016/j.biomaterials.2020.120306] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
633 Horgan CC, Bergholt MS, Thin MZ, Nagelkerke A, Kennedy R, Kalber TL, Stuckey DJ, Stevens MM. Image-guided Raman spectroscopy probe-tracking for tumor margin delineation. J Biomed Opt 2021;26. [PMID: 33715315 DOI: 10.1117/1.JBO.26.3.036002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
634 Stammes MA, Prevoo HA, Ter Horst MC, Groot SA, Van de Velde CJ, Chan AB, de Geus-Oei LF, Kuppen PJ, Vahrmeijer AL, Pasquale EB, Sier CF. Evaluation of EphA2 and EphB4 as Targets for Image-Guided Colorectal Cancer Surgery. Int J Mol Sci 2017;18:E307. [PMID: 28165374 DOI: 10.3390/ijms18020307] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
635 Zhang RR, Schroeder AB, Grudzinski JJ, Rosenthal EL, Warram JM, Pinchuk AN, Eliceiri KW, Kuo JS, Weichert JP. Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat Rev Clin Oncol 2017;14:347-64. [PMID: 28094261 DOI: 10.1038/nrclinonc.2016.212] [Cited by in Crossref: 192] [Cited by in F6Publishing: 177] [Article Influence: 38.4] [Reference Citation Analysis]
636 Gong L, Wang Y, Liu J. Bioapplications of renal-clearable luminescent metal nanoparticles. Biomater Sci 2017;5:1393-406. [DOI: 10.1039/c7bm00257b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 4.2] [Reference Citation Analysis]
637 Wu P, Zhu Y, Liu S, Xiong H. Modular Design of High-Brightness pH-Activatable Near-Infrared BODIPY Probes for Noninvasive Fluorescence Detection of Deep-Seated Early Breast Cancer Bone Metastasis: Remarkable Axial Substituent Effect on Performance. ACS Cent Sci 2021;7:2039-48. [PMID: 34963896 DOI: 10.1021/acscentsci.1c01066] [Reference Citation Analysis]
638 An Y, Meng H, Gao Y, Tong T, Zhang C, Wang K, Tian J. Application of machine learning method in optical molecular imaging: a review. Sci China Inf Sci 2020;63. [DOI: 10.1007/s11432-019-2708-1] [Reference Citation Analysis]
639 Zhang J, Huang Y, Wang D, Pollard AC, Chen Z(, Egap E. Triblock near-infrared fluorescent polymer semiconductor nanoparticles for targeted imaging. J Mater Chem C 2017;5:5685-92. [DOI: 10.1039/c7tc00632b] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
640 Qu Q, Zhang Z, Guo X, Yang J, Cao C, Li C, Zhang H, Xu P, Hu Z, Tian J. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J Nanobiotechnology 2022;20:143. [PMID: 35305654 DOI: 10.1186/s12951-022-01325-9] [Reference Citation Analysis]
641 Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol 2015;12:115-24. [PMID: 25384943 DOI: 10.1038/nrclinonc.2014.191] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 10.5] [Reference Citation Analysis]
642 Zhang Y, Sun Y, Dong X, Wang QS, Zhu D, Mei L, Yan H, Lv F. A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy. ACS Nano 2022. [PMID: 35324149 DOI: 10.1021/acsnano.2c00453] [Reference Citation Analysis]
643 Tholen M, Yim JJ, Groborz K, Yoo E, Martin BA, Berg NS, Drag M, Bogyo M. Design of Optical‐Imaging Probes by Screening of Diverse Substrate Libraries Directly in Disease‐Tissue Extracts. Angew Chem 2020;132:19305-14. [DOI: 10.1002/ange.202006719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
644 Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1624. [PMID: 32162485 DOI: 10.1002/wnan.1624] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
645 Penet MF, Krishnamachary B, Chen Z, Jin J, Bhujwalla ZM. Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv Cancer Res 2014;124:235-56. [PMID: 25287691 DOI: 10.1016/B978-0-12-411638-2.00007-0] [Cited by in Crossref: 42] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
646 Qi B, Crawford AJ, Wojtynek NE, Talmon GA, Hollingsworth MA, Ly QP, Mohs AM. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging. Theranostics 2020;10:3413-29. [PMID: 32206099 DOI: 10.7150/thno.40688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
647 Feng J, Li S, Fan H, Lin Y, Lu Y. Dendritic polylysine based ανβ3 integrin targeted probe for near-infrared fluorescent imaging of glioma. Colloids and Surfaces B: Biointerfaces 2019;178:146-52. [DOI: 10.1016/j.colsurfb.2019.01.059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
648 Kairdolf BA, Bouras A, Kaluzova M, Sharma AK, Wang MD, Hadjipanayis CG, Nie S. Intraoperative Spectroscopy with Ultrahigh Sensitivity for Image-Guided Surgery of Malignant Brain Tumors. Anal Chem 2016;88:858-67. [DOI: 10.1021/acs.analchem.5b03453] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
649 Guo B, Huang Z, Shi Q, Middha E, Xu S, Li L, Wu M, Jiang J, Hu Q, Fu Z, Liu B. Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Adv Funct Mater 2019;30:1907093. [DOI: 10.1002/adfm.201907093] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
650 Li L, Du Y, Chen X, Tian J. Fluorescence Molecular Imaging and Tomography of Matrix Metalloproteinase-Activatable Near-Infrared Fluorescence Probe and Image-Guided Orthotopic Glioma Resection. Mol Imaging Biol 2018;20:930-9. [DOI: 10.1007/s11307-017-1158-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
651 Bouccara S, Sitbon G, Fragola A, Loriette V, Lequeux N, Pons T. Enhancing fluorescence in vivo imaging using inorganic nanoprobes. Current Opinion in Biotechnology 2015;34:65-72. [DOI: 10.1016/j.copbio.2014.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
652 Zhong D, Chen W, Xia Z, Hu R, Qi Y, Zhou B, Li W, He J, Wang Z, Zhao Z, Ding D, Tian M, Tang BZ, Zhou M. Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nat Commun 2021;12:6485. [PMID: 34759280 DOI: 10.1038/s41467-021-26417-2] [Reference Citation Analysis]
653 Lang Q, Zhong C, Liang Z, Zhang Y, Wu B, Xu F, Cong L, Wu S, Tian Y. Six application scenarios of artificial intelligence in the precise diagnosis and treatment of liver cancer. Artif Intell Rev 2021;54:5307-46. [DOI: 10.1007/s10462-021-10023-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
654 Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, Hu Y, Wu J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomaterialia 2017;59:269-82. [DOI: 10.1016/j.actbio.2017.06.035] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 13.0] [Reference Citation Analysis]
655 Mao W, Tang J, Dai L, He X, Li J, Cai L, Liao P, Jiang R, Zhou J, Wu H. A General Strategy to Design Highly Fluorogenic Far-Red and Near-Infrared Tetrazine Bioorthogonal Probes. Angew Chem Int Ed Engl 2021;60:2393-7. [PMID: 33079440 DOI: 10.1002/anie.202011544] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
656 Owens EA, Lee S, Choi J, Henary M, Choi HS. NIR fluorescent small molecules for intraoperative imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:828-38. [PMID: 25645081 DOI: 10.1002/wnan.1337] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 5.4] [Reference Citation Analysis]
657 Lobbes LA, Berns S, Warschkow R, Schmidt LR, Schineis C, Strobel RM, Lauscher JC, Beyer K, Weixler B. Perfusion Visualization during Ileal J-Pouch Formation—A Proposal for the Standardization of Intraoperative Imaging with Indocyanine Green Near-Infrared Fluorescence and a Postoperative Follow-Up in IBD Surgery. Life 2022;12:668. [DOI: 10.3390/life12050668] [Reference Citation Analysis]
658 Volpi D, Tullis IDC, Barber PR, Augustyniak EM, Smart SC, Vallis KA, Vojnovic B. Electrically tunable fluidic lens imaging system for laparoscopic fluorescence-guided surgery. Biomed Opt Express 2017;8:3232-47. [PMID: 28717564 DOI: 10.1364/BOE.8.003232] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
659 Shi Y, Yuan W, Liu Q, Kong M, Li Z, Feng W, Hu K, Li F. Development of Polyene-Bridged Hybrid Rhodamine Fluorophores for High-Resolution NIR-II Imaging. ACS Materials Lett 2019;1:418-24. [DOI: 10.1021/acsmaterialslett.9b00265] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
660 Chen Y, Zhang H, Lei Z, Zhang F. Recent Advances in Intraoperative Nerve Bioimaging: Fluorescence‐Guided Surgery for Nerve Preservation. Small Structures 2020;1:2000036. [DOI: 10.1002/sstr.202000036] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
661 Debie P, Van Quathem J, Hansen I, Bala G, Massa S, Devoogdt N, Xavier C, Hernot S. Effect of Dye and Conjugation Chemistry on the Biodistribution Profile of Near-Infrared-Labeled Nanobodies as Tracers for Image-Guided Surgery. Mol Pharm 2017;14:1145-53. [PMID: 28245129 DOI: 10.1021/acs.molpharmaceut.6b01053] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 8.6] [Reference Citation Analysis]
662 Sun T, Zhang G, Ning T, Chen Q, Chu Y, Luo Y, You H, Su B, Li C, Guo Q, Jiang C. A Versatile Theranostic Platform for Colorectal Cancer Peritoneal Metastases: Real-Time Tumor-Tracking and Photothermal-Enhanced Chemotherapy. Adv Sci (Weinh) 2021;:e2102256. [PMID: 34398516 DOI: 10.1002/advs.202102256] [Reference Citation Analysis]
663 Tian C, Sun X, Cong B, Qiu P, Wang Y. Murine Model Study of a New Receptor-Targeted Tracer for Sentinel Lymph Node in Breast Cancer. J Breast Cancer 2019;22:274-84. [PMID: 31281729 DOI: 10.4048/jbc.2019.22.e28] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
664 Pal S, Ray A, Andreou C, Zhou Y, Rakshit T, Wlodarczyk M, Maeda M, Toledo-Crow R, Berisha N, Yang J, Hsu HT, Oseledchyk A, Mondal J, Zou S, Kircher MF. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy. Nat Commun 2019;10:1926. [PMID: 31028250 DOI: 10.1038/s41467-019-09173-2] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 13.3] [Reference Citation Analysis]
665 Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 2018;47:3490-529. [PMID: 29497722 DOI: 10.1039/c7cs00793k] [Cited by in Crossref: 58] [Cited by in F6Publishing: 19] [Article Influence: 14.5] [Reference Citation Analysis]
666 Jia Y, Wang X, Hu D, Wang P, Liu Q, Zhang X, Jiang J, Liu X, Sheng Z, Liu B, Zheng H. Phototheranostics: Active Targeting of Orthotopic Glioma Using Biomimetic Proteolipid Nanoparticles. ACS Nano 2019;13:386-98. [DOI: 10.1021/acsnano.8b06556] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 15.8] [Reference Citation Analysis]
667 Lee JYK, Pierce JT, Thawani JP, Zeh R, Nie S, Martinez-Lage M, Singhal S. Near-infrared fluorescent image-guided surgery for intracranial meningioma. J Neurosurg 2018;128:380-90. [PMID: 28387632 DOI: 10.3171/2016.10.JNS161636] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
668 [DOI: 10.1117/12.2080298] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
669 Yu Z, Eich C, Cruz LJ. Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Front Chem 2020;8:496. [PMID: 32656181 DOI: 10.3389/fchem.2020.00496] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
670 Fonnes T, Strand E, Fasmer KE, Berg HF, Espedal H, Sortland K, Stefansson I, Bjørge L, Haldorsen IS, Krakstad C, McCormack E. Near-Infrared Fluorescent Imaging for Monitoring of Treatment Response in Endometrial Carcinoma Patient-Derived Xenograft Models. Cancers (Basel) 2020;12:E370. [PMID: 32041116 DOI: 10.3390/cancers12020370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
671 Wu D, O'Shea DF. Fluorogenic NIR-probes based on 1,2,4,5-tetrazine substituted BF2-azadipyrromethenes. Chem Commun (Camb) 2017;53:10804-7. [PMID: 28920988 DOI: 10.1039/c7cc06545k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
672 Al-Taher M, van den Bos J, Schols RM, Kubat B, Bouvy ND, Stassen LPS. Evaluation of a novel dye for near-infrared fluorescence delineation of the ureters during laparoscopy. BJS Open. 2018;2:254-261. [PMID: 30079395 DOI: 10.1002/bjs5.59] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
673 Dann T, Raphel J, Gammon ST, Mastrovich Z, Van Avermaete T, Jeffrey J, Adusumilli S, Leevy WM. Anatase Titanium Dioxide Imparts Photoluminescent Properties to PA2200 Commercial 3D Printing Material to Generate Complex Optical Imaging Phantoms. Materials (Basel) 2021;14:1813. [PMID: 33917612 DOI: 10.3390/ma14071813] [Reference Citation Analysis]
674 Baart VM, van Duijn C, van Egmond SL, Dijckmeester WA, Jansen JC, Vahrmeijer AL, Sier CFM, Cohen D. EGFR and αvβ6 as Promising Targets for Molecular Imaging of Cutaneous and Mucosal Squamous Cell Carcinoma of the Head and Neck Region. Cancers (Basel) 2020;12:E1474. [PMID: 32516897 DOI: 10.3390/cancers12061474] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
675 van Schaik JE, Hanemaaijer SH, Halmos GB, Witjes MJH, van der Laan BFAM, van der Vegt B, Plaat BEC. Glycoprotein Nonmetastatic Melanoma Protein B as Potential Imaging Marker in Posttherapeutic Metastatic Head and Neck Cancer. Otolaryngol Head Neck Surg 2020;163:1202-8. [PMID: 32600105 DOI: 10.1177/0194599820932869] [Reference Citation Analysis]
676 Wang LG, Barth CW, Kitts CH, Mebrat MD, Montaño AR, House BJ, Mccoy ME, Antaris AL, Galvis SN, Mcdowall I, Sorger JM, Gibbs SL. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci Transl Med 2020;12:eaay0712. [DOI: 10.1126/scitranslmed.aay0712] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
677 Brachi G, Bussolino F, Ciardelli G, Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front Bioeng Biotechnol 2019;7:307. [PMID: 31824928 DOI: 10.3389/fbioe.2019.00307] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
678 Elliott JT, Marra K, Evans LT, Davis SC, Samkoe KS, Feldwisch J, Paulsen KD, Roberts DW, Pogue BW. Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma. Clin Cancer Res 2017;23:2203-12. [PMID: 27799250 DOI: 10.1158/1078-0432.CCR-16-1400] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
679 Linsley CS, Wu BM. Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv 2017;8:89-107. [PMID: 28088880 DOI: 10.4155/tde-2016-0060] [Cited by in Crossref: 94] [Cited by in F6Publishing: 75] [Article Influence: 23.5] [Reference Citation Analysis]
680 Verbeek FP, van der Vorst JR, Tummers QR, Boonstra MC, de Rooij KE, Löwik CW, Valentijn AR, van de Velde CJ, Choi HS, Frangioni JV, Vahrmeijer AL. Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann Surg Oncol 2014;21 Suppl 4:S528-37. [PMID: 24515567 DOI: 10.1245/s10434-014-3524-x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 5.4] [Reference Citation Analysis]
681 Song C, Phuengkham H, Kim YS, Dinh VV, Lee I, Shin IW, Shin HS, Jin SM, Um SH, Lee H, Hong KS, Jin S, Lee E, Kang TH, Park Y, Lim YT. Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nat Commun 2019;10. [DOI: 10.1038/s41467-019-11730-8] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 14.7] [Reference Citation Analysis]
682 Gao H, Bao P, Dai S, Liu R, Ji S, Zeng S, Shen J, Liu Q, Ding D. Far-Red/Near-Infrared Emissive (1,3-Dimethyl)barbituric Acid-Based AIEgens for High-Contrast Detection of Metastatic Tumors in the Lung. Chem Asian J 2019;14:871-6. [PMID: 30548916 DOI: 10.1002/asia.201801660] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
683 Snoeks TJ, van Driel PB, Keereweer S, Aime S, Brindle KM, van Dam GM, Löwik CW, Ntziachristos V, Vahrmeijer AL. Towards a successful clinical implementation of fluorescence-guided surgery. Mol Imaging Biol 2014;16:147-51. [PMID: 24249642 DOI: 10.1007/s11307-013-0707-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
684 Lu X, Liu S, Xia X, Sun F, Liu Z, Wang J, Li X, Yang Z, Kang X, Ai S, Guan W. The short-term and long-term outcomes of indocyanine green tracer-guided laparoscopic radical gastrectomy in patients with gastric cancer. World J Surg Oncol 2021;19:271. [PMID: 34503530 DOI: 10.1186/s12957-021-02385-1] [Reference Citation Analysis]
685 Swierczewska M, Kozlov S, Adiseshaiah PP. Emerging Technologies for the Diagnosis and Treatment of Pancreatic Cancer. Oncogenomics. Elsevier; 2019. pp. 313-27. [DOI: 10.1016/b978-0-12-811785-9.00022-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
686 Qian Y, Cai S. A safe and effective surgical navigation technique in laparoscopic radical gastrectomy: Indocyanine green-mediated near-infrared fluorescent imaging. Cancer Commun (Lond) 2020;40:270-2. [PMID: 32525596 DOI: 10.1002/cac2.12033] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
687 Xu D, Li L, Chu C, Zhang X, Liu G. Advances and perspectives in near-infrared fluorescent organic probes for surgical oncology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1635. [PMID: 32297455 DOI: 10.1002/wnan.1635] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
688 Philp L, Chan H, Rouzbahman M, Overchuk M, Chen J, Zheng G, Bernardini MQ. Use of Porphysomes to detect primary tumour, lymph node metastases, intra-abdominal metastases and as a tool for image-guided lymphadenectomy: proof of concept in endometrial cancer. Theranostics 2019;9:2727-38. [PMID: 31131064 DOI: 10.7150/thno.31225] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
689 Wada H, Hyun H, Vargas C, Gravier J, Park G, Gioux S, Frangioni JV, Henary M, Choi HS. Pancreas-targeted NIR fluorophores for dual-channel image-guided abdominal surgery. Theranostics 2015;5:1-11. [PMID: 25553094 DOI: 10.7150/thno.10259] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
690 Kleinmanns K, Fosse V, Davidson B, de Jalón EG, Tenstad O, Bjørge L, McCormack E. CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model. EBioMedicine 2020;56:102783. [PMID: 32454402 DOI: 10.1016/j.ebiom.2020.102783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
691 Ren H, Zeng X, Zhao X, Hou D, Yao H, Yaseen M, Zhao L, Xu W, Wang H, Li L. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat Commun 2022;13. [DOI: 10.1038/s41467-021-27932-y] [Reference Citation Analysis]
692 Bhagavatula S, Thompson D, Ahn SW, Upadhyaya K, Lammers A, Deans K, Dominas C, Ferland B, Valvo V, Liu G, Jonas O. A Miniaturized Platform for Multiplexed Drug Response Imaging in Live Tumors. Cancers (Basel) 2021;13:653. [PMID: 33562152 DOI: 10.3390/cancers13040653] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
693 Wijnen MWH, Davidoff AM. Minimally Invasive Techniques in Pediatric Surgical Oncology. Surg Oncol Clin N Am 2021;30:417-30. [PMID: 33706909 DOI: 10.1016/j.soc.2020.11.008] [Reference Citation Analysis]
694 Jeong Y, Kim G, Jeong S, Lee B, Kim S, Koh WG, Lee K. Cancer Selective Turn-On Fluorescence Imaging Using a Biopolymeric Nanocarrier. Biomacromolecules 2019;20:1068-76. [PMID: 30645935 DOI: 10.1021/acs.biomac.8b01690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
695 Ge Y, O'Shea DF. RGD conjugated switch on near infrared-fluorophores for fluorescence guided cancer surgeries. Future Oncol 2019;15:4123-5. [PMID: 31794258 DOI: 10.2217/fon-2019-0518] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
696 Sarcan ET, Silindir-gunay M, Ozer AY. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. International Journal of Pharmaceutics 2018;551:329-38. [DOI: 10.1016/j.ijpharm.2018.09.019] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
697 Ishijima A, Minamihata K, Yamaguchi S, Yamahira S, Ichikawa R, Kobayashi E, Iijima M, Shibasaki Y, Azuma T, Nagamune T, Sakuma I. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro. Sci Rep 2017;7:44077. [PMID: 28333127 DOI: 10.1038/srep44077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
698 Liou S, Ke C, Chen J, Luo Y, Kuo S, Chen Y, Fang C, Wu C, Chiang C, Chan Y. Tuning the Emission of Semiconducting Polymer Dots from Green to Near-Infrared by Alternating Donor Monomers and Their Applications for in Vivo Biological Imaging. ACS Macro Lett 2016;5:154-7. [DOI: 10.1021/acsmacrolett.5b00842] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
699 Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H. A small-molecule dye for NIR-II imaging. Nat Mater 2016;15:235-42. [PMID: 26595119 DOI: 10.1038/nmat4476] [Cited by in Crossref: 773] [Cited by in F6Publishing: 689] [Article Influence: 110.4] [Reference Citation Analysis]
700 Miki K, Kojima K, Oride K, Harada H, Morinibu A, Ohe K. pH-Responsive near-infrared fluorescent cyanine dyes for molecular imaging based on pH sensing. Chem Commun 2017;53:7792-5. [DOI: 10.1039/c7cc03035e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 3.4] [Reference Citation Analysis]
701 Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019;8:E12. [PMID: 31544818 DOI: 10.3390/antib8010012] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 12.7] [Reference Citation Analysis]
702 Wang Z, Chen L, Huang Y, Luo M, Wang H, Jiang Z, Zheng J, Yang Z, Chen Z, Zhang C, Long L, Wang Y, Li X, Liao F, Gan Y, Luo P, Liu Y, Wang Y, XuTan, Zhou Z, Zhang A, Shi C. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis. Redox Biol 2021;46:102082. [PMID: 34343908 DOI: 10.1016/j.redox.2021.102082] [Reference Citation Analysis]
703 Kim JH, Ku M, Yang J, Byeon HK. Recent Developments of ICG-Guided Sentinel Lymph Node Mapping in Oral Cancer. Diagnostics (Basel) 2021;11:891. [PMID: 34067713 DOI: 10.3390/diagnostics11050891] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
704 Wang Q, Huang L, Zhu X, Zhou Y, Wang J, Su D, Liu L. MR/NIRF Dual-Mode Imaging of αvβ3 Integrin-Overexpressing Tumors Using a Lipopeptide-Based Contrast Agent. Mol Pharm 2021;18:4543-52. [PMID: 34677979 DOI: 10.1021/acs.molpharmaceut.1c00749] [Reference Citation Analysis]
705 Shen Z, Prasai B, Nakamura Y, Kobayashi H, Jackson MS, McCarley RL. A Near-Infrared, Wavelength-Shiftable, Turn-on Fluorescent Probe for the Detection and Imaging of Cancer Tumor Cells. ACS Chem Biol 2017;12:1121-32. [PMID: 28240865 DOI: 10.1021/acschembio.6b01094] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
706 Biffi S, Petrizza L, Rampazzo E, Voltan R, Sgarzi M, Garrovo C, Prodi L, Andolfi L, Agnoletto C, Zauli G, Secchiero P. Multiple dye-doped NIR-emitting silica nanoparticles for both flow cytometry and in vivo imaging. RSC Adv 2014;4:18278-85. [DOI: 10.1039/c4ra01535e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
707 del Rosal B, Villa I, Jaque D, Sanz-rodríguez F. In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophoton 2016;9:1059-67. [DOI: 10.1002/jbio.201500271] [Cited by in Crossref: 63] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
708 Miao T, Oldinski RA, Liu G, Chen X. Nanotheranostics-Based Imaging for Cancer Treatment Monitoring. In: Rai P, Morris SA, editors. Nanotheranostics for Cancer Applications. Cham: Springer International Publishing; 2019. pp. 395-428. [DOI: 10.1007/978-3-030-01775-0_16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
709 Nagaya T, Nakamura YA, Choyke PL, Kobayashi H. Current and new fluorescent probes for fluorescence-guided surgery. Strategies for Curative Fluorescence-Guided Surgery of Cancer. Elsevier; 2020. pp. 75-114. [DOI: 10.1016/b978-0-12-812576-2.00006-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
710 Peters IT, Hilders CG, Sier CF, Vahrmeijer AL, Smit VT, Baptist Trimbos J, Kuppen PJ. Identification of cell-surface markers for detecting breast cancer cells in ovarian tissue. Arch Gynecol Obstet 2016;294:385-93. [PMID: 26946151 DOI: 10.1007/s00404-016-4036-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
711 Wojtynek NE, Olson MT, Bielecki TA, An W, Bhat AM, Band H, Lauer SR, Silva-lopez E, Mohs AM. Nanoparticle Formulation of Indocyanine Green Improves Image-Guided Surgery in a Murine Model of Breast Cancer. Mol Imaging Biol 2020;22:891-903. [DOI: 10.1007/s11307-019-01462-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
712 Hill TK, Kelkar SS, Wojtynek NE, Souchek JJ, Payne WM, Stumpf K, Marini FC, Mohs AM. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics 2016;6:2314-28. [PMID: 27877237 DOI: 10.7150/thno.16514] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
713 Qi H, Li Z, Du K, Mu K, Zhou Q, Liang S, Zhu W, Yang X, Zhu Y. Transferrin-targeted magnetic/fluorescence micelles as a specific bi-functional nanoprobe for imaging liver tumor. Nanoscale Res Lett 2014;9:595. [PMID: 25400528 DOI: 10.1186/1556-276X-9-595] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
714 [DOI: 10.1117/12.2251625] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]