BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lange SS, Takata K, Wood RD. DNA polymerases and cancer. Nat Rev Cancer 2011;11:96-110. [PMID: 21258395 DOI: 10.1038/nrc2998] [Cited by in Crossref: 376] [Cited by in F6Publishing: 338] [Article Influence: 37.6] [Reference Citation Analysis]
Number Citing Articles
1 Korzhnev DM, Hadden MK. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics. J Med Chem 2016;59:9321-36. [PMID: 27362876 DOI: 10.1021/acs.jmedchem.6b00596] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
2 Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017;30:1922-35. [PMID: 28877429 DOI: 10.1021/acs.chemrestox.7b00161] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
3 Rizzo AA, Korzhnev DM. The Rev1-Polζ translesion synthesis mutasome: Structure, interactions and inhibition. Enzymes 2019;45:139-81. [PMID: 31627876 DOI: 10.1016/bs.enz.2019.07.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
4 Franchet C, Hoffmann JS. When RAD52 Allows Mitosis to Accept Unscheduled DNA Synthesis. Cancers (Basel) 2019;12:E26. [PMID: 31861741 DOI: 10.3390/cancers12010026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
5 Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. Mutat Res Genet Toxicol Environ Mutagen 2018;836:127-42. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
6 Kawamura M, Kuriyama I, Maruo S, Kuramochi K, Tsubaki K, Yoshida H, Mizushina Y. Anti-tumor effects of novel 5-O-acyl plumbagins based on the inhibition of mammalian DNA replicative polymerase activity. PLoS One 2014;9:e88736. [PMID: 24520419 DOI: 10.1371/journal.pone.0088736] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
7 Yang B, Yang L, Chen J. Development and Application of Base Editors. CRISPR J 2019;2:91-104. [PMID: 30998092 DOI: 10.1089/crispr.2019.0001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
8 Jemaà M, Manic G, Vitale I. Synchronization and Desynchronization of Cells by Interventions on the Spindle Assembly Checkpoint. Methods Mol Biol 2017;1524:77-95. [PMID: 27815897 DOI: 10.1007/978-1-4939-6603-5_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
9 Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses: Catalytic and Non-Catalytic Roles of DNA Polymerase κ. Environ Mol Mutagen 2015;56:650-62. [DOI: 10.1002/em.21961] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
10 Singer WD, Osimiri LC, Friedberg EC. Increased dietary cholesterol promotes enhanced mutagenesis in DNA polymerase kappa-deficient mice. DNA Repair (Amst) 2013;12:817-23. [PMID: 23948094 DOI: 10.1016/j.dnarep.2013.07.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
11 Kanao R, Yokoi M, Ohkumo T, Sakurai Y, Dotsu K, Kura S, Nakatsu Y, Tsuzuki T, Masutani C, Hanaoka F. UV-induced mutations in epidermal cells of mice defective in DNA polymerase η and/or ι. DNA Repair (Amst) 2015;29:139-46. [PMID: 25733082 DOI: 10.1016/j.dnarep.2015.02.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
12 Khalaj M, Abbasi A, Yamanishi H, Akiyama K, Wakitani S, Kikuchi S, Hirose M, Yuzuriha M, Magari M, Degheidy HA, Abe K, Ogura A, Hashimoto H, Kunieda T. A missense mutation in Rev7 disrupts formation of Polζ, impairing mouse development and repair of genotoxic agent-induced DNA lesions. J Biol Chem 2014;289:3811-24. [PMID: 24356953 DOI: 10.1074/jbc.M113.514752] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
13 Henninger EE, Pursell ZF. DNA polymerase ε and its roles in genome stability. IUBMB Life 2014;66:339-51. [PMID: 24861832 DOI: 10.1002/iub.1276] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 6.1] [Reference Citation Analysis]
14 Rogozin IB, Pavlov YI, Goncearenco A, De S, Lada AG, Poliakov E, Panchenko AR, Cooper DN. Mutational signatures and mutable motifs in cancer genomes. Brief Bioinform 2018;19:1085-101. [PMID: 28498882 DOI: 10.1093/bib/bbx049] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
15 Sobol RW. Genome instability caused by a germline mutation in the human DNA repair gene POLB. PLoS Genet 2012;8:e1003086. [PMID: 23144636 DOI: 10.1371/journal.pgen.1003086] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
16 Bacolla A, Cooper DN, Vasquez KM. Mechanisms of base substitution mutagenesis in cancer genomes. Genes (Basel) 2014;5:108-46. [PMID: 24705290 DOI: 10.3390/genes5010108] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.9] [Reference Citation Analysis]
17 Ashour ME, Mosammaparast N. Mechanisms of damage tolerance and repair during DNA replication. Nucleic Acids Res 2021;49:3033-47. [PMID: 33693881 DOI: 10.1093/nar/gkab101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Gowda AS, Lee M, Spratt TE. N2 -Substituted 2'-Deoxyguanosine Triphosphate Derivatives as Selective Substrates for Human DNA Polymerase κ. Angew Chem Int Ed Engl 2017;56:2628-31. [PMID: 28140505 DOI: 10.1002/anie.201611607] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Kraszewska J, Garbacz M, Jonczyk P, Fijalkowska IJ, Jaszczur M. Defect of Dpb2p, a noncatalytic subunit of DNA polymerase ɛ, promotes error prone replication of undamaged chromosomal DNA in Saccharomyces cerevisiae. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2012;737:34-42. [DOI: 10.1016/j.mrfmmm.2012.06.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
20 Hedglin M, Benkovic SJ. Regulation of Rad6/Rad18 Activity During DNA Damage Tolerance. Annu Rev Biophys 2015;44:207-28. [PMID: 26098514 DOI: 10.1146/annurev-biophys-060414-033841] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 12.0] [Reference Citation Analysis]
21 Sammons MA, Nguyen TT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020;48:8848-69. [PMID: 32797160 DOI: 10.1093/nar/gkaa666] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
22 Furrer A, van Loon B. Handling the 3-methylcytosine lesion by six human DNA polymerases members of the B-, X- and Y-families. Nucleic Acids Res 2014;42:553-66. [PMID: 24097443 DOI: 10.1093/nar/gkt889] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
23 Fu D, Calvo JA, Samson LD. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 2012;12:104-20. [PMID: 22237395 DOI: 10.1038/nrc3185] [Cited by in Crossref: 494] [Cited by in F6Publishing: 460] [Article Influence: 54.9] [Reference Citation Analysis]
24 Cipolla L, Maffia A, Bertoletti F, Sabbioneda S. The Regulation of DNA Damage Tolerance by Ubiquitin and Ubiquitin-Like Modifiers. Front Genet 2016;7:105. [PMID: 27379156 DOI: 10.3389/fgene.2016.00105] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
25 Mentegari E, Kissova M, Bavagnoli L, Maga G, Crespan E. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair. Genes (Basel) 2016;7:E57. [PMID: 27589807 DOI: 10.3390/genes7090057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
26 Greene JM, Gevertz JL, Sontag ED. Mathematical Approach to Differentiate Spontaneous and Induced Evolution to Drug Resistance During Cancer Treatment. JCO Clin Cancer Inform 2019;3:1-20. [PMID: 30969799 DOI: 10.1200/CCI.18.00087] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 17.0] [Reference Citation Analysis]
27 Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017;3:840-56. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
28 You C, Swanson AL, Dai X, Yuan B, Wang J, Wang Y. Translesion synthesis of 8,5'-cyclopurine-2'-deoxynucleosides by DNA polymerases η, ι, and ζ. J Biol Chem 2013;288:28548-56. [PMID: 23965998 DOI: 10.1074/jbc.M113.480459] [Cited by in Crossref: 55] [Cited by in F6Publishing: 41] [Article Influence: 6.9] [Reference Citation Analysis]
29 Goričar K, Kovač V, Jazbec J, Zakotnik B, Lamovec J, Dolžan V. Translesion polymerase genes polymorphisms and haplotypes influence survival of osteosarcoma patients. OMICS 2015;19:180-5. [PMID: 25748439 DOI: 10.1089/omi.2014.0159] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
30 Roston D, Lu X, Fang D, Demapan D, Cui Q. Analysis of Phosphoryl-Transfer Enzymes with QM/MM Free Energy Simulations. Methods Enzymol 2018;607:53-90. [PMID: 30149869 DOI: 10.1016/bs.mie.2018.05.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Gilljam KM, Müller R, Liabakk NB, Otterlei M. Nucleotide excision repair is associated with the replisome and its efficiency depends on a direct interaction between XPA and PCNA. PLoS One 2012;7:e49199. [PMID: 23152873 DOI: 10.1371/journal.pone.0049199] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
32 Agulló-Ortuño MT, García-Ruiz I, Díaz-García CV, Enguita AB, Pardo-Marqués V, Prieto-García E, Ponce S, Iglesias L, Zugazagoitia J, López-Martín JA, Paz-Ares L, Nuñez JA. Blood mRNA expression of REV3L and TYMS as potential predictive biomarkers from platinum-based chemotherapy plus pemetrexed in non-small cell lung cancer patients. Cancer Chemother Pharmacol 2020;85:525-35. [PMID: 31832811 DOI: 10.1007/s00280-019-04008-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Goričar K, Kovač V, Dolžan V. Polymorphisms in translesion polymerase genes influence treatment outcome in malignant mesothelioma. Pharmacogenomics 2014;15:941-50. [DOI: 10.2217/pgs.14.14] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
34 Sassa A, Suzuki T, Kanemaru Y, Niimi N, Fujimoto H, Katafuchi A, Grúz P, Yasui M, Gupta RC, Johnson F, Ohta T, Honma M, Adachi N, Nohmi T. In vivo evidence that phenylalanine 171 acts as a molecular brake for translesion DNA synthesis across benzo[a]pyrene DNA adducts by human DNA polymerase κ. DNA Repair (Amst) 2014;15:21-8. [PMID: 24461735 DOI: 10.1016/j.dnarep.2013.12.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
35 Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, Schrock A, Campbell B, Shlien A, Chmielecki J, Huang F, He Y, Sun J, Tabori U, Kennedy M, Lieber DS, Roels S, White J, Otto GA, Ross JS, Garraway L, Miller VA, Stephens PJ, Frampton GM. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34. [PMID: 28420421 DOI: 10.1186/s13073-017-0424-2] [Cited by in Crossref: 1159] [Cited by in F6Publishing: 1132] [Article Influence: 289.8] [Reference Citation Analysis]
36 Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet. 2014;15:585-598. [PMID: 24981601 DOI: 10.1038/nrg3729] [Cited by in Crossref: 508] [Cited by in F6Publishing: 425] [Article Influence: 72.6] [Reference Citation Analysis]
37 Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC, Tomida J, Bylund GO, Doublié S, Johansson E, Ramsden DA, McBride KM, Wood RD. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 2014;10:e1004654. [PMID: 25275444 DOI: 10.1371/journal.pgen.1004654] [Cited by in Crossref: 150] [Cited by in F6Publishing: 140] [Article Influence: 21.4] [Reference Citation Analysis]
38 You C, Wang J, Dai X, Wang Y. Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA. Nucleic Acids Res 2015;43:1012-8. [PMID: 25572317 DOI: 10.1093/nar/gku1391] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
39 Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013;18:851-73. [PMID: 22794079 DOI: 10.1089/ars.2011.4203] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
40 You C, Wang Y. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts. Acc Chem Res 2016;49:205-13. [PMID: 26758048 DOI: 10.1021/acs.accounts.5b00437] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
41 Meas R, Wyrick JJ, Smerdon MJ. Nucleosomes Regulate Base Excision Repair in Chromatin. Mutat Res Rev Mutat Res 2019;780:29-36. [PMID: 31388331 DOI: 10.1016/j.mrrev.2017.10.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
42 Sneeden JL, Grossi SM, Tappin I, Hurwitz J, Heyer WD. Reconstitution of recombination-associated DNA synthesis with human proteins. Nucleic Acids Res 2013;41:4913-25. [PMID: 23535143 DOI: 10.1093/nar/gkt192] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
43 Lin J, Shi T. Error-prone DNA polymerase and oxidative stress increase the incidences of A to G mutations in tumors. Oncotarget 2017;8:45154-63. [PMID: 28582771 DOI: 10.18632/oncotarget.13293] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Hile SE, Shabashev S, Eckert KA. Tumor-specific microsatellite instability: do distinct mechanisms underlie the MSI-L and EMAST phenotypes? Mutat Res 2013;743-744:67-77. [PMID: 23206442 DOI: 10.1016/j.mrfmmm.2012.11.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.2] [Reference Citation Analysis]
45 Yousefzadeh MJ, Wood RD. DNA polymerase POLQ and cellular defense against DNA damage. DNA Repair (Amst) 2013;12:1-9. [PMID: 23219161 DOI: 10.1016/j.dnarep.2012.10.004] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]
46 Kamali M, Kargar S, Heiranizadeh N, Zare M, Kargar Sh, Zare Shehneh M, Neamatzadeh H. Lack of any Association between the Hogg1 Ser326Cys Polymorphism and Breast Cancer Risk: a Systematic Review And Meta-Analysis Of 18 Studies. Asian Pac J Cancer Prev 2017;18:245-51. [PMID: 28240527 DOI: 10.22034/APJCP.2017.18.1.245] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Chae YK, Anker JF, Carneiro BA, Chandra S, Kaplan J, Kalyan A, Santa-Maria CA, Platanias LC, Giles FJ. Genomic landscape of DNA repair genes in cancer. Oncotarget 2016;7:23312-21. [PMID: 27004405 DOI: 10.18632/oncotarget.8196] [Cited by in Crossref: 89] [Cited by in F6Publishing: 76] [Article Influence: 29.7] [Reference Citation Analysis]
48 Brody Y, Kimmerling RJ, Maruvka YE, Benjamin D, Elacqua JJ, Haradhvala NJ, Kim J, Mouw KW, Frangaj K, Koren A, Getz G, Manalis SR, Blainey PC. Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Res 2018;28:1901-18. [PMID: 30459213 DOI: 10.1101/gr.238543.118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
49 You C, Wang P, Dai X, Wang Y. Transcriptional bypass of regioisomeric ethylated thymidine lesions by T7 RNA polymerase and human RNA polymerase II. Nucleic Acids Res 2014;42:13706-13. [PMID: 25404131 DOI: 10.1093/nar/gku1183] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
50 Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 2016;751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Cited by in Crossref: 238] [Cited by in F6Publishing: 223] [Article Influence: 26.4] [Reference Citation Analysis]
51 Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T. Genetische Kodierung einer Norbornen-Aminosäure zur milden und selektiven Modifikation von Proteinen mit einer kupferfreien Klick-Reaktion. Angew Chem 2012;124:4542-5. [DOI: 10.1002/ange.201109252] [Cited by in Crossref: 44] [Cited by in F6Publishing: 25] [Article Influence: 4.9] [Reference Citation Analysis]
52 Gowda AS, Suo Z, Spratt TE. Honokiol Inhibits DNA Polymerases β and λ and Increases Bleomycin Sensitivity of Human Cancer Cells. Chem Res Toxicol 2017;30:715-25. [PMID: 28067485 DOI: 10.1021/acs.chemrestox.6b00451] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
53 Oliveira RTG, França IGF, Junior HLR, Riello GBC, Borges DP, Cavalcante GM, Magalhães SMM, Pinheiro RF. c.9253-6T>c REV3L: A novel marker of poor prognosis in Myelodysplastic syndrome. Hematol Transfus Cell Ther 2021;43:377-81. [PMID: 32682781 DOI: 10.1016/j.htct.2020.05.006] [Reference Citation Analysis]
54 Meas R, Smerdon MJ. Nucleosomes determine their own patch size in base excision repair. Sci Rep 2016;6:27122. [PMID: 27265863 DOI: 10.1038/srep27122] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
55 Du H, Wang P, Li L, Wang Y. Repair and translesion synthesis of O 6-alkylguanine DNA lesions in human cells. J Biol Chem 2019;294:11144-53. [PMID: 31167778 DOI: 10.1074/jbc.RA119.009054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Gole B, Mian E, Rall M, Wiesmüller L. Base excision repair proteins couple activation-induced cytidine deaminase and endonuclease G during replication stress-induced MLL destabilization. Leukemia 2018;32:159-67. [PMID: 28626219 DOI: 10.1038/leu.2017.191] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
57 Lin Z, Xu SH, Wang HQ, Cai YJ, Ying L, Song M, Wang YQ, Du SJ, Shi KQ, Zhou MT. Prognostic value of DNA repair based stratification of hepatocellular carcinoma. Sci Rep. 2016;6:25999. [PMID: 27174663 DOI: 10.1038/srep25999] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
58 Rusz O, Pál M, Szilágyi É, Rovó L, Varga Z, Tomisa B, Fábián G, Kovács L, Nagy O, Mózes P, Reisz Z, Tiszlavicz L, Deák P, Kahán Z. The Expression of Checkpoint and DNA Repair Genes in Head and Neck Cancer as Possible Predictive Factors. Pathol Oncol Res 2017;23:253-64. [DOI: 10.1007/s12253-016-0088-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
59 Suzuki T, Grúz P, Honma M, Adachi N, Nohmi T. The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2016;791-792:35-41. [DOI: 10.1016/j.mrfmmm.2016.08.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
60 Choi JY, Patra A, Yeom M, Lee YS, Zhang Q, Egli M, Guengerich FP. Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι. J Biol Chem 2016;291:21063-73. [PMID: 27555320 DOI: 10.1074/jbc.M116.748285] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
61 Kashkin K, Chernov I, Stukacheva E, Monastyrskaya G, Uspenskaya N, Kopantzev E, Sverdlov E. Cancer specificity of promoters of the genes controlling cell proliferation. J Cell Biochem 2015;116:299-309. [PMID: 25187488 DOI: 10.1002/jcb.24968] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
62 Corzett CH, Goodman MF, Finkel SE. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics 2013;194:409-20. [PMID: 23589461 DOI: 10.1534/genetics.113.151837] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
63 Polak P, Lawrence MS, Haugen E, Stoletzki N, Stojanov P, Thurman RE, Garraway LA, Mirkin S, Getz G, Stamatoyannopoulos JA, Sunyaev SR. Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat Biotechnol 2014;32:71-5. [PMID: 24336318 DOI: 10.1038/nbt.2778] [Cited by in Crossref: 97] [Cited by in F6Publishing: 77] [Article Influence: 12.1] [Reference Citation Analysis]
64 Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations. Front Genet 2021;12:691947. [PMID: 34220964 DOI: 10.3389/fgene.2021.691947] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
65 Kowalska E, Bartnicki F, Fujisawa R, Bonarek P, Hermanowicz P, Tsurimoto T, Muszynska K, Strzalka W. Inhibition of DNA replication by an anti-PCNA aptamer/PCNA complex. Nucleic Acids Res 2018;46:25-41. [PMID: 29186524 DOI: 10.1093/nar/gkx1184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
66 Churchill CD, Eriksson LA, Wetmore SD. Formation mechanism and structure of a guanine-uracil DNA intrastrand cross-link. Chem Res Toxicol 2011;24:2189-99. [PMID: 22060045 DOI: 10.1021/tx2003239] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
67 Lancey C, Tehseen M, Bakshi S, Percival M, Takahashi M, Sobhy MA, Raducanu VS, Blair K, Muskett FW, Ragan TJ, Crehuet R, Hamdan SM, De Biasio A. Cryo-EM structure of human Pol κ bound to DNA and mono-ubiquitylated PCNA. Nat Commun 2021;12:6095. [PMID: 34667155 DOI: 10.1038/s41467-021-26251-6] [Reference Citation Analysis]
68 Peterson LE, Kovyrshina T. DNA Repair Gene Expression Adjusted by the PCNA Metagene Predicts Survival in Multiple Cancers. Cancers (Basel) 2019;11:E501. [PMID: 30965671 DOI: 10.3390/cancers11040501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Sekimoto T, Oda T, Kurashima K, Hanaoka F, Yamashita T. Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol Cell Biol 2015;35:699-715. [PMID: 25487575 DOI: 10.1128/MCB.01153-14] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
70 Wood RD, Lange SS. Breakthrough for a DNA break-preventer. Proc Natl Acad Sci U S A 2014;111:2864-5. [PMID: 24532659 DOI: 10.1073/pnas.1400512111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
71 Shinmura K, Kato H, Goto M, Tao H, Inoue Y, Nakamura S, Yoshida H, Tsuzaki E, Sugimura H. Mutation Spectrum Induced by 8-Bromoguanine, a Base Damaged by Reactive Brominating Species, in Human Cells. Oxid Med Cell Longev 2017;2017:7308501. [PMID: 29098062 DOI: 10.1155/2017/7308501] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
72 Luo H, Chen Z, Wang S, Zhang R, Qiu W, Zhao L, Peng C, Xu R, Chen W, Wang HW, Chen Y, Yang J, Zhang X, Zhang S, Chen D, Wu W, Zhao C, Cheng G, Jiang T, Lu D, You Y, Liu N, Wang H. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain 2015;138:3654-72. [PMID: 26450587 DOI: 10.1093/brain/awv287] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]
73 Markkanen E, van Loon B, Ferrari E, Parsons JL, Dianov GL, Hübscher U. Regulation of oxidative DNA damage repair by DNA polymerase λ and MutYH by cross-talk of phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 2012;109:437-42. [PMID: 22203964 DOI: 10.1073/pnas.1110449109] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 5.6] [Reference Citation Analysis]
74 Huang KK, Jang KW, Kim S, Kim HS, Kim SM, Kwon HJ, Kim HR, Yun HJ, Ahn MJ, Park KU, Ramnarayanan K, McPherson JR, Zhang S, Rhee JK, Vettore AL, Das K, Ishimoto T, Kim JH, Koh YW, Kim SH, Choi EC, Teh BT, Rozen SG, Kim TM, Tan P, Cho BC. Exome sequencing reveals recurrent REV3L mutations in cisplatin-resistant squamous cell carcinoma of head and neck. Sci Rep 2016;6:19552. [PMID: 26790612 DOI: 10.1038/srep19552] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
75 Lior-Hoffmann L, Wang L, Wang S, Geacintov NE, Broyde S, Zhang Y. Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion. Nucleic Acids Res 2012;40:9193-205. [PMID: 22772988 DOI: 10.1093/nar/gks653] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
76 Martin SK, Tomida J, Wood RD. Disruption of DNA polymerase ζ engages an innate immune response. Cell Rep 2021;34:108775. [PMID: 33626348 DOI: 10.1016/j.celrep.2021.108775] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
77 Sharma S, Hicks JK, Chute CL, Brennan JR, Ahn JY, Glover TW, Canman CE. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res 2012;40:682-91. [PMID: 21926160 DOI: 10.1093/nar/gkr769] [Cited by in Crossref: 92] [Cited by in F6Publishing: 83] [Article Influence: 9.2] [Reference Citation Analysis]
78 Liu D, Frederiksen JH, Liberti SE, Lützen A, Keijzers G, Pena-Diaz J, Rasmussen LJ. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro. Nucleic Acids Res 2017;45:9427-40. [PMID: 28934474 DOI: 10.1093/nar/gkx611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
79 Wang M, Liu H, Liu Z, Yi X, Bickeboller H, Hung RJ, Brennan P, Landi MT, Caporaso N, Christiani DC, Doherty JA, Amos CI, Wei Q; TRICL Research Team. Genetic variant in DNA repair gene GTF2H4 is associated with lung cancer risk: a large-scale analysis of six published GWAS datasets in the TRICL consortium. Carcinogenesis 2016;37:888-96. [PMID: 27288692 DOI: 10.1093/carcin/bgw070] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
80 Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017;30:1942-55. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
81 Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017;8:E24. [PMID: 28075396 DOI: 10.3390/genes8010024] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
82 Zhang L, Kim I. Semiparametric Bayesian kernel survival model for evaluating pathway effects. Stat Methods Med Res 2019;28:3301-17. [PMID: 30289021 DOI: 10.1177/0962280218797360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Wei S, Perera MLW, Sakhtemani R, Bhagwat AS. A novel class of chemicals that react with abasic sites in DNA and specifically kill B cell cancers. PLoS One 2017;12:e0185010. [PMID: 28926604 DOI: 10.1371/journal.pone.0185010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
84 Durando M, Tateishi S, Vaziri C. A non-catalytic role of DNA polymerase η in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks. Nucleic Acids Res 2013;41:3079-93. [PMID: 23345618 DOI: 10.1093/nar/gkt016] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
85 Vaisnav M, Xing C, Ku HC, Hwang D, Stojadinovic S, Pertsemlidis A, Abrams JM. Genome-wide association analysis of radiation resistance in Drosophila melanogaster. PLoS One 2014;9:e104858. [PMID: 25121966 DOI: 10.1371/journal.pone.0104858] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
86 Mizushina Y, Suzuki-Fukudome H, Takeuchi T, Takemoto K, Kuriyama I, Yoshida H, Kamisuki S, Sugawara F. Formosusin A, a novel specific inhibitor of mammalian DNA polymerase β from the fungus Paecilomyces formosus. Bioorg Med Chem 2014;22:1070-6. [PMID: 24411199 DOI: 10.1016/j.bmc.2013.12.038] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
87 Mielcke TR, Muradás TC, Filippi-Chiela EC, Amaral MEA, Kist LW, Bogo MR, Mascarello A, Neuenfeldt PD, Nunes RJ, Campos MM. Mechanisms underlying the antiproliferative effects of a series of quinoxaline-derived chalcones. Sci Rep 2017;7:15850. [PMID: 29158524 DOI: 10.1038/s41598-017-16199-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
88 Moreno NC, Garcia CCM, Munford V, Rocha CRR, Pelegrini AL, Corradi C, Sarasin A, Menck CFM. The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radical Biology and Medicine 2019;131:432-42. [DOI: 10.1016/j.freeradbiomed.2018.12.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
89 Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 2017;18:101-16. [PMID: 27867195 DOI: 10.1038/nrg.2016.141] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
90 Zhang C, Liu Y. Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med 2015;69:255-66. [PMID: 25894074 DOI: 10.1007/s11418-015-0911-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
91 Arita A, Muñoz A, Chervona Y, Niu J, Qu Q, Zhao N, Ruan Y, Kiok K, Kluz T, Sun H, Clancy HA, Shamy M, Costa M. Gene expression profiles in peripheral blood mononuclear cells of Chinese nickel refinery workers with high exposures to nickel and control subjects. Cancer Epidemiol Biomarkers Prev 2013;22:261-9. [PMID: 23195993 DOI: 10.1158/1055-9965.EPI-12-1011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
92 Wu Y, Hsieh TC, Wu JM, Wang X, Christopher JS, Pham AH, Swaby JD, Lou L, Xie ZR. Elucidating the Inhibitory Effect of Resveratrol and Its Structural Analogs on Selected Nucleotide-Related Enzymes. Biomolecules 2020;10:E1223. [PMID: 32842666 DOI: 10.3390/biom10091223] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
93 Quinet A, Vessoni AT, Rocha CR, Gottifredi V, Biard D, Sarasin A, Menck CF, Stary A. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome. DNA Repair (Amst) 2014;14:27-38. [PMID: 24380689 DOI: 10.1016/j.dnarep.2013.12.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.1] [Reference Citation Analysis]
94 Takata KI, Reh S, Yousefzadeh MJ, Zelazowski MJ, Bhetawal S, Trono D, Lowery MG, Sandoval M, Takata Y, Lu Y, Lin K, Shen J, Kusewitt DF, McBride KM, Cole F, Wood RD. Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance. PLoS Genet 2017;13:e1006818. [PMID: 28570559 DOI: 10.1371/journal.pgen.1006818] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
95 Genna V, Carloni P, De Vivo M. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. J Am Chem Soc 2018;140:3312-21. [PMID: 29424536 DOI: 10.1021/jacs.7b12446] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
96 Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-Bigas N. The mutational footprints of cancer therapies. Nat Genet 2019;51:1732-40. [PMID: 31740835 DOI: 10.1038/s41588-019-0525-5] [Cited by in Crossref: 81] [Cited by in F6Publishing: 58] [Article Influence: 40.5] [Reference Citation Analysis]
97 Li Y, Gao X, Wang JY. Comparison of two POLQ mutants reveals that a polymerase-inactive POLQ retains significant function in tolerance to etoposide and γ-irradiation in mouse B cells. Genes Cells 2011;16:973-83. [PMID: 21883722 DOI: 10.1111/j.1365-2443.2011.01550.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 0.3] [Reference Citation Analysis]
98 Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM. NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η. Biochemistry 2012;51:5506-20. [PMID: 22691049 DOI: 10.1021/bi300566z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
99 Gowda AS, Spratt TE. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens. Chem Res Toxicol 2016;29:303-16. [PMID: 26868090 DOI: 10.1021/acs.chemrestox.5b00468] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
100 Hashimoto K, Cho Y, Yang IY, Akagi J, Ohashi E, Tateishi S, de Wind N, Hanaoka F, Ohmori H, Moriya M. The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site. J Biol Chem 2012;287:9613-22. [PMID: 22303021 DOI: 10.1074/jbc.M111.331728] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
101 Wu YM, Hu W, Wang Y, Wang N, Gao L, Chen ZZ, Zheng WQ. Exploring novel targets of basal-like breast carcinoma by comparative gene profiling and mechanism analysis. Breast Cancer Res Treat 2013;141:23-32. [PMID: 23933801 DOI: 10.1007/s10549-013-2664-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
102 Sharpnack MF, Cho JH, Johnson TS, Otterson GA, Shields PG, Huang K, Carbone DP, He K. Clinical and Molecular Correlates of Tumor Mutation Burden in Non-Small Cell Lung Cancer. Lung Cancer 2020;146:36-41. [DOI: 10.1016/j.lungcan.2020.05.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
103 Takahashi S, Usui T, Kawasaki S, Miyata H, Kurita H, Matsuura S, Mizuno A, Oshige M, Katsura S. Real-time single-molecule observations of T7 Exonuclease activity in a microflow channel. Anal Biochem 2014;457:24-30. [PMID: 24751469 DOI: 10.1016/j.ab.2014.04.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
104 Saito S, Maeda R, Adachi N. Dual loss of human POLQ and LIG4 abolishes random integration. Nat Commun 2017;8:16112. [PMID: 28695890 DOI: 10.1038/ncomms16112] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 11.3] [Reference Citation Analysis]
105 Stiehl T, Marciniak-czochra A. Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics. Math Model Nat Phenom 2012;7:166-202. [DOI: 10.1051/mmnp/20127199] [Cited by in Crossref: 74] [Cited by in F6Publishing: 30] [Article Influence: 8.2] [Reference Citation Analysis]
106 Gamper AM, Choi S, Matsumoto Y, Banerjee D, Tomkinson AE, Bakkenist CJ. ATM protein physically and functionally interacts with proliferating cell nuclear antigen to regulate DNA synthesis. J Biol Chem 2012;287:12445-54. [PMID: 22362778 DOI: 10.1074/jbc.M112.352310] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
107 Mizushina Y, Kuriyama I, Nakahara T, Kawashima Y, Yoshida H. Inhibitory effects of α-mangostin on mammalian DNA polymerase, topoisomerase, and human cancer cell proliferation. Food Chem Toxicol 2013;59:793-800. [PMID: 23811100 DOI: 10.1016/j.fct.2013.06.027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
108 Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2018;293:10512-23. [PMID: 29247009 DOI: 10.1074/jbc.TM117.000374] [Cited by in Crossref: 208] [Cited by in F6Publishing: 142] [Article Influence: 52.0] [Reference Citation Analysis]
109 Kay JE, Corrigan JJ, Armijo AL, Nazari IS, Kohale IN, Torous DK, Avlasevich SL, Croy RG, Wadduwage DN, Carrasco SE, Dertinger SD, White FM, Essigmann JM, Samson LD, Engelward BP. Excision of mutagenic replication-blocking lesions suppresses cancer but promotes cytotoxicity and lethality in nitrosamine-exposed mice. Cell Rep 2021;34:108864. [PMID: 33730582 DOI: 10.1016/j.celrep.2021.108864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Napoletani D, Signore M, Struppa DC. Cancer quasispecies and stem-like adaptive aneuploidy. F1000Res 2013;2:268. [PMID: 24715964 DOI: 10.12688/f1000research.2-268.v1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
111 Suzuki T, Grúz P, Honma M, Adachi N, Nohmi T. Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses. DNA Repair 2016;45:34-43. [DOI: 10.1016/j.dnarep.2016.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
112 Yockey OP, Jha V, Ghodke PP, Xu T, Xu W, Ling H, Pradeepkumar PI, Zhao L. Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ. Chem Res Toxicol 2017;30:2023-32. [PMID: 28972744 DOI: 10.1021/acs.chemrestox.7b00227] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
113 Chen J, Miller BF, Furano AV. Repair of naturally occurring mismatches can induce mutations in flanking DNA. Elife 2014;3:e02001. [PMID: 24843013 DOI: 10.7554/eLife.02001] [Cited by in Crossref: 71] [Cited by in F6Publishing: 34] [Article Influence: 10.1] [Reference Citation Analysis]
114 McIntyre J, Vidal AE, McLenigan MP, Bomar MG, Curti E, McDonald JP, Plosky BS, Ohashi E, Woodgate R. Ubiquitin mediates the physical and functional interaction between human DNA polymerases η and ι. Nucleic Acids Res 2013;41:1649-60. [PMID: 23248005 DOI: 10.1093/nar/gks1277] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
115 Achar YJ, Foiani M. An Error-Prone Polymerase in the Fight against Cancer. Cell 2019;176:1241-3. [DOI: 10.1016/j.cell.2019.02.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
116 Nakagawa T, Nakayama K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 2015;20:543-62. [PMID: 26085183 DOI: 10.1111/gtc.12250] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 4.2] [Reference Citation Analysis]
117 Xia S, Konigsberg WH. RB69 DNA polymerase structure, kinetics, and fidelity. Biochemistry 2014;53:2752-67. [PMID: 24720884 DOI: 10.1021/bi4014215] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
118 McPherson KS, Zaino AM, Dash RC, Rizzo AA, Li Y, Hao B, Bezsonova I, Hadden MK, Korzhnev DM. Structure-Based Drug Design of Phenazopyridine Derivatives as Inhibitors of Rev1 Interactions in Translesion Synthesis. ChemMedChem 2021;16:1126-32. [PMID: 33314657 DOI: 10.1002/cmdc.202000893] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 You C, Wang Y. Quantitative measurement of transcriptional inhibition and mutagenesis induced by site-specifically incorporated DNA lesions in vitro and in vivo. Nat Protoc 2015;10:1389-406. [PMID: 26292071 DOI: 10.1038/nprot.2015.094] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
120 Zhang X, Chen Q, Chen J, He C, Mao J, Dai Y, Yang X, Hu W, Zhu C, Chen B. Association of polymorphisms in translesion synthesis genes with prognosis of advanced non-small-cell lung cancer patients treated with platinum-based chemotherapy. J Surg Oncol 2016;113:17-23. [PMID: 26611653 DOI: 10.1002/jso.24103] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
121 Hedglin M, Benkovic SJ. Replication Protein A Prohibits Diffusion of the PCNA Sliding Clamp along Single-Stranded DNA. Biochemistry 2017;56:1824-35. [PMID: 28177605 DOI: 10.1021/acs.biochem.6b01213] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
122 Ganai RA, Johansson E. DNA Replication-A Matter of Fidelity. Mol Cell 2016;62:745-55. [PMID: 27259205 DOI: 10.1016/j.molcel.2016.05.003] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 16.5] [Reference Citation Analysis]
123 Abbotts R, Wilson DM 3rd. Coordination of DNA single strand break repair. Free Radic Biol Med 2017;107:228-44. [PMID: 27890643 DOI: 10.1016/j.freeradbiomed.2016.11.039] [Cited by in Crossref: 89] [Cited by in F6Publishing: 80] [Article Influence: 17.8] [Reference Citation Analysis]
124 Zhao L, Pence MG, Christov PP, Wawrzak Z, Choi JY, Rizzo CJ, Egli M, Guengerich FP. Basis of miscoding of the DNA adduct N2,3-ethenoguanine by human Y-family DNA polymerases. J Biol Chem 2012;287:35516-26. [PMID: 22910910 DOI: 10.1074/jbc.M112.403253] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
125 Nachtergael A, Lanterbecq D, Spanoghe M, Belayew A, Duez P. Effects of Chemopreventive Natural Compounds on the Accuracy of 8-oxo-7,8-dihydro-2'-deoxyguanosine Translesion Synthesis. Planta Med 2021;87:868-78. [PMID: 34237787 DOI: 10.1055/a-1527-1435] [Reference Citation Analysis]
126 Young MJ. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance. Front Mol Biosci 2017;4:74. [PMID: 29214156 DOI: 10.3389/fmolb.2017.00074] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
127 Lo CSY, van Toorn M, Gaggioli V, Paes Dias M, Zhu Y, Manolika EM, Zhao W, van der Does M, Mukherjee C, G S C Souto Gonçalves J, van Royen ME, French PJ, Demmers J, Smal I, Lans H, Wheeler D, Jonkers J, Chaudhuri AR, Marteijn JA, Taneja N. SMARCAD1-mediated active replication fork stability maintains genome integrity. Sci Adv 2021;7:eabe7804. [PMID: 33952518 DOI: 10.1126/sciadv.abe7804] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
128 Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018;53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
129 Ghosal G, Chen J. DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res 2013;2:107-29. [PMID: 24058901 DOI: 10.3978/j.issn.2218-676X.2013.04.01] [Cited by in F6Publishing: 83] [Reference Citation Analysis]
130 Erson-Omay EZ, Çağlayan AO, Schultz N, Weinhold N, Omay SB, Özduman K, Köksal Y, Li J, Serin Harmancı A, Clark V, Carrión-Grant G, Baranoski J, Çağlar C, Barak T, Coşkun S, Baran B, Köse D, Sun J, Bakırcıoğlu M, Moliterno Günel J, Pamir MN, Mishra-Gorur K, Bilguvar K, Yasuno K, Vortmeyer A, Huttner AJ, Sander C, Günel M. Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro Oncol 2015;17:1356-64. [PMID: 25740784 DOI: 10.1093/neuonc/nov027] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 11.2] [Reference Citation Analysis]
131 Sholder G, Creech A, Loechler EL. How Y-Family DNA polymerase IV is more accurate than Dpo4 at dCTP insertion opposite an N2-dG adduct of benzo[a]pyrene. DNA Repair (Amst) 2015;35:144-53. [PMID: 26523515 DOI: 10.1016/j.dnarep.2015.09.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
132 Kara A, Özgür A, Nalbantoğlu S, Karadağ A. DNA repair pathways and their roles in drug resistance for lung adenocarcinoma. Mol Biol Rep 2021;48:3813-25. [PMID: 33856604 DOI: 10.1007/s11033-021-06314-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Szwajczak E, Fijalkowska IJ, Suski C. The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity. Curr Genet 2018;64:575-80. [PMID: 29189894 DOI: 10.1007/s00294-017-0789-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
134 Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012;2012:530963. [PMID: 22720133 DOI: 10.1155/2012/530963] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
135 Zou Y, Liu FY, Liu H, Wang F, Li W, Huang MZ, Huang Y, Yuan XQ, Xu XY, Huang OP, He M. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma. Mutat Res 2014;761:49-52. [PMID: 24472300 DOI: 10.1016/j.mrfmmm.2014.01.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
136 Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016;161:111-31. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
137 Lin YC, Li L, Makarova AV, Burgers PM, Stone MP, Lloyd RS. Error-prone replication bypass of the primary aflatoxin B1 DNA adduct, AFB1-N7-Gua. J Biol Chem 2014;289:18497-506. [PMID: 24838242 DOI: 10.1074/jbc.M114.561563] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
138 Takeiri A, Wada NA, Motoyama S, Matsuzaki K, Tateishi H, Matsumoto K, Niimi N, Sassa A, Grúz P, Masumura K, Yamada M, Mishima M, Jishage K, Nohmi T. In vivo evidence that DNA polymerase kappa is responsible for error-free bypass across DNA cross-links induced by mitomycin C. DNA Repair 2014;24:113-21. [DOI: 10.1016/j.dnarep.2014.09.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
139 Yoshioka KI, Matsuno Y. Genomic destabilization and its associated mutagenesis increase with senescence-associated phenotype expression. Cancer Sci 2021;112:515-22. [PMID: 33222327 DOI: 10.1111/cas.14746] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
140 Mima S, Kakinuma C, Higuchi T, Saeki K, Yamada T, Uematsu R, Ishino M, Kito N, Nishikawa H, Kuniyoshi H, Matsumoto T, Fujiwara H, Paradiso LJ, Shimada Y, Iwamura H. FF-10502, an Antimetabolite with Novel Activity on Dormant Cells, Is Superior to Gemcitabine for Targeting Pancreatic Cancer Cells. J Pharmacol Exp Ther 2018;366:125-35. [PMID: 29653962 DOI: 10.1124/jpet.118.248740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Ullah A, Munir S, Mabkhot Y, Badshah SL. Bioactivity Profile of the Diterpene Isosteviol and its Derivatives. Molecules 2019;24:E678. [PMID: 30769819 DOI: 10.3390/molecules24040678] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 11.5] [Reference Citation Analysis]
142 Gajan A, Martin CE, Kim S, Joshi M, Michelhaugh SK, Sloma I, Mittal S, Firestine S, Shekhar MPV. Alternative Splicing of RAD6B and Not RAD6A is Selectively Increased in Melanoma: Identification and Functional Characterization. Cells 2019;8:E1375. [PMID: 31683936 DOI: 10.3390/cells8111375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
143 Nasiri HR, Kiss L, Krämer J. A fluorescence polarization based assay for the identification and characterization of polymerase inhibitors. Bioorg Med Chem Lett 2016;26:4433-5. [PMID: 27522487 DOI: 10.1016/j.bmcl.2016.08.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Ghodke H, Wang H, Hsieh CL, Woldemeskel S, Watkins SC, Rapić-Otrin V, Van Houten B. Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates. Proc Natl Acad Sci U S A 2014;111:E1862-71. [PMID: 24760829 DOI: 10.1073/pnas.1323856111] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 6.0] [Reference Citation Analysis]
145 Northall SJ, Ivančić-Baće I, Soultanas P, Bolt EL. Remodeling and Control of Homologous Recombination by DNA Helicases and Translocases that Target Recombinases and Synapsis. Genes (Basel) 2016;7:E52. [PMID: 27548227 DOI: 10.3390/genes7080052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
146 Walter RJ, Sonnentag SJ, Orian-Rousseau V, Munoz-Sagredo L. Plasticity in Colorectal Cancer: Why Cancer Cells Differentiate. Cancers (Basel) 2021;13:918. [PMID: 33671641 DOI: 10.3390/cancers13040918] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Churchill CD, Eriksson LA, Wetmore SD. DNA Distortion Caused by Uracil-Containing Intrastrand Cross-Links. J Phys Chem B 2016;120:1195-204. [PMID: 26830475 DOI: 10.1021/acs.jpcb.5b10381] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
148 Dobbelstein M, Sørensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov 2015;14:405-23. [PMID: 25953507 DOI: 10.1038/nrd4553] [Cited by in Crossref: 177] [Cited by in F6Publishing: 156] [Article Influence: 29.5] [Reference Citation Analysis]
149 Shinmura K, Kato H, Kawanishi Y, Goto M, Tao H, Yoshimura K, Nakamura S, Misawa K, Sugimura H. Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radical Biology and Medicine 2019;131:264-73. [DOI: 10.1016/j.freeradbiomed.2018.12.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
150 Shanbhag V, Sachdev S, Flores JA, Modak MJ, Singh K. Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology (Basel) 2018;7:E5. [PMID: 29301327 DOI: 10.3390/biology7010005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
151 Taniguchi T. REV1-POL ζ Inhibition and Cancer Therapy. Mol Cell 2019;75:419-20. [PMID: 31398321 DOI: 10.1016/j.molcel.2019.07.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
152 Guo Y, Wang J, Benedict B, Yang C, van Gemert F, Ma X, Gao D, Wang H, Zhang S, Lieftink C, Beijersbergen RL, Te Riele H, Qiao X, Gao Q, Sun C, Qin W, Bernards R, Wang C. Targeting CDC7 potentiates ATR-CHK1 signaling inhibition through induction of DNA replication stress in liver cancer. Genome Med 2021;13:166. [PMID: 34663432 DOI: 10.1186/s13073-021-00981-0] [Reference Citation Analysis]
153 Meyer D, Fu BXH, Chavez M, Loeillet S, Cerqueira PG, Nicolas A, Heyer WD. Cooperation between non-essential DNA polymerases contributes to genome stability in Saccharomyces cerevisiae. DNA Repair (Amst) 2019;76:40-9. [PMID: 30818168 DOI: 10.1016/j.dnarep.2019.02.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Suzuki T, Ukai A, Honma M, Adachi N, Nohmi T. Restoration of mismatch repair functions in human cell line Nalm-6, which has high efficiency for gene targeting. PLoS One 2013;8:e61189. [PMID: 23596518 DOI: 10.1371/journal.pone.0061189] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
155 Batra VK, Perera L, Lin P, Shock DD, Beard WA, Pedersen LC, Pedersen LG, Wilson SH. Amino acid substitution in the active site of DNA polymerase β explains the energy barrier of the nucleotidyl transfer reaction. J Am Chem Soc 2013;135:8078-88. [PMID: 23647366 DOI: 10.1021/ja403842j] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
156 Rodgers K, McVey M. Error-Prone Repair of DNA Double-Strand Breaks. J Cell Physiol 2016;231:15-24. [PMID: 26033759 DOI: 10.1002/jcp.25053] [Cited by in Crossref: 173] [Cited by in F6Publishing: 161] [Article Influence: 34.6] [Reference Citation Analysis]
157 Tsao WC, Buj R, Aird KM, Sidorova JM, Eckert KA. Overexpression of oncogenic H-Ras in hTERT-immortalized and SV40-transformed human cells targets replicative and specialized DNA polymerases for depletion. PLoS One 2021;16:e0251188. [PMID: 33961649 DOI: 10.1371/journal.pone.0251188] [Reference Citation Analysis]
158 Ju H, Shim Y, Arumugam P, Song JM. Crosstalk-eliminated quantitative determination of aflatoxin B1-induced hepatocellular cancer stem cells based on concurrent monitoring of CD133, CD44, and aldehyde dehydrogenase1. Toxicol Lett 2016;243:31-9. [PMID: 26739636 DOI: 10.1016/j.toxlet.2015.12.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
159 Szwajczak E, Fijalkowska IJ, Suski C. The CysB motif of Rev3p involved in the formation of the four-subunit DNA polymerase ζ is required for defective-replisome-induced mutagenesis. Mol Microbiol 2017;106:659-72. [PMID: 28941243 DOI: 10.1111/mmi.13846] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
160 Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 2017;18:495-506. [PMID: 28512351 DOI: 10.1038/nrm.2017.48] [Cited by in Crossref: 571] [Cited by in F6Publishing: 509] [Article Influence: 142.8] [Reference Citation Analysis]
161 Wood RD, Doublié S. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair (Amst) 2016;44:22-32. [PMID: 27264557 DOI: 10.1016/j.dnarep.2016.05.003] [Cited by in Crossref: 104] [Cited by in F6Publishing: 94] [Article Influence: 20.8] [Reference Citation Analysis]
162 Voutsadakis IA. Polymerase epsilon mutations and concomitant β2-microglobulin mutations in cancer. Gene 2018;647:31-8. [DOI: 10.1016/j.gene.2018.01.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
163 Smith KS, Liu LL, Ganesan S, Michor F, De S. Nuclear topology modulates the mutational landscapes of cancer genomes. Nat Struct Mol Biol 2017;24:1000-6. [PMID: 28967881 DOI: 10.1038/nsmb.3474] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
164 Chun AC, Kok KH, Jin DY. REV7 is required for anaphase-promoting complex-dependent ubiquitination and degradation of translesion DNA polymerase REV1. Cell Cycle 2013;12:365-78. [PMID: 23287467 DOI: 10.4161/cc.23214] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
165 Markkanen E, van Loon B, Ferrari E, Hübscher U. Ubiquitylation of DNA polymerase λ. FEBS Lett 2011;585:2826-30. [PMID: 21486570 DOI: 10.1016/j.febslet.2011.03.069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
166 Park VS, Pursell ZF. POLE proofreading defects: Contributions to mutagenesis and cancer. DNA Repair (Amst) 2019;76:50-9. [PMID: 30818169 DOI: 10.1016/j.dnarep.2019.02.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
167 Goodman MF, Woodgate R. Translesion DNA polymerases. Cold Spring Harb Perspect Biol. 2013;5:a010363. [PMID: 23838442 DOI: 10.1101/cshperspect.a010363] [Cited by in Crossref: 160] [Cited by in F6Publishing: 153] [Article Influence: 20.0] [Reference Citation Analysis]
168 Ikeoka S, Nakahara T, Iwahashi H, Mizushina Y. The Establishment of an Assay to Measure DNA Polymerase-Catalyzed Repair of UVB-Induced DNA Damage in Skin Cells and Screening of DNA Polymerase Enhancers from Medicinal Plants. Int J Mol Sci 2016;17:E667. [PMID: 27153062 DOI: 10.3390/ijms17050667] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
169 Liu Q, Liu A, Gao F, Weng S, Zhong G, Liu J, Lin X, Lin JH, Chen X. Coupling technique of random amplified polymorphic DNA and nanoelectrochemical sensor for mapping pancreatic cancer genetic fingerprint. Int J Nanomedicine. 2011;6:2933-2939. [PMID: 22162652 DOI: 10.2147/ijn.s25842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
170 Hedglin M, Pandey B, Benkovic SJ. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis. Proc Natl Acad Sci U S A 2016;113:E1777-86. [PMID: 26976599 DOI: 10.1073/pnas.1523653113] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 6.6] [Reference Citation Analysis]
171 Galati MA, Hodel KP, Gams MS, Sudhaman S, Bridge T, Zahurancik WJ, Ungerleider NA, Park VS, Ercan AB, Joksimovic L, Siddiqui I, Siddaway R, Edwards M, de Borja R, Elshaer D, Chung J, Forster VJ, Nunes NM, Aronson M, Wang X, Ramdas J, Seeley A, Sarosiek T, Dunn GP, Byrd JN, Mordechai O, Durno C, Martin A, Shlien A, Bouffet E, Suo Z, Jackson JG, Hawkins CE, Guidos CJ, Pursell ZF, Tabori U. Cancers from Novel Pole-Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Res 2020;80:5606-18. [PMID: 32938641 DOI: 10.1158/0008-5472.CAN-20-0624] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
172 Holcomb NC, Bautista RM, Jarrett SG, Carter KM, Gober MK, D'Orazio JA. cAMP-mediated regulation of melanocyte genomic instability: A melanoma-preventive strategy. Adv Protein Chem Struct Biol 2019;115:247-95. [PMID: 30798934 DOI: 10.1016/bs.apcsb.2018.10.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
173 Polyzos AA, McMurray CT. Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair (Amst) 2017;56:144-55. [PMID: 28690053 DOI: 10.1016/j.dnarep.2017.06.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
174 Takata K, Tomida J, Reh S, Swanhart LM, Takata M, Hukriede NA, Wood RD. Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase ν (POLN). J Biol Chem 2015;290:24278-93. [PMID: 26269593 DOI: 10.1074/jbc.M115.677419] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
175 Suzuki T, Sassa A, Grúz P, Gupta RC, Johnson F, Adachi N, Nohmi T. Error-prone bypass patch by a low-fidelity variant of DNA polymerase zeta in human cells. DNA Repair (Amst) 2021;100:103052. [PMID: 33607474 DOI: 10.1016/j.dnarep.2021.103052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Brenlla A, Markiewicz RP, Rueda D, Romano LJ. Nucleotide selection by the Y-family DNA polymerase Dpo4 involves template translocation and misalignment. Nucleic Acids Res 2014;42:2555-63. [PMID: 24270793 DOI: 10.1093/nar/gkt1149] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
177 Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 2018;73:e478s. [PMID: 30208165 DOI: 10.6061/clinics/2018/e478s] [Cited by in Crossref: 83] [Cited by in F6Publishing: 102] [Article Influence: 27.7] [Reference Citation Analysis]
178 Li GM. A special issue on DNA damage response and genome stability. Cell Biosci 2012;2:4. [PMID: 22369616 DOI: 10.1186/2045-3701-2-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
179 Hashemi S, Nowzari Dalini A, Jalali A, Banaei-Moghaddam AM, Razaghi-Moghadam Z. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains. BMC Bioinformatics 2017;18:370. [PMID: 28814324 DOI: 10.1186/s12859-017-1779-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
180 Christov PP, Yamanaka K, Choi JY, Takata K, Wood RD, Guengerich FP, Lloyd RS, Rizzo CJ. Replication of the 2,6-diamino-4-hydroxy-N(5)-(methyl)-formamidopyrimidine (MeFapy-dGuo) adduct by eukaryotic DNA polymerases. Chem Res Toxicol 2012;25:1652-61. [PMID: 22721435 DOI: 10.1021/tx300113e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
181 Wigan M, Pinder A, Giles N, Pavey S, Burgess A, Wong S, Sturm RA, Gabrielli B. A UVR-induced G2-phase checkpoint response to ssDNA gaps produced by replication fork bypass of unrepaired lesions is defective in melanoma. J Invest Dermatol 2012;132:1681-8. [PMID: 22402442 DOI: 10.1038/jid.2012.41] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
182 Mohiuddin, Keka IS, Evans TJ, Hirota K, Shimizu H, Kono K, Takeda S, Hirano S. A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Arch Toxicol 2014;88:145-60. [PMID: 23963510 DOI: 10.1007/s00204-013-1084-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
183 Branco CS, Duong A, Machado AK, Scola G, Andreazza AC, Salvador M. Modulation of Mitochondrial and Epigenetic Targets by Polyphenols-rich Extract from Araucaria angustifolia in Larynx Carcinoma. ACAMC 2019;19:130-9. [DOI: 10.2174/1871520618666180816142821] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
184 Kamath-Loeb AS, Balakrishna S, Whittington D, Shen JC, Emond MJ, Okabe T, Masutani C, Hanaoka F, Nishimura S, Loeb LA. Sphingosine, a modulator of human translesion DNA polymerase activity. J Biol Chem 2014;289:21663-72. [PMID: 24928506 DOI: 10.1074/jbc.M114.570242] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
185 Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L. Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Nucleic Acids Res 2017;45:10018-31. [PMID: 28973441 DOI: 10.1093/nar/gkx625] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
186 Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2020;35:129-49. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
187 You C, Wang P, Nay SL, Wang J, Dai X, O'Connor TR, Wang Y. Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions. ACS Chem Biol 2016;11:1332-8. [PMID: 26930515 DOI: 10.1021/acschembio.6b00085] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
188 Lange SS, Tomida J, Boulware KS, Bhetawal S, Wood RD. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability. PLoS Genet 2016;12:e1005759. [PMID: 26727495 DOI: 10.1371/journal.pgen.1005759] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
189 Takeda H, Takai A, Inuzuka T, Marusawa H. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: Linkage between infection, inflammation, and tumorigenesis. J Gastroenterol. 2017;52:26-38. [PMID: 27714455 DOI: 10.1007/s00535-016-1273-2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
190 Lin YC, Li L, Makarova AV, Burgers PM, Stone MP, Lloyd RS. Molecular basis of aflatoxin-induced mutagenesis-role of the aflatoxin B1-formamidopyrimidine adduct. Carcinogenesis 2014;35:1461-8. [PMID: 24398669 DOI: 10.1093/carcin/bgu003] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
191 Doublié S, Zahn KE. Structural insights into eukaryotic DNA replication. Front Microbiol 2014;5:444. [PMID: 25202305 DOI: 10.3389/fmicb.2014.00444] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
192 Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011;32:1075-99. [PMID: 21853507 DOI: 10.1002/humu.21557] [Cited by in Crossref: 83] [Cited by in F6Publishing: 75] [Article Influence: 8.3] [Reference Citation Analysis]
193 Klvaňa M, Bren U, Florián J. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ. J Phys Chem B 2016;120:13017-30. [PMID: 27992186 DOI: 10.1021/acs.jpcb.6b08581] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
194 Strittmatter T, Brockmann A, Pott M, Hantusch A, Brunner T, Marx A. Expanding the Scope of Human DNA Polymerase λ and β Inhibitors. ACS Chem Biol 2014;9:282-90. [DOI: 10.1021/cb4007562] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
195 Silber JR, Bobola MS, Blank A, Chamberlain MC. O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim Biophys Acta 2012;1826:71-82. [PMID: 22244911 DOI: 10.1016/j.bbcan.2011.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 50] [Article Influence: 1.9] [Reference Citation Analysis]
196 Takahashi S, Kawasaki S, Miyata H, Kurita H, Mizuno T, Matsuura S, Mizuno A, Oshige M, Katsura S. A new direct single-molecule observation method for DNA synthesis reaction using fluorescent replication protein A. Sensors (Basel) 2014;14:5174-82. [PMID: 24625741 DOI: 10.3390/s140305174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
197 Guérillon C, Smedegaard S, Hendriks IA, Nielsen ML, Mailand N. Multisite SUMOylation restrains DNA polymerase η interactions with DNA damage sites. J Biol Chem 2020;295:8350-62. [PMID: 32350109 DOI: 10.1074/jbc.RA120.013780] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
198 Britton RG, Kovoor C, Brown K. Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Ann N Y Acad Sci 2015;1348:124-33. [PMID: 26099829 DOI: 10.1111/nyas.12796] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 11.7] [Reference Citation Analysis]
199 Boulware S, Fields T, McIvor E, Powell KL, Abel EL, Vasquez KM, MacLeod MC. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog. Toxicol Appl Pharmacol 2012;263:203-9. [PMID: 22732900 DOI: 10.1016/j.taap.2012.06.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
200 Haratipour P, Minard C, Nakhjiri M, Negahbani A, Chamberlain BT, Osuna J, Upton TG, Zhao M, Kashemirov BA, McKenna CE. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. J Org Chem 2020;85:14592-609. [PMID: 33125847 DOI: 10.1021/acs.joc.0c01204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
201 Wisnovsky S, Sack T, Pagliarini DJ, Laposa RR, Kelley SO. DNA Polymerase θ Increases Mutational Rates in Mitochondrial DNA. ACS Chem Biol 2018;13:900-8. [PMID: 29509408 DOI: 10.1021/acschembio.8b00072] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
202 Kim JK, Yeom M, Hong JK, Song I, Lee YS, Guengerich FP, Choi JY. Six Germline Genetic Variations Impair the Translesion Synthesis Activity of Human DNA Polymerase κ. Chem Res Toxicol 2016;29:1741-54. [PMID: 27603496 DOI: 10.1021/acs.chemrestox.6b00244] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
203 Choi JS, Kim S, Motea E, Berdis A. Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents. Oncotarget 2017;8:40804-16. [PMID: 28489578 DOI: 10.18632/oncotarget.17254] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
204 Loeb LA. Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 2011;11:450-7. [PMID: 21593786 DOI: 10.1038/nrc3063] [Cited by in Crossref: 263] [Cited by in F6Publishing: 226] [Article Influence: 26.3] [Reference Citation Analysis]
205 Suzuki T, Matsumoto K, Honma M, Nohmi T. Impact of DNA polymerase ζ mutations on genotoxic thresholds of oxidative mutagens. Mutat Res Genet Toxicol Environ Mutagen 2018;828:10-4. [PMID: 29555059 DOI: 10.1016/j.mrgentox.2018.02.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
206 Rantapero T, Wahlfors T, Kähler A, Hultman C, Lindberg J, Tammela TL, Nykter M, Schleutker J, Wiklund F. Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes (Basel) 2020;11:E314. [PMID: 32183364 DOI: 10.3390/genes11030314] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
207 Qin XJ, Liu W, Li YN, Sun X, Hai CX, Hudson LG, Liu KJ. Poly(ADP-ribose) polymerase-1 inhibition by arsenite promotes the survival of cells with unrepaired DNA lesions induced by UV exposure. Toxicol Sci 2012;127:120-9. [PMID: 22387748 DOI: 10.1093/toxsci/kfs099] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
208 Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T. A Genetically Encoded Norbornene Amino Acid for the Mild and Selective Modification of Proteins in a Copper-Free Click Reaction. Angew Chem Int Ed 2012;51:4466-9. [DOI: 10.1002/anie.201109252] [Cited by in Crossref: 129] [Cited by in F6Publishing: 119] [Article Influence: 14.3] [Reference Citation Analysis]
209 Wang L, Liang C, Wu J, Liu L, Tyo KEJ. Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants. Appl Environ Microbiol 2017;83:e01013-17. [PMID: 28710267 DOI: 10.1128/AEM.01013-17] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
210 Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer 2015;15:276-89. [PMID: 25907220 DOI: 10.1038/nrc3916] [Cited by in Crossref: 435] [Cited by in F6Publishing: 402] [Article Influence: 72.5] [Reference Citation Analysis]
211 Li Y, Schlick T. "Gate-keeper" residues and active-site rearrangements in DNA polymerase μ help discriminate non-cognate nucleotides. PLoS Comput Biol 2013;9:e1003074. [PMID: 23717197 DOI: 10.1371/journal.pcbi.1003074] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
212 Yang L, Shi T, Liu F, Ren C, Wang Z, Li Y, Tu X, Yang G, Cheng X. REV3L, a promising target in regulating the chemosensitivity of cervical cancer cells. PLoS One. 2015;10:e0120334. [PMID: 25781640 DOI: 10.1371/journal.pone.0120334] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
213 de Paz AM, Cybulski TR, Marblestone AH, Zamft BM, Church GM, Boyden ES, Kording KP, Tyo KEJ. High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Res 2018;46:e78. [PMID: 29718339 DOI: 10.1093/nar/gky296] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
214 Rosenblatt RB, Frank JA, Burks SR. Cytosolic Ca2+ transients during pulsed focused ultrasound generate reactive oxygen species and cause DNA damage in tumor cells. Theranostics 2021;11:602-13. [PMID: 33391495 DOI: 10.7150/thno.48353] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
215 Zhao Y, Dong L, Jiang C, Wang X, Xie J, Rashid MAR, Liu Y, Li M, Bu Z, Wang H, Ma X, Sun S, Wang X, Bo C, Zhou T, Kong L. Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization. BMC Biol 2020;18:188. [PMID: 33267868 DOI: 10.1186/s12915-020-00917-x] [Reference Citation Analysis]
216 Jia P, Yang X, Guo L, Liu B, Lin J, Liang H, Sun J, Zhang C, Ye K. MSIsensor-pro: Fast, Accurate, and Matched-normal-sample-free Detection of Microsatellite Instability. Genomics Proteomics Bioinformatics 2020;18:65-71. [PMID: 32171661 DOI: 10.1016/j.gpb.2020.02.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
217 Vaz B, Halder S, Ramadan K. Role of p97/VCP (Cdc48) in genome stability. Front Genet 2013;4:60. [PMID: 23641252 DOI: 10.3389/fgene.2013.00060] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 5.6] [Reference Citation Analysis]
218 Wang Y, Xu H, Liu T, Huang M, Butter PP, Li C, Zhang L, Kao GD, Gong Y, Maity A, Koumenis C, Fan Y. Temporal DNA-PK activation drives genomic instability and therapy resistance in glioma stem cells. JCI Insight 2018;3:98096. [PMID: 29415883 DOI: 10.1172/jci.insight.98096] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
219 Takahashi S, Oshige M, Katsura S. DNA Manipulation and Single-Molecule Imaging. Molecules 2021;26:1050. [PMID: 33671359 DOI: 10.3390/molecules26041050] [Reference Citation Analysis]
220 Quinet A, Martins DJ, Vessoni AT, Biard D, Sarasin A, Stary A, Menck CF. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Res 2016;44:5717-31. [PMID: 27095204 DOI: 10.1093/nar/gkw280] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
221 Pedroza-Garcia JA, Domenichini S, Mazubert C, Bourge M, White C, Hudik E, Bounon R, Tariq Z, Delannoy E, Del Olmo I, Piñeiro M, Jarillo JA, Bergounioux C, Benhamed M, Raynaud C. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis. Nucleic Acids Res 2016;44:7251-66. [PMID: 27193996 DOI: 10.1093/nar/gkw449] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
222 Piatkov KI, Colnaghi L, Békés M, Varshavsky A, Huang TT. The auto-generated fragment of the Usp1 deubiquitylase is a physiological substrate of the N-end rule pathway. Mol Cell 2012;48:926-33. [PMID: 23159736 DOI: 10.1016/j.molcel.2012.10.012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
223 Mao C, Liu H, Chen P, Ye J, Teng L, Jia Z, Cao J. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells. Oncotarget 2015;6:5707-19. [PMID: 25691059 DOI: 10.18632/oncotarget.3302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
224 Mehmood RK. Review of Cisplatin and oxaliplatin in current immunogenic and monoclonal antibody treatments. Oncol Rev 2014;8:256. [PMID: 25992242 DOI: 10.4081/oncol.2014.256] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
225 Sale JE. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol 2013;5:a012708. [PMID: 23457261 DOI: 10.1101/cshperspect.a012708] [Cited by in Crossref: 126] [Cited by in F6Publishing: 128] [Article Influence: 15.8] [Reference Citation Analysis]
226 Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019;11:E1643. [PMID: 31653100 DOI: 10.3390/cancers11111643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
227 Qin N, Wang Z, Liu Q, Song N, Wilson CL, Ehrhardt MJ, Shelton K, Easton J, Mulder H, Kennetz D, Edmonson MN, Rusch MC, Downing JR, Hudson MM, Nichols KE, Zhang J, Robison LL, Yasui Y. Pathogenic Germline Mutations in DNA Repair Genes in Combination With Cancer Treatment Exposures and Risk of Subsequent Neoplasms Among Long-Term Survivors of Childhood Cancer. J Clin Oncol 2020;38:2728-40. [PMID: 32496904 DOI: 10.1200/JCO.19.02760] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
228 Gómez-Llorente Y, Malik R, Jain R, Choudhury JR, Johnson RE, Prakash L, Prakash S, Ubarretxena-Belandia I, Aggarwal AK. The architecture of yeast DNA polymerase ζ. Cell Rep 2013;5:79-86. [PMID: 24120860 DOI: 10.1016/j.celrep.2013.08.046] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
229 Garro HA, Pungitore CR. DNA Related Enzymes as Molecular Targets for Antiviral and Antitumoral Chemotherapy. A Natural Overview of the Current Perspectives. Curr Drug Targets 2019;20:70-80. [PMID: 29697027 DOI: 10.2174/1389450119666180426103558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
230 Chan NL, Guo J, Zhang T, Mao G, Hou C, Yuan F, Huang J, Zhang Y, Wu J, Gu L, Li GM. Coordinated processing of 3' slipped (CAG)n/(CTG)n hairpins by DNA polymerases β and δ preferentially induces repeat expansions. J Biol Chem 2013;288:15015-22. [PMID: 23585564 DOI: 10.1074/jbc.M113.464370] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
231 Das R, Ghosh SK. Genetic variants of the DNA repair genes from Exome Aggregation Consortium (EXAC) database: significance in cancer. DNA Repair 2017;52:92-102. [DOI: 10.1016/j.dnarep.2017.02.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
232 Lu C, Zhang J, Nagahawatte P, Easton J, Lee S, Liu Z, Ding L, Wyczalkowski MA, Valentine M, Navid F, Mulder H, Tatevossian RG, Dalton J, Davenport J, Yin Z, Edmonson M, Rusch M, Wu G, Li Y, Parker M, Hedlund E, Shurtleff S, Raimondi S, Bhavin V, Donald Y, Mardis ER, Wilson RK, Evans WE, Ellison DW, Pounds S, Dyer M, Downing JR, Pappo A, Bahrami A. The genomic landscape of childhood and adolescent melanoma. J Invest Dermatol 2015;135:816-23. [PMID: 25268584 DOI: 10.1038/jid.2014.425] [Cited by in Crossref: 109] [Cited by in F6Publishing: 92] [Article Influence: 15.6] [Reference Citation Analysis]
233 Abbasi A, Khalaj M, Akiyama K, Mukai Y, Matsumoto H, Acosta TJ, Said N, Yoshida M, Kunieda T. Lack of Rev7 function results in development of tubulostromal adenomas in mouse ovary. Mol Cell Endocrinol 2015;412:19-25. [PMID: 26004212 DOI: 10.1016/j.mce.2015.05.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
234 Zhang W, Qin Z, Zhang X, Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett 2011;585:2786-94. [PMID: 21536034 DOI: 10.1016/j.febslet.2011.04.044] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 5.9] [Reference Citation Analysis]
235 Hao JJ, Zhi X, Wang Y, Zhang Z, Hao Z, Ye R, Tang Z, Qian F, Wang Q, Zhu J. Comprehensive Proteomic Characterization of the Human Colorectal Carcinoma Reveals Signature Proteins and Perturbed Pathways. Sci Rep. 2017;7:42436. [PMID: 28181595 DOI: 10.1038/srep42436] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
236 Tsuda M, Ogawa S, Ooka M, Kobayashi K, Hirota K, Wakasugi M, Matsunaga T, Sakuma T, Yamamoto T, Chikuma S, Sasanuma H, Debatisse M, Doherty AJ, Fuchs RP, Takeda S. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching. PLoS One 2019;14:e0213383. [PMID: 30840704 DOI: 10.1371/journal.pone.0213383] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
237 Hedglin M, Benkovic SJ. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chem Rev 2017;117:7857-77. [PMID: 28497687 DOI: 10.1021/acs.chemrev.7b00046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
238 Nasiri AH, Nasiri HR. Polymerase assays for lead discovery: An overall review of methodologies and approaches. Anal Biochem 2018;563:40-50. [PMID: 30291837 DOI: 10.1016/j.ab.2018.09.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
239 Jones MJ, Colnaghi L, Huang TT. Dysregulation of DNA polymerase κ recruitment to replication forks results in genomic instability. EMBO J 2012;31:908-18. [PMID: 22157819 DOI: 10.1038/emboj.2011.457] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 5.3] [Reference Citation Analysis]
240 Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Försti A, Hemminki K. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair (Amst) 2021;101:103079. [PMID: 33676360 DOI: 10.1016/j.dnarep.2021.103079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 Ucisik MN, Hammes-Schiffer S. Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η. J Phys Chem B 2017;121:3667-75. [PMID: 28423907 DOI: 10.1021/acs.jpcb.6b09973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
242 Mukherjee A, Vasquez KM. HMGB1 interacts with XPA to facilitate the processing of DNA interstrand crosslinks in human cells. Nucleic Acids Res 2016;44:1151-60. [PMID: 26578599 DOI: 10.1093/nar/gkv1183] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
243 Family L, Bensen JT, Troester MA, Wu MC, Anders CK, Olshan AF. Single-nucleotide polymorphisms in DNA bypass polymerase genes and association with breast cancer and breast cancer subtypes among African Americans and Whites. Breast Cancer Res Treat 2015;149:181-90. [PMID: 25417172 DOI: 10.1007/s10549-014-3203-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
244 Nohmi T, Matsumoto K. Effects of DNA polymerase kappa and mismatch repair on dose-responses of chromosome aberrations induced by three oxidative genotoxins in human cells. Environ Mol Mutagen 2020;61:193-9. [PMID: 31294882 DOI: 10.1002/em.22315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
245 Cipponi A, Goode DL, Bedo J, McCabe MJ, Pajic M, Croucher DR, Rajal AG, Junankar SR, Saunders DN, Lobachevsky P, Papenfuss AT, Nessem D, Nobis M, Warren SC, Timpson P, Cowley M, Vargas AC, Qiu MR, Generali DG, Keerthikumar S, Nguyen U, Corcoran NM, Long GV, Blay JY, Thomas DM. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science 2020;368:1127-31. [PMID: 32499442 DOI: 10.1126/science.aau8768] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 27.0] [Reference Citation Analysis]
246 Nickoloff JA. Improving cancer therapy by combining cell biological, physical, and molecular targeting strategies. Chin J Cancer Res 2013;25:7-9. [PMID: 23372336 DOI: 10.3978/j.issn.1000-9604.2013.01.06] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
247 Ucisik MN, Hammes-Schiffer S. Relative Binding Free Energies of Adenine and Guanine to Damaged and Undamaged DNA in Human DNA Polymerase η: Clues for Fidelity and Overall Efficiency. J Am Chem Soc 2015;137:13240-3. [PMID: 26434497 DOI: 10.1021/jacs.5b08451] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
248 Varadarajan J, McWilliams MJ, Mott BT, Thomas CJ, Smith SJ, Hughes SH. Drug resistant integrase mutants cause aberrant HIV integrations. Retrovirology 2016;13:71. [PMID: 27682062 DOI: 10.1186/s12977-016-0305-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
249 Mehmood RK, Parker J, Ahmed S, Qasem E, Mohammed AA, Zeeshan M, Jehangir E. Review of Cisplatin and Oxaliplatin in Current Immunogenic and Monoclonal Antibodies Perspective. World J Oncol 2014;5:97-108. [PMID: 29147386 DOI: 10.14740/wjon830w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
250 Wisnovsky S, Jean SR, Liyanage S, Schimmer A, Kelley SO. Mitochondrial DNA repair and replication proteins revealed by targeted chemical probes. Nat Chem Biol 2016;12:567-73. [DOI: 10.1038/nchembio.2102] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 11.0] [Reference Citation Analysis]
251 Shimizu T, Chiba T, Marusawa H. Helicobacter pylori-Mediated Genetic Instability and Gastric Carcinogenesis. Curr Top Microbiol Immunol. 2017;400:305-323. [PMID: 28124159 DOI: 10.1007/978-3-319-50520-6_13] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
252 Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer 2011;11:467-80. [PMID: 21701511 DOI: 10.1038/nrc3088] [Cited by in Crossref: 632] [Cited by in F6Publishing: 576] [Article Influence: 63.2] [Reference Citation Analysis]
253 Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 2012;12:801-17. [PMID: 23175119 DOI: 10.1038/nrc3399] [Cited by in Crossref: 593] [Cited by in F6Publishing: 561] [Article Influence: 74.1] [Reference Citation Analysis]
254 Genna V, Vidossich P, Ippoliti E, Carloni P, De Vivo M. A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. J Am Chem Soc 2016;138:14592-8. [PMID: 27530537 DOI: 10.1021/jacs.6b05475] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
255 Hogg M, Sauer-Eriksson AE, Johansson E. Promiscuous DNA synthesis by human DNA polymerase θ. Nucleic Acids Res 2012;40:2611-22. [PMID: 22135286 DOI: 10.1093/nar/gkr1102] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 4.1] [Reference Citation Analysis]
256 Katoh H, Ishikawa S. Genomic pathobiology of gastric carcinoma: Genomic Profile of Gastric Carcinoma. Pathol Int 2017;67:63-71. [DOI: 10.1111/pin.12493] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
257 Hampp S, Kiessling T, Buechle K, Mansilla SF, Thomale J, Rall M, Ahn J, Pospiech H, Gottifredi V, Wiesmüller L. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A 2016;113:E4311-9. [PMID: 27407148 DOI: 10.1073/pnas.1605828113] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 11.6] [Reference Citation Analysis]
258 Markkanen E, Hübscher U, van Loon B. Regulation of oxidative DNA damage repair: the adenine:8-oxo-guanine problem. Cell Cycle 2012;11:1070-5. [PMID: 22370481 DOI: 10.4161/cc.11.6.19448] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
259 Cai A, Bian K, Chen F, Tang Q, Carley R, Li D, Cho BP. Probing the Effect of Bulky Lesion-Induced Replication Fork Conformational Heterogeneity Using 4-Aminobiphenyl-Modified DNA. Molecules 2019;24:E1566. [PMID: 31009995 DOI: 10.3390/molecules24081566] [Reference Citation Analysis]
260 Jiang J, Jin Z, Zhang Y, Peng L, Zhang Y, Zhu Z, Wang Y, Tong, Yang Y, Wang J, Yang Y, Xiao K. Robust Prediction of Immune Checkpoint Inhibition Therapy for Non-Small Cell Lung Cancer. Front Immunol 2021;12:646874. [PMID: 33927719 DOI: 10.3389/fimmu.2021.646874] [Reference Citation Analysis]
261 Vasquez JL, Lai Y, Annamalai T, Jiang Z, Zhang M, Lei R, Zhang Z, Liu Y, Tse-Dinh YC, Agoulnik IU. Inhibition of base excision repair by natamycin suppresses prostate cancer cell proliferation. Biochimie 2020;168:241-50. [PMID: 31756402 DOI: 10.1016/j.biochi.2019.11.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
262 Branzei D. Ubiquitin family modifications and template switching. FEBS Lett 2011;585:2810-7. [PMID: 21539841 DOI: 10.1016/j.febslet.2011.04.053] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 5.8] [Reference Citation Analysis]
263 Brenlla A, Rueda D, Romano LJ. Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4. Nucleic Acids Res 2015;43:9918-27. [PMID: 26481355 DOI: 10.1093/nar/gkv1067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
264 Chapeau EA, Gembarska A, Durand EY, Mandon E, Estadieu C, Romanet V, Wiesmann M, Tiedt R, Lehar J, de Weck A, Rad R, Barys L, Jeay S, Ferretti S, Kauffmann A, Sutter E, Grevot A, Moulin P, Murakami M, Sellers WR, Hofmann F, Jensen MR. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf-/- mouse model. Proc Natl Acad Sci U S A 2017;114:3151-6. [PMID: 28265066 DOI: 10.1073/pnas.1620262114] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
265 Prindle MJ, Schmitt MW, Parmeggiani F, Loeb LA. A substitution in the fingers domain of DNA polymerase δ reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 2013;288:5572-80. [PMID: 23283971 DOI: 10.1074/jbc.M112.436410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
266 DiGiovanna JJ, Kraemer KH. Shining a light on xeroderma pigmentosum. J Invest Dermatol 2012;132:785-96. [PMID: 22217736 DOI: 10.1038/jid.2011.426] [Cited by in Crossref: 319] [Cited by in F6Publishing: 283] [Article Influence: 35.4] [Reference Citation Analysis]
267 Pustovalova Y, Bezsonova I, Korzhnev DM. The C-terminal domain of human Rev1 contains independent binding sites for DNA polymerase η and Rev7 subunit of polymerase ζ. FEBS Lett 2012;586:3051-6. [PMID: 22828282 DOI: 10.1016/j.febslet.2012.07.021] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
268 Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P, Masson JY. Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks. Cell Rep 2014;6:553-64. [PMID: 24485656 DOI: 10.1016/j.celrep.2014.01.009] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 7.4] [Reference Citation Analysis]
269 Saugar I, Ortiz-Bazán MÁ, Tercero JA. Tolerating DNA damage during eukaryotic chromosome replication. Exp Cell Res 2014;329:170-7. [PMID: 25038291 DOI: 10.1016/j.yexcr.2014.07.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
270 Yamanaka K, Dorjsuren D, Eoff RL, Egli M, Maloney DJ, Jadhav A, Simeonov A, Lloyd RS. A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ. PLoS One 2012;7:e45032. [PMID: 23056190 DOI: 10.1371/journal.pone.0045032] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
271 Rodriguez-Alvarez M, Kim D, Khobta A. EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions. Biomolecules 2020;10:E902. [PMID: 32545792 DOI: 10.3390/biom10060902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
272 Koeppel M, Garcia-alcalde F, Glowinski F, Schlaermann P, Meyer T. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells. Cell Reports 2015;11:1703-13. [DOI: 10.1016/j.celrep.2015.05.030] [Cited by in Crossref: 81] [Cited by in F6Publishing: 66] [Article Influence: 13.5] [Reference Citation Analysis]
273 Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019;24:E3870. [PMID: 31717862 DOI: 10.3390/molecules24213870] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
274 Mizushina Y, Ogawa Y, Onodera T, Kuriyama I, Sakamoto Y, Nishikori S, Kamisuki S, Sugawara F. Inhibition of Mammalian DNA Polymerases and the Suppression of Inflammatory and Allergic Responses by Tyrosol from Used Activated Charcoal Waste Generated during Sake Production. J Agric Food Chem 2014;62:7779-86. [DOI: 10.1021/jf502095p] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
275 Parikh D, Fouquerel E, Murphy CT, Wang H, Opresko PL. Telomeres are partly shielded from ultraviolet-induced damage and proficient for nucleotide excision repair of photoproducts. Nat Commun 2015;6:8214. [PMID: 26351258 DOI: 10.1038/ncomms9214] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
276 Huang F, Tanaka H, Knudsen BS, Rutgers JK. Mutant POLQ and POLZ/REV3L DNA polymerases may contribute to the favorable survival of patients with tumors with POLE mutations outside the exonuclease domain. BMC Med Genet 2020;21:167. [PMID: 32838755 DOI: 10.1186/s12881-020-01089-9] [Reference Citation Analysis]
277 Wilson KA, Fernandes PA, Ramos MJ, Wetmore SD. Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using QM/MM: The Case Study of Human Translesion Synthesis Polymerase η. ACS Catal 2019;9:2543-51. [DOI: 10.1021/acscatal.8b04889] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
278 Li X, Scanlon MJ, Yu J. Evolutionary patterns of DNA base composition and correlation to polymorphisms in DNA repair systems. Nucleic Acids Res 2015;43:3614-25. [PMID: 25765652 DOI: 10.1093/nar/gkv197] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
279 Haitjema A, Brandt BW, Ameziane N, May P, Heringa J, de Winter JP, Joenje H, Dorsman JC. A protein prioritization approach tailored for the FA/BRCA pathway. PLoS One 2013;8:e62017. [PMID: 23620800 DOI: 10.1371/journal.pone.0062017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
280 Liu Y, Ma X, Guo C. Effects of the N terminus of mouse DNA polymerase κ on the bypass of a guanine-benzo[a]pyrenyl adduct. J Biochem 2016;159:471-9. [PMID: 26634445 DOI: 10.1093/jb/mvv118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
281 Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011;11:39. [PMID: 22047021 DOI: 10.1186/1475-2867-11-39] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.3] [Reference Citation Analysis]
282 Lange SS, Wittschieben JP, Wood RD. DNA polymerase zeta is required for proliferation of normal mammalian cells. Nucleic Acids Res 2012;40:4473-82. [PMID: 22319213 DOI: 10.1093/nar/gks054] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 5.3] [Reference Citation Analysis]
283 Walsh JM, Parasuram R, Rajput PR, Rozners E, Ondrechen MJ, Beuning PJ. Effects of non-catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV). Environ Mol Mutagen 2012;53:766-76. [PMID: 23034734 DOI: 10.1002/em.21730] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
284 Kim N, Mudrak SV, Jinks-Robertson S. The dCMP transferase activity of yeast Rev1 is biologically relevant during the bypass of endogenously generated AP sites. DNA Repair (Amst) 2011;10:1262-71. [PMID: 22024240 DOI: 10.1016/j.dnarep.2011.09.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.7] [Reference Citation Analysis]
285 Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015;7:a016410. [PMID: 26525148 DOI: 10.1101/cshperspect.a016410] [Cited by in Crossref: 252] [Cited by in F6Publishing: 223] [Article Influence: 42.0] [Reference Citation Analysis]
286 Hakura A, Sui H, Sonoda J, Matsuda T, Nohmi T. DNA polymerase kappa counteracts inflammation‐induced mutagenesis in multiple organs of mice. Environ Mol Mutagen 2019;60:320-30. [DOI: 10.1002/em.22272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
287 Nohmi T, Tsuzuki T. Possible Mechanisms Underlying Genotoxic Thresholds. Thresholds of Genotoxic Carcinogens. Elsevier; 2016. pp. 49-66. [DOI: 10.1016/b978-0-12-801663-3.00004-2] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
288 Räz MH, Aloisi CMN, Gahlon HL, Sturla SJ. DNA Adduct-Directed Synthetic Nucleosides. Acc Chem Res 2019;52:1391-9. [PMID: 30964643 DOI: 10.1021/acs.accounts.9b00054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
289 Kadina AP, Kashemirov BA, Oertell K, Batra VK, Wilson SH, Goodman MF, McKenna CE. Two Scaffolds from Two Flips: (α,β)/(β,γ) CH2/NH "Met-Im" Analogues of dTTP. Org Lett 2015;17:2586-9. [PMID: 25970636 DOI: 10.1021/acs.orglett.5b00799] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
290 Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017;8:112103-15. [PMID: 29340115 DOI: 10.18632/oncotarget.22783] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
291 Franconetti A, López Ó, Fernandez-bolanos JG. Carbohydrates: Potential Sweet Tools Against Cancer. CMC 2020;27:1206-42. [DOI: 10.2174/0929867325666180719114150] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
292 Laporte GA, Leguisamo NM, Kalil AN, Saffi J. Clinical importance of DNA repair in sporadic colorectal cancer. Crit Rev Oncol Hematol 2018;126:168-85. [PMID: 29759559 DOI: 10.1016/j.critrevonc.2018.03.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
293 Li GM. A special issue on new insights into genome maintenance. Cell Biosci 2017;7:10. [PMID: 28163888 DOI: 10.1186/s13578-017-0137-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
294 Lee DF, Lu J, Chang S, Loparo JJ, Xie XS. Mapping DNA polymerase errors by single-molecule sequencing. Nucleic Acids Res 2016;44:e118. [PMID: 27185891 DOI: 10.1093/nar/gkw436] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 5.4] [Reference Citation Analysis]
295 Hedglin M, Pandey B, Benkovic SJ. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. Elife 2016;5:e19788. [PMID: 27770570 DOI: 10.7554/eLife.19788] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
296 Sasatani M, Xi Y, Kajimura J, Kawamura T, Piao J, Masuda Y, Honda H, Kubo K, Mikamoto T, Watanabe H, Xu Y, Kawai H, Shimura T, Noda A, Hamasaki K, Kusunoki Y, Zaharieva EK, Kamiya K. Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level. Carcinogenesis 2017;38:570-8. [PMID: 28498946 DOI: 10.1093/carcin/bgw208] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
297 Azambuja DB, Leguisamo NM, Gloria HC, Kalil AN, Rhoden E, Saffi J. Prognostic impact of changes in base excision repair machinery in sporadic colorectal cancer. Pathology - Research and Practice 2018;214:64-71. [DOI: 10.1016/j.prp.2017.11.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
298 Fischer M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene 2019;38:4095-109. [PMID: 30710145 DOI: 10.1038/s41388-019-0706-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
299 Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017;4:75. [PMID: 29184888 DOI: 10.3389/fmolb.2017.00075] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
300 Lin HK, Chase SF, Laue TM, Jen-Jacobson L, Trakselis MA. Differential temperature-dependent multimeric assemblies of replication and repair polymerases on DNA increase processivity. Biochemistry 2012;51:7367-82. [PMID: 22906116 DOI: 10.1021/bi300956t] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
301 Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, Conley S, Zhong H, Liu Z, Brohawn P, Shen D, Wu S, Ge X, Jiang Y, Zhao Y, Lou Y, Morehouse C, Zhu W, Sebastian Y, Czapiga M, Oganesyan V, Fu H, Niu Y, Zhang W, Streicher K, Tice D, Zhao H, Zhu M, Xu L, Herbst R, Su X, Gu Y, Li S, Huang L, Gu J, Han B, Jallal B, Shen H, Yao Y. Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer. PLoS Genet 2016;12:e1005895. [PMID: 27093186 DOI: 10.1371/journal.pgen.1005895] [Cited by in Crossref: 65] [Cited by in F6Publishing: 62] [Article Influence: 13.0] [Reference Citation Analysis]
302 Harris K, Nielsen R. Error-prone polymerase activity causes multinucleotide mutations in humans. Genome Res 2014;24:1445-54. [PMID: 25079859 DOI: 10.1101/gr.170696.113] [Cited by in Crossref: 52] [Cited by in F6Publishing: 38] [Article Influence: 7.4] [Reference Citation Analysis]
303 Poli-Neto OB, Carlos D, Favaretto A Junior, Rosa-E-Silva JC, Meola J, Tiezzi D. Eutopic endometrium from women with endometriosis and chlamydial endometritis share immunological cell types and DNA repair imbalance: A transcriptome meta-analytical perspective. J Reprod Immunol 2021;145:103307. [PMID: 33725527 DOI: 10.1016/j.jri.2021.103307] [Reference Citation Analysis]
304 Pilzecker B, Buoninfante OA, Jacobs H. DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Res 2019;47:7163-81. [PMID: 31251805 DOI: 10.1093/nar/gkz531] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
305 Menezes MR, Sweasy JB. Mouse models of DNA polymerases. Environ Mol Mutagen 2012;53:645-65. [DOI: 10.1002/em.21731] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
306 Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017;59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 19.5] [Reference Citation Analysis]
307 Barakat KH, Gajewski MM, Tuszynski JA. DNA polymerase beta (pol β) inhibitors: a comprehensive overview. Drug Discov Today 2012;17:913-20. [PMID: 22561893 DOI: 10.1016/j.drudis.2012.04.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
308 Masumura K, Toyoda-Hokaiwado N, Niimi N, Grúz P, Wada NA, Takeiri A, Jishage KI, Mishima M, Nohmi T. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo. Environ Mol Mutagen 2017;58:644-53. [PMID: 29076178 DOI: 10.1002/em.22146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
309 Ren C, Cho SJ, Jung YS, Chen X. DNA polymerase η is regulated by poly(rC)-binding protein 1 via mRNA stability. Biochem J 2014;464:377-86. [PMID: 25268038 DOI: 10.1042/BJ20141164] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
310 Agbor AA, Göksenin AY, LeCompte KG, Hans SH, Pursell ZF. Human Pol ε-dependent replication errors and the influence of mismatch repair on their correction. DNA Repair (Amst) 2013;12:954-63. [PMID: 24051051 DOI: 10.1016/j.dnarep.2013.08.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
311 Ren L, Matsuda T, Deng B, Kiyotani K, Kato T, Park JH, Seiwert TY, Vokes EE, Agrawal N, Nakamura Y. Similarity and difference in tumor-infiltrating lymphocytes in original tumor tissues and those of in vitro expanded populations in head and neck cancer. Oncotarget 2018;9:3805-14. [PMID: 29423084 DOI: 10.18632/oncotarget.23454] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
312 Guan L, van der Heijden GW, Bortvin A, Greenberg MM. Intracellular detection of cytosine incorporation in genomic DNA by using 5-ethynyl-2'-deoxycytidine. Chembiochem 2011;12:2184-90. [PMID: 21805552 DOI: 10.1002/cbic.201100353] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
313 Jones MJ, Huang TT. The Fanconi anemia pathway in replication stress and DNA crosslink repair. Cell Mol Life Sci 2012;69:3963-74. [PMID: 22744751 DOI: 10.1007/s00018-012-1051-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
314 Lange SS, Bhetawal S, Reh S, Powell KL, Kusewitt DF, Wood RD. DNA polymerase ζ deficiency causes impaired wound healing and stress-induced skin pigmentation. Life Sci Alliance 2018;1:e201800048. [PMID: 30046772 DOI: 10.26508/lsa.201800048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
315 Zhao G, Gleave ES, Lamers MH. Single-molecule studies contrast ordered DNA replication with stochastic translesion synthesis. Elife 2017;6:e32177. [PMID: 29210356 DOI: 10.7554/eLife.32177] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
316 Genna V, Donati E, De Vivo M. The Catalytic Mechanism of DNA and RNA Polymerases. ACS Catal 2018;8:11103-18. [DOI: 10.1021/acscatal.8b03363] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
317 Tomida J, Takata K, Lange SS, Schibler AC, Yousefzadeh MJ, Bhetawal S, Dent SY, Wood RD. REV7 is essential for DNA damage tolerance via two REV3L binding sites in mammalian DNA polymerase ζ. Nucleic Acids Res 2015;43:1000-11. [PMID: 25567983 DOI: 10.1093/nar/gku1385] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 7.5] [Reference Citation Analysis]
318 Zweitzig DR, Riccardello NM, Sodowich BI, O'Hara SM. Characterization of a novel DNA polymerase activity assay enabling sensitive, quantitative and universal detection of viable microbes. Nucleic Acids Res 2012;40:e109. [PMID: 22495933 DOI: 10.1093/nar/gks316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
319 Vaisman A, Woodgate R. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol 2017;52:274-303. [PMID: 28279077 DOI: 10.1080/10409238.2017.1291576] [Cited by in Crossref: 130] [Cited by in F6Publishing: 119] [Article Influence: 32.5] [Reference Citation Analysis]
320 DeWeirdt PC, Sangree AK, Hanna RE, Sanson KR, Hegde M, Strand C, Persky NS, Doench JG. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat Commun 2020;11:752. [PMID: 32029722 DOI: 10.1038/s41467-020-14620-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 26.0] [Reference Citation Analysis]
321 Lange SS, Bedford E, Reh S, Wittschieben JP, Carbajal S, Kusewitt DF, DiGiovanni J, Wood RD. Dual role for mammalian DNA polymerase ζ in maintaining genome stability and proliferative responses. Proc Natl Acad Sci U S A 2013;110:E687-96. [PMID: 23386725 DOI: 10.1073/pnas.1217425110] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
322 Mizushina Y, Kuriyama I, Yamazaki A, Akashi T, Yoshida H. Cycloartenyl trans-ferulate, a component of the bran byproduct of sake-brewing rice, inhibits mammalian DNA polymerase and suppresses inflammation. Food Chem 2013;141:1000-7. [PMID: 23790879 DOI: 10.1016/j.foodchem.2013.04.048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
323 Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020;21:765-81. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 44.0] [Reference Citation Analysis]
324 Liu Y, Yang Y, Tang TS, Zhang H, Wang Z, Friedberg E, Yang W, Guo C. Variants of mouse DNA polymerase κ reveal a mechanism of efficient and accurate translesion synthesis past a benzo[a]pyrene dG adduct. Proc Natl Acad Sci U S A 2014;111:1789-94. [PMID: 24449898 DOI: 10.1073/pnas.1324168111] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
325 Kent T, Mateos-Gomez PA, Sfeir A, Pomerantz RT. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining. Elife 2016;5:e13740. [PMID: 27311885 DOI: 10.7554/eLife.13740] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
326 Stirling PC, Crisp MJ, Basrai MA, Tucker CM, Dunham MJ, Spencer FA, Hieter P. Mutability and mutational spectrum of chromosome transmission fidelity genes. Chromosoma 2012;121:263-75. [PMID: 22198145 DOI: 10.1007/s00412-011-0356-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
327 Rey JM, Ducros V, Pujol P, Wang Q, Buisine MP, Aissaoui H, Maudelonde T, Olschwang S. Improving Mutation Screening in Patients with Colorectal Cancer Predisposition Using Next-Generation Sequencing. J Mol Diagn 2017;19:589-601. [PMID: 28502729 DOI: 10.1016/j.jmoldx.2017.04.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
328 Wit N, Buoninfante OA, van den Berk PC, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2015;43:282-94. [PMID: 25505145 DOI: 10.1093/nar/gku1301] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.1] [Reference Citation Analysis]
329 Pandey M, Kumar S, Goldsmith G, Srivastava M, Elango S, Shameem M, Bannerjee D, Choudhary B, Karki SS, Raghavan SC. Identification and characterization of novel ligase I inhibitors. Mol Carcinog 2017;56:550-66. [PMID: 27312791 DOI: 10.1002/mc.22516] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
330 Nikolaishvili-Feinberg N, Cordeiro-Stone M. Assays of bypass replication of genotoxic lesions in cell-free extracts. Methods Mol Biol 2012;920:503-28. [PMID: 22941625 DOI: 10.1007/978-1-61779-998-3_34] [Reference Citation Analysis]
331 Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J 2016;283:232-45. [DOI: 10.1111/febs.13574] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 13.0] [Reference Citation Analysis]
332 Sproviero M, Verwey AM, Witham AA, Manderville RA, Sharma P, Wetmore SD. Enhancing Bulge Stabilization through Linear Extension of C8-Aryl-Guanine Adducts to Promote Polymerase Blockage or Strand Realignment to Produce a C:C Mismatch. Chem Res Toxicol 2015;28:1647-58. [PMID: 26225720 DOI: 10.1021/acs.chemrestox.5b00233] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
333 Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020;55:219-51. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
334 Wu Y, Zhou L, Deng Y, Li N, Yang P, Dong S, Yang S, Zheng Y, Yao L, Zhang M, Zhai Z, Dai Z, Wu Y. The polymorphisms (rs3213801 and rs5744533) of DNA polymerase kappa gene are not related with glioma risk and prognosis: A case-control study. Cancer Med 2019;8:7446-53. [PMID: 31595696 DOI: 10.1002/cam4.2566] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
335 Werner CK, Nna UJ, Sun H, Wilder-Romans K, Dresser J, Kothari AU, Zhou W, Yao Y, Rao A, Stallard S, Koschmann C, Bor T, Debinski W, Hegedus AM, Morgan MA, Venneti S, Baskin-Bey E, Spratt DE, Colman H, Sarkaria JN, Chinnaiyan AM, Eisner JR, Speers C, Lawrence TS, Strowd RE, Wahl DR. Expression of the Androgen Receptor Governs Radiation Resistance in a Subset of Glioblastomas Vulnerable to Antiandrogen Therapy. Mol Cancer Ther 2020;19:2163-74. [PMID: 32796101 DOI: 10.1158/1535-7163.MCT-20-0095] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
336 Nilforoushan A, Furrer A, Wyss LA, van Loon B, Sturla SJ. Nucleotides with altered hydrogen bonding capacities impede human DNA polymerase η by reducing synthesis in the presence of the major cisplatin DNA adduct. J Am Chem Soc 2015;137:4728-34. [PMID: 25786104 DOI: 10.1021/ja512547g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
337 Kochenova OV, Daee DL, Mertz TM, Shcherbakova PV. DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA. PLoS Genet 2015;11:e1005110. [PMID: 25826305 DOI: 10.1371/journal.pgen.1005110] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
338 Liu R, Zhou JH, Zhou ZK, Jiang X, Liu J, Liu G, Wang XH. On-demand shape and size purification of nanoparticle based on surface area. Nanoscale 2014;6:13145-53. [PMID: 25251421 DOI: 10.1039/c4nr04301d] [Cited by in Crossref: 25] [Cited by in F6Publishing: 2] [Article Influence: 4.2] [Reference Citation Analysis]