BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Durante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 2008;8:465-72. [DOI: 10.1038/nrc2391] [Cited by in Crossref: 376] [Cited by in F6Publishing: 260] [Article Influence: 26.9] [Reference Citation Analysis]
Number Citing Articles
1 Ding N, Pei H, Hu W, He J, Li H, Wang J, Wang T, Zhou G. Cancer risk of high-charge and -energy ions and the biological effects of the induced secondary particles in space. Rend Fis Acc Lincei 2014;25:59-63. [DOI: 10.1007/s12210-014-0288-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
2 Ando K, Kase Y. Biological characteristics of carbon-ion therapy. International Journal of Radiation Biology 2009;85:715-28. [DOI: 10.1080/09553000903072470] [Cited by in Crossref: 98] [Cited by in F6Publishing: 75] [Article Influence: 7.5] [Reference Citation Analysis]
3 Walenta S, Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models. Front Oncol 2016;6:30. [PMID: 26942125 DOI: 10.3389/fonc.2016.00030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
4 Tan S, Pei W, Huang H, Zhou G, Hu W. Additive effects of simulated microgravity and ionizing radiation in cell death, induction of ROS and expression of RAC2 in human bronchial epithelial cells. NPJ Microgravity 2020;6:34. [PMID: 33298974 DOI: 10.1038/s41526-020-00123-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Koch C, Kohn FP, Bauer J. Preparing normal tissue cells for space flight experiments. Prep Biochem Biotechnol 2016;46:208-13. [PMID: 25806650 DOI: 10.1080/10826068.2015.1015565] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
6 Acevedo-Del-Castillo A, Águila-Toledo E, Maldonado-Magnere S, Aguilar-Bolados H. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites. Int J Mol Sci 2021;22:9079. [PMID: 34445783 DOI: 10.3390/ijms22169079] [Reference Citation Analysis]
7 Xie M, Park D, Sica GL, Deng X. Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. Carcinogenesis 2020;41:1565-75. [PMID: 32157295 DOI: 10.1093/carcin/bgaa021] [Reference Citation Analysis]
8 Camacho CV, Todorova PK, Hardebeck MC, Tomimatsu N, Gil del Alcazar CR, Ilcheva M, Mukherjee B, McEllin B, Vemireddy V, Hatanpaa K, Story MD, Habib AA, Murty VV, Bachoo R, Burma S. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene 2015;34:1064-72. [PMID: 24632607 DOI: 10.1038/onc.2014.29] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
9 Nia AM, Chen T, Barnette BL, Khanipov K, Ullrich RL, Bhavnani SK, Emmett MR. Efficient identification of multiple pathways: RNA-Seq analysis of livers from 56Fe ion irradiated mice. BMC Bioinformatics 2020;21:118. [PMID: 32192433 DOI: 10.1186/s12859-020-3446-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Durante M. Applications of particle microbeams in space radiation research. J Radiat Res 2009;50 Suppl A:A55-8. [PMID: 19346685 DOI: 10.1269/jrr.09007s] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Li Q, Sihver L. Therapeutic techniques applied in the heavy-ion therapy at IMP. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2011;269:664-70. [DOI: 10.1016/j.nimb.2011.01.125] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
12 Hada M, Saganti PB, Cucinotta FA. Nitric Oxide Is Involved in Heavy Ion-Induced Non-Targeted Effects in Human Fibroblasts. Int J Mol Sci 2019;20:E4327. [PMID: 31487843 DOI: 10.3390/ijms20184327] [Reference Citation Analysis]
13 Mladenova V, Mladenov E, Scholz M, Stuschke M, Iliakis G. Strong Shift to ATR-Dependent Regulation of the G2-Checkpoint after Exposure to High-LET Radiation. Life (Basel) 2021;11:560. [PMID: 34198619 DOI: 10.3390/life11060560] [Reference Citation Analysis]
14 Cucinotta FA, Hu S, Schwadron NA, Kozarev K, Townsend LW, Kim MY. Space radiation risk limits and Earth-Moon-Mars environmental models: SPACE RADIATION RISK LIMITS. Space Weather 2010;8:n/a-n/a. [DOI: 10.1029/2010sw000572] [Cited by in Crossref: 63] [Article Influence: 5.3] [Reference Citation Analysis]
15 Takahashi A, Ikeda H, Yoshida Y. Role of High-Linear Energy Transfer Radiobiology in Space Radiation Exposure Risks. Int J Part Ther 2018;5:151-9. [PMID: 31773027 DOI: 10.14338/IJPT-18-00013.1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Datta K, Suman S, Kallakury BV, Fornace AJ Jr. Exposure to heavy ion radiation induces persistent oxidative stress in mouse intestine. PLoS One 2012;7:e42224. [PMID: 22936983 DOI: 10.1371/journal.pone.0042224] [Cited by in Crossref: 95] [Cited by in F6Publishing: 87] [Article Influence: 9.5] [Reference Citation Analysis]
17 Datta K, Suman S, Kallakury BV, Fornace AJ Jr. Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater β-catenin activation than γ radiation in APC(Min/+) mice. PLoS One 2013;8:e59295. [PMID: 23555653 DOI: 10.1371/journal.pone.0059295] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 4.7] [Reference Citation Analysis]
18 De Micco V, Arena C, Pignalosa D, Durante M. Effects of sparsely and densely ionizing radiation on plants. Radiat Environ Biophys 2011;50:1-19. [PMID: 21113610 DOI: 10.1007/s00411-010-0343-8] [Cited by in Crossref: 71] [Cited by in F6Publishing: 36] [Article Influence: 5.9] [Reference Citation Analysis]
19 Pleskac R, Abou-haidar Z, Agodi C, Alvarez M, Aumann T, Battistoni G, Bocci A, Böhlen T, Boudard A, Brunetti A, Carpinelli M, Cirrone G, Cortes-giraldo M, Cuttone G, De Napoli M, Durante M, Fernández-garcía J, Finck C, Golosio B, Gallardo M, Iarocci E, Iazzi F, Ickert G, Introzzi R, Juliani D, Krimmer J, Kurz N, Labalme M, Leifels Y, Le Fevre A, Leray S, Marchetto F, Monaco V, Morone M, Oliva P, Paoloni A, Piersanti L, Quesada J, Raciti G, Randazzo N, Romano F, Rossi D, Rousseau M, Sacchi R, Sala P, Sarti A, Scheidenberger C, Schuy C, Sciubba A, Sfienti C, Simon H, Sipala V, Spiriti E, Stuttge L, Tropea S, Younis H, Patera V. The FIRST experiment at GSI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2012;678:130-8. [DOI: 10.1016/j.nima.2012.02.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 10] [Article Influence: 2.9] [Reference Citation Analysis]
20 Barker R, Costes SV, Miller J, Gebre SG, Lombardino J, Gilroy S. Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures. NPJ Microgravity 2021;7:15. [PMID: 33976230 DOI: 10.1038/s41526-021-00143-x] [Reference Citation Analysis]
21 Trani D, Datta K, Doiron K, Kallakury B, Fornace AJ Jr. Enhanced intestinal tumor multiplicity and grade in vivo after HZE exposure: mouse models for space radiation risk estimates. Radiat Environ Biophys 2010;49:389-96. [PMID: 20490531 DOI: 10.1007/s00411-010-0292-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
22 Carra C, Cucinotta FA. Binding selectivity of RecA to a single stranded DNA, a computational approach. J Mol Model 2011;17:133-50. [PMID: 20386943 DOI: 10.1007/s00894-010-0694-8] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
23 Upadhyay M, Rajagopal M, Gill K, Li Y, Bansal S, Sridharan V, Tyburski JB, Boerma M, Cheema AK. Identification of Plasma Lipidome Changes Associated with Low Dose Space-Type Radiation Exposure in a Murine Model. Metabolites 2020;10:E252. [PMID: 32560360 DOI: 10.3390/metabo10060252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Singh SK, Bencsik-Theilen A, Mladenov E, Jakob B, Taucher-Scholz G, Iliakis G. Reduced contribution of thermally labile sugar lesions to DNA double strand break formation after exposure to heavy ions. Radiat Oncol 2013;8:77. [PMID: 23547740 DOI: 10.1186/1748-717X-8-77] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
25 Wei W, Bai H, Feng X, Hua J, Long K, He J, Zhang Y, Ding N, Wang J, Zhou H. Serum Proteins as New Biomarkers for Whole-Body Exposure to High- and Low-LET Ionizing Radiation. Dose Response 2020;18:1559325820914172. [PMID: 32273832 DOI: 10.1177/1559325820914172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Brabcová KP, Jamborová Z, Michaelidesová A, Davídková M, Kodaira S, Šefl M, Štěpán V. RADIATION-INDUCED PLASMID DNA DAMAGE: EFFECT OF CONCENTRATION AND LENGTH. Radiat Prot Dosimetry 2019;186:168-71. [PMID: 31803909 DOI: 10.1093/rpd/ncz196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
27 Northum JD, Guetersloh SB, Braby LA, Ford JR. Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars. Health Phys 2015;109:284-95. [PMID: 26313586 DOI: 10.1097/HP.0000000000000335] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
28 Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ Jr, Datta K. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure. PLoS One 2014;9:e87079. [PMID: 24475228 DOI: 10.1371/journal.pone.0087079] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
29 Schardt D, Elsässer T, Schulz-ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev Mod Phys 2010;82:383-425. [DOI: 10.1103/revmodphys.82.383] [Cited by in Crossref: 439] [Cited by in F6Publishing: 4] [Article Influence: 36.6] [Reference Citation Analysis]
30 Miousse IR, Ewing LE, Kutanzi KR, Griffin RJ, Koturbash I. DNA Methylation in Radiation-Induced Carcinogenesis: Experimental Evidence and Clinical Perspectives. Crit Rev Oncog 2018;23:1-11. [PMID: 29953365 DOI: 10.1615/CritRevOncog.2018025687] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Swift JM, Swift SN, Smith JT, Kiang JG, Allen MR. Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss. Bone 2015;81:487-94. [PMID: 26335157 DOI: 10.1016/j.bone.2015.08.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
32 Keating A, Goncalves P, Pimenta M, Brogueira P, Zadeh A, Daly E. Modeling the effects of low-LET cosmic rays on electronic components. Radiat Environ Biophys 2012;51:245-54. [PMID: 22622994 DOI: 10.1007/s00411-012-0412-2] [Cited by in Crossref: 5] [Article Influence: 0.5] [Reference Citation Analysis]
33 Goswami N, Batzel JJ, Clément G, Stein TP, Hargens AR, Sharp MK, Blaber AP, Roma PG, Hinghofer-Szalkay HG. Maximizing information from space data resources: a case for expanding integration across research disciplines. Eur J Appl Physiol 2013;113:1645-54. [PMID: 23073848 DOI: 10.1007/s00421-012-2507-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
34 Denis Bacelar A, Bruce A, Podolyák Z, Al-dahan N, Górska M, Lalkovski S, Pietri S, Ricciardi M, Algora A, Alkhomashi N, Benlliure J, Boutachkov P, Bracco A, Calore E, Casarejos E, Cullen I, Deo A, Detistov P, Dombradi Z, Domingo-pardo C, Doncel M, Farinon F, Farrelly G, Geissel H, Gelletly W, Gerl J, Goel N, Grȩbosz J, Hoischen R, Kojouharov I, Kurz N, Leoni S, Molina F, Montanari D, Morales A, Musumarra A, Napoli D, Nicolini R, Nociforo C, Prochazka A, Prokopowicz W, Regan P, Rubio B, Rudolph D, Schmidt K, Schaffner H, Steer S, Steiger K, Strmen P, Swan T, Szarka I, Valiente-dobón J, Verma S, Walker P, Weick H, Wollersheim H. The population of metastable states as a probe of relativistic-energy fragmentation reactions. Physics Letters B 2013;723:302-6. [DOI: 10.1016/j.physletb.2013.05.033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
35 Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? Life Sci Space Res (Amst) 2021;30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Reference Citation Analysis]
36 Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013;8:e75097. [PMID: 24069384 DOI: 10.1371/journal.pone.0075097] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
37 Kumar S. Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health. 2012;9:4744-4759. [PMID: 23249860 DOI: 10.3390/ijerph9124744] [Cited by in Crossref: 67] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
38 Roig AI, Hight SK, Minna JD, Shay JW, Rusek A, Story MD. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle. Int J Radiat Biol 2010;86:194-204. [PMID: 20201648 DOI: 10.3109/09553000903418603] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
39 Bailey SM, Luxton JJ, McKenna MJ, Taylor LE, George KA, Jhavar SG, Swanson GP. Ad Astra - telomeres in space! Int J Radiat Biol 2021;:1-9. [PMID: 34270368 DOI: 10.1080/09553002.2021.1956010] [Reference Citation Analysis]
40 Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". Biomed Res Int 2020;2020:4703286. [PMID: 32337251 DOI: 10.1155/2020/4703286] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
41 Baird BJ, Dickey JS, Nakamura AJ, Redon CE, Parekh P, Griko YV, Aziz K, Georgakilas AG, Bonner WM, Martin OA. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing. Mutat Res. 2011;711:142-149. [PMID: 21185842 DOI: 10.1016/j.mrfmmm.2010.1012.1006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Hu S, Pluth JM, Cucinotta FA. Putative binding modes of Ku70-SAP domain with double strand DNA: a molecular modeling study. J Mol Model 2012;18:2163-74. [PMID: 21947447 DOI: 10.1007/s00894-011-1234-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
43 Walsh L, Schneider U, Fogtman A, Kausch C, McKenna-Lawlor S, Narici L, Ngo-Anh J, Reitz G, Sabatier L, Santin G, Sihver L, Straube U, Weber U, Durante M. Research plans in Europe for radiation health hazard assessment in exploratory space missions. Life Sci Space Res (Amst) 2019;21:73-82. [PMID: 31101157 DOI: 10.1016/j.lssr.2019.04.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 8.3] [Reference Citation Analysis]
44 Mairani A, Böhlen TT, Dokic I, Cabal G, Brons S, Haberer T. Modelling of cell killing due to sparsely ionizing radiation in normoxic and hypoxic conditions and an extension to high LET radiation. Int J Radiat Biol 2013;89:782-93. [PMID: 23627742 DOI: 10.3109/09553002.2013.800247] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
45 Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014;9:e104819. [PMID: 25126721 DOI: 10.1371/journal.pone.0104819] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 6.6] [Reference Citation Analysis]
46 Lebel EA, Rusek A, Sivertz MB, Yip K, Thompson KH, Tafrov ST. Analyses of the Secondary Particle Radiation and the DNA Damage It Causes to Human Keratinocytes. JRR 2011;52:685-93. [DOI: 10.1269/jrr.11015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
47 Takahashi A, Wakihata S, Ma L, Adachi T, Hirose H, Yoshida Y, Ohira Y. Temporary Loading Prevents Cancer Progression and Immune Organ Atrophy Induced by Hind-Limb Unloading in Mice. Int J Mol Sci 2018;19:E3959. [PMID: 30544854 DOI: 10.3390/ijms19123959] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
48 Suman S, Jaruga P, Dizdaroglu M, Fornace AJ, Datta K. Heavy ion space radiation triggers ongoing DNA base damage by downregulating DNA repair pathways. Life Sciences in Space Research 2020;27:27-32. [DOI: 10.1016/j.lssr.2020.07.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
49 Asaithamby A, Chen DJ. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res. 2011;711:87-99. [PMID: 21126526 DOI: 10.1016/j.mrfmmm.2010.11.002] [Cited by in Crossref: 95] [Cited by in F6Publishing: 81] [Article Influence: 7.9] [Reference Citation Analysis]
50 George K, Rhone J, Beitman A, Cucinotta FA. Cytogenetic damage in the blood lymphocytes of astronauts: effects of repeat long-duration space missions. Mutat Res 2013;756:165-9. [PMID: 23639573 DOI: 10.1016/j.mrgentox.2013.04.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
51 Rithidech KN, Honikel LM, Reungpatthanaphong P, Tungjai M, Golightly M, Whorton EB. Effects of 100 MeV protons delivered at 0.5 or 1 cGy/min on the in vivo induction of early and delayed chromosomal damage. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2013;756:127-40. [DOI: 10.1016/j.mrgentox.2013.06.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
52 Vyšín L, Pachnerová Brabcová K, Štěpán V, Moretto-Capelle P, Bugler B, Legube G, Cafarelli P, Casta R, Champeaux JP, Sence M, Vlk M, Wagner R, Štursa J, Zach V, Incerti S, Juha L, Davídková M. Proton-induced direct and indirect damage of plasmid DNA. Radiat Environ Biophys 2015;54:343-52. [PMID: 26007308 DOI: 10.1007/s00411-015-0605-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
53 Hagiwara Y, Niimi A, Isono M, Yamauchi M, Yasuhara T, Limsirichaikul S, Oike T, Sato H, Held KD, Nakano T, Shibata A. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation. Oncotarget 2017;8:109370-81. [PMID: 29312614 DOI: 10.18632/oncotarget.22679] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
54 Rodman C, Almeida-Porada G, George SK, Moon J, Soker S, Pardee T, Beaty M, Guida P, Sajuthi SP, Langefeld CD, Walker SJ, Wilson PF, Porada CD. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells. Leukemia 2017;31:1398-407. [PMID: 27881872 DOI: 10.1038/leu.2016.344] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
55 Nicolay NH, Lopez Perez R, Saffrich R, Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget 2015;6:19366-80. [PMID: 26203772 DOI: 10.18632/oncotarget.4358] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 8.5] [Reference Citation Analysis]
56 Plante I, Cucinotta FA. Cross sections for the interactions of 1 eV–100 MeV electrons in liquid water and application to Monte-Carlo simulation of HZE radiation tracks. New J Phys 2009;11:063047. [DOI: 10.1088/1367-2630/11/6/063047] [Cited by in Crossref: 67] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
57 Liu X, He Y, Li F, Huang Q, Kato TA, Hall RP, Li CY. Caspase-3 promotes genetic instability and carcinogenesis. Mol Cell 2015;58:284-96. [PMID: 25866249 DOI: 10.1016/j.molcel.2015.03.003] [Cited by in Crossref: 121] [Cited by in F6Publishing: 111] [Article Influence: 17.3] [Reference Citation Analysis]
58 Becker D, Elsässer T, Tonn T, Seifried E, Durante M, Ritter S, Fournier C. Response of human hematopoietic stem and progenitor cells to energetic carbon ions. Int J Radiat Biol 2009;85:1051-9. [PMID: 19895282 DOI: 10.3109/09553000903232850] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
59 Abdollahi H, Teymouri M, Khademi S. Radiofrequency radiation may help astronauts in space missions. Journal of Medical Hypotheses and Ideas 2012;6:66-9. [DOI: 10.1016/j.jmhi.2012.08.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
60 Walsh L, Hafner L, Straube U, Ulanowski A, Fogtman A, Durante M, Weerts G, Schneider U. A bespoke health risk assessment methodology for the radiation protection of astronauts. Radiat Environ Biophys 2021;60:213-31. [PMID: 33929575 DOI: 10.1007/s00411-021-00910-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Kelly SE, Di Benedetto A, Greco A, Howard CM, Sollars VE, Primerano DA, Valluri JV, Claudio PP. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications. PLoS One 2010;5:e10035. [PMID: 20386701 DOI: 10.1371/journal.pone.0010035] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 3.7] [Reference Citation Analysis]
62 Eberle J, Wiehe RS, Gole B, Mattis LJ, Palmer A, Ständker L, Forssmann WG, Münch J, Gebhardt JCM, Wiesmüller L. A Fibrinogen Alpha Fragment Mitigates Chemotherapy-Induced MLL Rearrangements. Front Oncol 2021;11:689063. [PMID: 34222016 DOI: 10.3389/fonc.2021.689063] [Reference Citation Analysis]
63 Dai Z, Lei X, Yang C, Zhao L, Lu L, Li Y. Systematic biomedical research of the NASA Twins Study facilitates the hazard risk assessment of long-term spaceflight missions. Protein Cell 2019;10:628-30. [PMID: 31111442 DOI: 10.1007/s13238-019-0628-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Kikuchi S, Saito Y, Ryuto H, Fukunishi N, Abe T, Tanaka H, Tsujimoto H. Effects of heavy-ion beams on chromosomes of common wheat, Triticum aestivum. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2009;669:63-6. [DOI: 10.1016/j.mrfmmm.2009.05.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
65 De Vos WH, Beghuin D, Schwarz CJ, Jones DB, van Loon JJ, Bereiter-Hahn J, Stelzer EH. Invited review article: Advanced light microscopy for biological space research. Rev Sci Instrum 2014;85:101101. [PMID: 25362364 DOI: 10.1063/1.4898123] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
66 Schipler A, Mladenova V, Soni A, Nikolov V, Saha J, Mladenov E, Iliakis G. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment. Nucleic Acids Res 2016;44:7673-90. [PMID: 27257076 DOI: 10.1093/nar/gkw487] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
67 Rahmanifard F, Wet WC, Schwadron NA, Owens MJ, Jordan AP, Wilson JK, Joyce CJ, Spence HE, Smith CW, Townsend LW. Galactic Cosmic Radiation in the Interplanetary Space Through a Modern Secular Minimum. Space Weather 2020;18. [DOI: 10.1029/2019sw002428] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Suman S, Rodriguez OC, Winters TA, Fornace AJ Jr, Albanese C, Datta K. Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production. Aging (Albany NY) 2013;5:607-22. [PMID: 23928451 DOI: 10.18632/aging.100587] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.1] [Reference Citation Analysis]
69 Shanmugarajan S, Zhang Y, Moreno-Villanueva M, Clanton R, Rohde LH, Ramesh GT, Sibonga JD, Wu H. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion. Int J Mol Sci 2017;18:E2443. [PMID: 29156538 DOI: 10.3390/ijms18112443] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
70 Heselich A, Frieß JL, Ritter S, Benz NP, Layer PG, Thielemann C. High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro. Life Sciences in Space Research 2018;16:93-100. [DOI: 10.1016/j.lssr.2018.01.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
71 Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation. Seminars in Cancer Biology 2016;37-38:51-64. [DOI: 10.1016/j.semcancer.2016.03.003] [Cited by in Crossref: 147] [Cited by in F6Publishing: 131] [Article Influence: 24.5] [Reference Citation Analysis]
72 George KA, Hada M, Cucinotta FA. Biological Effectiveness of Accelerated Protons for Chromosome Exchanges. Front Oncol 2015;5:226. [PMID: 26539409 DOI: 10.3389/fonc.2015.00226] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
73 Okayasu R. Repair of DNA damage induced by accelerated heavy ions--a mini review. Int J Cancer 2012;130:991-1000. [PMID: 21935920 DOI: 10.1002/ijc.26445] [Cited by in Crossref: 80] [Cited by in F6Publishing: 66] [Article Influence: 7.3] [Reference Citation Analysis]
74 Durante M, Cucinotta FA, Loeffler JS. Editorial: Charged Particles in Oncology. Front Oncol 2017;7:301. [PMID: 29276698 DOI: 10.3389/fonc.2017.00301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
75 Ma X, Wang Z. Anticancer drug discovery in the future: an evolutionary perspective. Drug Discov Today 2009;14:1136-42. [PMID: 19800414 DOI: 10.1016/j.drudis.2009.09.006] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
76 El-Ashmawy M, Coquelin M, Luitel K, Batten K, Shay JW. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells. Sci Rep 2016;6:31669. [PMID: 27539227 DOI: 10.1038/srep31669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
77 Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M, Corbitt A, Alwood JS, Yu Y, Globus RK, Solomides CC, Ullrich RL, Petrache I. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2015;308:L416-28. [PMID: 25526737 DOI: 10.1152/ajplung.00260.2014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
78 Naqvi SMH, Kim Y. Epigenetic modification by galactic cosmic radiation as a risk factor for lung cancer: real world data issues. Transl Lung Cancer Res 2019;8:116-8. [PMID: 31106121 DOI: 10.21037/tlcr.2019.01.01] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Wang J, Zhang X, Wang P, Wang X, Farris AB 3rd, Wang Y. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments. Life Sci Space Res (Amst) 2016;9:48-55. [PMID: 27345200 DOI: 10.1016/j.lssr.2016.04.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
80 Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct 2015;220:1161-71. [PMID: 24446074 DOI: 10.1007/s00429-014-0709-9] [Cited by in Crossref: 83] [Cited by in F6Publishing: 72] [Article Influence: 10.4] [Reference Citation Analysis]
81 Plante I, Cucinotta FA. Energy deposition and relative frequency of hits of cylindrical nanovolume in medium irradiated by ions: Monte Carlo simulation of tracks structure. Radiat Environ Biophys 2010;49:5-13. [PMID: 19916014 DOI: 10.1007/s00411-009-0255-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
82 Jakob B, Dubiak-Szepietowska M, Janiel E, Schmidt A, Durante M, Taucher-Scholz G. Differential Repair Protein Recruitment at Sites of Clustered and Isolated DNA Double-Strand Breaks Produced by High-Energy Heavy Ions. Sci Rep 2020;10:1443. [PMID: 31996740 DOI: 10.1038/s41598-020-58084-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
83 Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie XJ, Guida PM, Story MD, Hatanpaa K, Habib AA, Kittler R, Bachoo R, Hromas R, Floyd JR, Burma S. Radiation-Induced DNA Damage Cooperates with Heterozygosity of TP53 and PTEN to Generate High-Grade Gliomas. Cancer Res 2019;79:3749-61. [PMID: 31088835 DOI: 10.1158/0008-5472.CAN-19-0680] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
84 Grygoryev D, Gauny S, Lasarev M, Ohlrich A, Kronenberg A, Turker MS. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2016;788:32-40. [DOI: 10.1016/j.mrfmmm.2016.03.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
85 Baird BJ, Dickey JS, Nakamura AJ, Redon CE, Parekh P, Griko YV, Aziz K, Georgakilas AG, Bonner WM, Martin OA. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing. Mutat Res 2011;711:142-9. [PMID: 21185842 DOI: 10.1016/j.mrfmmm.2010.12.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.6] [Reference Citation Analysis]
86 Cerri M, Hitrec T, Luppi M, Amici R. Be cool to be far: Exploiting hibernation for space exploration. Neurosci Biobehav Rev 2021;128:218-32. [PMID: 34144115 DOI: 10.1016/j.neubiorev.2021.03.037] [Reference Citation Analysis]
87 Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021;22:10507. [PMID: 34638848 DOI: 10.3390/ijms221910507] [Reference Citation Analysis]
88 Montague TG, Almansoori A, Gleason EJ, Copeland DS, Foley K, Kraves S, Alvarez Saavedra E. Gene expression studies using a miniaturized thermal cycler system on board the International Space Station. PLoS One 2018;13:e0205852. [PMID: 30379894 DOI: 10.1371/journal.pone.0205852] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
89 Hu S, Cucinotta FA. Modelling the way Ku binds DNA. Radiat Prot Dosimetry 2011;143:196-201. [PMID: 21196465 DOI: 10.1093/rpd/ncq519] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
90 Aziz K, Nowsheen S, Pantelias G, Iliakis G, Gorgoulis VG, Georgakilas AG. Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy. Pharmacol Ther 2012;133:334-50. [PMID: 22197993 DOI: 10.1016/j.pharmthera.2011.11.010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 59] [Article Influence: 6.1] [Reference Citation Analysis]
91 Staaf E, Brehwens K, Haghdoost S, Pachnerová-Brabcová K, Czub J, Braziewicz J, Nievaart S, Wojcik A. Characterisation of a setup for mixed beam exposures of cells to 241Am alpha particles and X-rays. Radiat Prot Dosimetry 2012;151:570-9. [PMID: 22434924 DOI: 10.1093/rpd/ncs024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
92 Atri D. On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe. J R Soc Interface 2016;13:20160459. [PMID: 27707907 DOI: 10.1098/rsif.2016.0459] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 3.6] [Reference Citation Analysis]
93 da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, Kidane Y, Rathi KS, Smith SM, Stear B, Ying Y, Zhang Y, Foox J, Zanello S, Crucian B, Wang D, Nugent A, Costa HA, Zwart SR, Schrepfer S, Elworth RAL, Sapoval N, Treangen T, MacKay M, Gokhale NS, Horner SM, Singh LN, Wallace DC, Willey JS, Schisler JC, Meller R, McDonald JT, Fisch KM, Hardiman G, Taylor D, Mason CE, Costes SV, Beheshti A. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2020;183:1185-1201.e20. [PMID: 33242417 DOI: 10.1016/j.cell.2020.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 31.0] [Reference Citation Analysis]
94 Zhao L, Mi D, Hu B, Sun Y. A generalized target theory and its applications. Sci Rep 2015;5:14568. [PMID: 26411887 DOI: 10.1038/srep14568] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
95 Camacho CV, Mukherjee B, McEllin B, Ding LH, Hu B, Habib AA, Xie XJ, Nirodi CS, Saha D, Story MD, Balajee AS, Bachoo RM, Boothman DA, Burma S. Loss of p15/Ink4b accompanies tumorigenesis triggered by complex DNA double-strand breaks. Carcinogenesis 2010;31:1889-96. [PMID: 20663777 DOI: 10.1093/carcin/bgq153] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
96 Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E, Barker R, Gilroy S, Hassane D, Smith SM, Zwart SR, Nelman-Gonzalez M, Crucian BE, Ponomarev SA, Orlov OI, Shiba D, Muratani M, Yamamoto M, Richards SE, Vaishampayan PA, Meydan C, Foox J, Myrrhe J, Istasse E, Singh N, Venkateswaran K, Keune JA, Ray HE, Basner M, Miller J, Vitaterna MH, Taylor DM, Wallace D, Rubins K, Bailey SM, Grabham P, Costes SV, Mason CE, Beheshti A. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020;183:1162-84. [PMID: 33242416 DOI: 10.1016/j.cell.2020.10.050] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 21.0] [Reference Citation Analysis]
97 Ghosh S, Narang H, Sarma A, Kaur H, Krishna M. Activation of DNA damage response signaling in lung adenocarcinoma A549 cells following oxygen beam irradiation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2011;723:190-8. [DOI: 10.1016/j.mrgentox.2011.05.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
98 Daido H, Nishiuchi M, Pirozhkov AS. Review of laser-driven ion sources and their applications. Rep Prog Phys 2012;75:056401. [DOI: 10.1088/0034-4885/75/5/056401] [Cited by in Crossref: 609] [Cited by in F6Publishing: 182] [Article Influence: 60.9] [Reference Citation Analysis]
99 Jones J, Karouia F, Cristea O, Casey R, Popov D, Maliev V. Ionizing Radiation as a Carcinogen. Comprehensive Toxicology. Elsevier; 2018. pp. 183-225. [DOI: 10.1016/b978-0-12-801238-3.64295-2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
100 Allen C, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res 2011;711:150-7. [PMID: 21376738 DOI: 10.1016/j.mrfmmm.2011.02.012] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 4.8] [Reference Citation Analysis]
101 Xie M, Park D, You S, Li R, Owonikoko TK, Wang Y, Doetsch PW, Deng X. Bcl2 inhibits recruitment of Mre11 complex to DNA double-strand breaks in response to high-linear energy transfer radiation. Nucleic Acids Res 2015;43:960-72. [PMID: 25567982 DOI: 10.1093/nar/gku1358] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
102 Cao Q, Liu W, Wang J, Cao J, Yang H. A single low dose of Fe ions can cause long-term biological responses in NL20 human bronchial epithelial cells. Radiat Environ Biophys 2018;57:31-40. [PMID: 29127482 DOI: 10.1007/s00411-017-0719-0] [Reference Citation Analysis]
103 Durante M, Loeffler JS. Charged particles in radiation oncology. Nat Rev Clin Oncol. 2010;7:37-43. [PMID: 19949433 DOI: 10.1038/nrclinonc.2009.183] [Cited by in Crossref: 419] [Cited by in F6Publishing: 332] [Article Influence: 32.2] [Reference Citation Analysis]
104 Boulanouar O, Fromm M, Bass AD, Cloutier P, Sanche L. Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite. J Chem Phys 2013;139:055104. [PMID: 23927289 DOI: 10.1063/1.4817323] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
105 Szocik K, Braddock M. Why Human Enhancement is Necessary for Successful Human Deep-space Missions. The New Bioethics 2019;25:295-317. [DOI: 10.1080/20502877.2019.1667559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
106 Hada M, Wu H, Cucinotta FA. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: A review. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2011;711:187-92. [DOI: 10.1016/j.mrfmmm.2010.12.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
107 Rall M, Kraft D, Volcic M, Cucu A, Nasonova E, Taucher-scholz G, Bönig H, Wiesmüller L, Fournier C. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells. Front Oncol 2015;5. [DOI: 10.3389/fonc.2015.00250] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
108 Beheshti A, McDonald JT, Miller J, Grabham P, Costes SV. GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen Species. Int J Mol Sci 2019;20:E661. [PMID: 30717456 DOI: 10.3390/ijms20030661] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
109 Durante M. Physical and biomedical countermeasures for space radiation risk. Zeitschrift für Medizinische Physik 2008;18:244-52. [DOI: 10.1016/j.zemedi.2008.06.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
110 Kronenberg A, Cucinotta FA. Space radiation protection issues. Health Phys 2012;103:556-67. [PMID: 23032885 DOI: 10.1097/HP.0b013e3182690caf] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
111 Bufalieri F, Licursi V, D'Antonio M, Castrignanò T, Amendola R, Negri R. The transcriptional response of mammalian cancer cells to irradiation is dominated by a cell cycle signature which is strongly attenuated in non-cancer cells and tissues. Int J Radiat Biol 2012;88:822-9. [PMID: 22420862 DOI: 10.3109/09553002.2012.676230] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
112 de Kruijf W, Timmers A, Dekker J, Böing-Messing F, Rozema T. Occurrence and mechanism of visual phosphenes in external photon beam radiation therapy and how to influence them. Radiother Oncol 2019;132:109-13. [PMID: 30825958 DOI: 10.1016/j.radonc.2018.11.010] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
113 Beinke C, Scherthan H, Port M, Popp T, Hermann C, Eder S. Triterpenoid CDDO-Me induces ROS generation and up-regulates cellular levels of antioxidative enzymes without induction of DSBs in human peripheral blood mononuclear cells. Radiat Environ Biophys 2020;59:461-72. [PMID: 32409897 DOI: 10.1007/s00411-020-00847-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Kennedy EM, Powell DR, Li Z, Bell JSK, Barwick BG, Feng H, McCrary MR, Dwivedi B, Kowalski J, Dynan WS, Conneely KN, Vertino PM. Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer. Sci Rep 2018;8:6709. [PMID: 29712937 DOI: 10.1038/s41598-018-24755-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
115 Mladenova V, Mladenov E, Iliakis G. Novel Biological Approaches for Testing the Contributions of Single DSBs and DSB Clusters to the Biological Effects of High LET Radiation. Front Oncol 2016;6:163. [PMID: 27446809 DOI: 10.3389/fonc.2016.00163] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
116 Rithidech KN, Reungpatthanaphong P, Honikel L, Rusek A, Simon SR. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells. Radiat Environ Biophys 2010;49:405-19. [PMID: 20508943 DOI: 10.1007/s00411-010-0295-z] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
117 Fournier C, Zahnreich S, Kraft D, Friedrich T, Voss KO, Durante M, Ritter S. The fate of a normal human cell traversed by a single charged particle. Sci Rep 2012;2:643. [PMID: 22966418 DOI: 10.1038/srep00643] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
118 Geng C, Tang X, Gong C, Guan F, Johns J, Shu D, Chen D. A Monte Carlo-based radiation safety assessment for astronauts in an environment with confined magnetic field shielding. J Radiol Prot 2015;35:777-88. [PMID: 26484984 DOI: 10.1088/0952-4746/35/4/777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
119 Imaoka T, Nishimura M, Daino K, Kokubo T, Doi K, Iizuka D, Nishimura Y, Okutani T, Takabatake M, Kakinuma S, Shimada Y. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma. International Journal of Radiation Oncology*Biology*Physics 2013;85:1134-40. [DOI: 10.1016/j.ijrobp.2012.08.035] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
120 Li Y, Qian H, Wang Y, Cucinotta FA. A stochastic model of DNA fragments rejoining. PLoS One 2012;7:e44293. [PMID: 23028515 DOI: 10.1371/journal.pone.0044293] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
121 Parihar VK, Allen BD, Tran KK, Chmielewski NN, Craver BM, Martirosian V, Morganti JM, Rosi S, Vlkolinsky R, Acharya MM, Nelson GA, Allen AR, Limoli CL. Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction. Antioxid Redox Signal 2015;22:78-91. [PMID: 24949841 DOI: 10.1089/ars.2014.5929] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 8.3] [Reference Citation Analysis]
122 Lin ZW. Cancer risk from low dose radiation depends directly on the organ mass in a general model of radiation-induced cancer risk. Health Phys 2014;106:459-65. [PMID: 24562066 DOI: 10.1097/HP.0b013e3182a829cb] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
123 Kim SB, Pandita RK, Eskiocak U, Ly P, Kaisani A, Kumar R, Cornelius C, Wright WE, Pandita TK, Shay JW. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. Proc Natl Acad Sci U S A 2012;109:E2949-55. [PMID: 23045680 DOI: 10.1073/pnas.1207718109] [Cited by in F6Publishing: 86] [Reference Citation Analysis]
124 Ushakov IB, Vasin MV. Pharmacologic Protection in Distant Space: Current View. Biol Bull Russ Acad Sci 2019;46:1524-32. [DOI: 10.1134/s1062359019110098] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Edmondson EF, Gatti DM, Ray FA, Garcia EL, Fallgren CM, Kamstock DA, Weil MM. Genomic mapping in outbred mice reveals overlap in genetic susceptibility for HZE ion- and γ-ray-induced tumors. Sci Adv 2020;6:eaax5940. [PMID: 32494593 DOI: 10.1126/sciadv.aax5940] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
126 Dziegielewski J, Goetz W, Baulch JE. Heavy ions, radioprotectors and genomic instability: implications for human space exploration. Radiat Environ Biophys 2010;49:303-16. [PMID: 20035342 DOI: 10.1007/s00411-009-0261-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
127 Hughson RL, Helm A, Durante M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat Rev Cardiol 2018;15:167-80. [PMID: 29053152 DOI: 10.1038/nrcardio.2017.157] [Cited by in Crossref: 67] [Cited by in F6Publishing: 56] [Article Influence: 13.4] [Reference Citation Analysis]
128 Moreels M, de Saint-georges L, Vanhavere F, Baatout S. Stress and Radiation Responsiveness. In: Chouker A, editor. Stress Challenges and Immunity in Space. Berlin: Springer Berlin Heidelberg; 2012. pp. 239-60. [DOI: 10.1007/978-3-642-22272-6_17] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
129 Staaf E, Brehwens K, Haghdoost S, Nievaart S, Pachnerova-Brabcova K, Czub J, Braziewicz J, Wojcik A. Micronuclei in human peripheral blood lymphocytes exposed to mixed beams of X-rays and alpha particles. Radiat Environ Biophys 2012;51:283-93. [PMID: 22526916 DOI: 10.1007/s00411-012-0417-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
130 Nikitaki Z, Nikolov V, Mavragani IV, Plante I, Emfietzoglou D, Iliakis G, Georgakilas AG. Non-DSB clustered DNA lesions. Does theory colocalize with the experiment? Radiation Physics and Chemistry 2016;128:26-35. [DOI: 10.1016/j.radphyschem.2016.06.020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
131 Giardi MT, Touloupakis E, Bertolotto D, Mascetti G. Preventive or potential therapeutic value of nutraceuticals against ionizing radiation-induced oxidative stress in exposed subjects and frequent fliers. Int J Mol Sci 2013;14:17168-92. [PMID: 23965979 DOI: 10.3390/ijms140817168] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
132 Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017;18:E843. [PMID: 28420185 DOI: 10.3390/ijms18040843] [Cited by in Crossref: 187] [Cited by in F6Publishing: 178] [Article Influence: 37.4] [Reference Citation Analysis]
133 Becker D, Adhikary A, Tetteh ST, Bull AW, Sevilla MD. Kr-86 ion-beam irradiation of hydrated DNA: free radical and unaltered base yields. Radiat Res 2012;178:524-37. [PMID: 23106211 DOI: 10.1667/RR3066.3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
134 Barthel J, Sarigul-klijn N. A review of radiation shielding needs and concepts for space voyages beyond Earth's magnetic influence. Progress in Aerospace Sciences 2019;110:100553. [DOI: 10.1016/j.paerosci.2019.100553] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
135 Cucinotta FA, Kim MH, Chappell LJ, Huff JL. How safe is safe enough? Radiation risk for a human mission to Mars. PLoS One 2013;8:e74988. [PMID: 24146746 DOI: 10.1371/journal.pone.0074988] [Cited by in Crossref: 126] [Cited by in F6Publishing: 72] [Article Influence: 14.0] [Reference Citation Analysis]
136 Jin X, Li Q, Wu Q, Li P, Matsumoto Y, Furusawa Y, Gong L, Hao J, Dai Z. Radiosensitization by Inhibiting Survivin in Human Hepatoma HepG2 Cells to High-LET Radiation. JRR 2011;52:335-41. [DOI: 10.1269/jrr.10134] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
137 Cucinotta FA, Chappell LJ. Non-targeted effects and the dose response for heavy ion tumor induction. Mutat Res 2010;687:49-53. [PMID: 20085778 DOI: 10.1016/j.mrfmmm.2010.01.012] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
138 Averbeck NB, Durante M. Protein acetylation within the cellular response to radiation. J Cell Physiol 2011;226:962-7. [DOI: 10.1002/jcp.22466] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
139 Ritter S, Durante M. Heavy-ion induced chromosomal aberrations: A review. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2010;701:38-46. [DOI: 10.1016/j.mrgentox.2010.04.007] [Cited by in Crossref: 56] [Cited by in F6Publishing: 42] [Article Influence: 4.7] [Reference Citation Analysis]
140 Yatagai F, Honma M, Ukai A, Omori K, Suzuki H, Shimazu T, Takahashi A, Ohnishi T, Dohmae N, Ishioka N. Preliminary results of space experiment: Implications for the effects of space radiation and microgravity on survival and mutation induction in human cells. Advances in Space Research 2012;49:479-86. [DOI: 10.1016/j.asr.2011.10.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
141 Liu W, Xiao L, Dong C, He M, Pan Y, Xie Y, Tu W, Fu J, Shao C. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway. Biochem Biophys Res Commun 2014;447:388-93. [PMID: 24746471 DOI: 10.1016/j.bbrc.2014.03.159] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
142 Patera V, Prezado Y, Azaiez F, Battistoni G, Bettoni D, Brandenburg S, Bugay A, Cuttone G, Dauvergne D, de France G, Graeff C, Haberer T, Inaniwa T, Incerti S, Nasonova E, Navin A, Pullia M, Rossi S, Vandevoorde C, Durante M. Biomedical Research Programs at Present and Future High-Energy Particle Accelerators. Front Phys 2020;8:00380. [PMID: 33224942 DOI: 10.3389/fphy.2020.00380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
143 Sasi SP, Yan X, Zuriaga-Herrero M, Gee H, Lee J, Mehrzad R, Song J, Onufrak J, Morgan J, Enderling H, Walsh K, Kishore R, Goukassian DA. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiat Res 2017;188:191-203. [PMID: 28613990 DOI: 10.1667/RR14667.1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
144 Meyer B, Voss KO, Tobias F, Jakob B, Durante M, Taucher-Scholz G. Clustered DNA damage induces pan-nuclear H2AX phosphorylation mediated by ATM and DNA-PK. Nucleic Acids Res 2013;41:6109-18. [PMID: 23620287 DOI: 10.1093/nar/gkt304] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 6.7] [Reference Citation Analysis]
145 Sharma P, Guida P, Grabham P. Effects of Fe particle irradiation on human endothelial barrier structure and function. Life Sciences in Space Research 2014;2:29-37. [DOI: 10.1016/j.lssr.2014.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
146 Hoehn D, Pujol-Canadell M, Young EF, Serban G, Shuryak I, Maerki J, Xu Z, Chowdhury M, Luna AM, Vlada G, Smilenov LB. Effects of High- and Low-LET Radiation on Human Hematopoietic System Reconstituted in Immunodeficient Mice. Radiat Res 2019;191:162-75. [PMID: 30520704 DOI: 10.1667/RR15148.1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
147 Almeida-Porada G, Rodman C, Kuhlman B, Brudvik E, Moon J, George S, Guida P, Sajuthi SP, Langefeld CD, Walker SJ, Wilson PF, Porada CD. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis. Stem Cells Dev. 2018;27:1237-1256. [PMID: 29698131 DOI: 10.1089/scd.2018.0005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
148 Carra C, Cucinotta FA. Binding Sites of the E. Coli DNA Recombinase Protein to the ssDNA: A Computational Study. Journal of Biomolecular Structure and Dynamics 2010;27:407-27. [DOI: 10.1080/07391102.2010.10507327] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
149 Schardt D, Kavatsyuk O, Krämer M, Durante M. Light flashes in cancer patients treated with heavy ions. Brain Stimul 2013;6:416-7. [PMID: 22939278 DOI: 10.1016/j.brs.2012.08.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
150 Sanzari JK, Wambi C, Lewis-Wambi JS, Kennedy AR. Antioxidant dietary supplementation in mice exposed to proton radiation attenuates expression of programmed cell death-associated genes. Radiat Res 2011;175:650-6. [PMID: 21443425 DOI: 10.1667/RR2330.1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
151 Belli M, Ottolenghi A, Weiss W. The European strategy on low dose risk research and the role of radiation quality according to the recommendations of the "ad hoc" High Level and Expert Group (HLEG). Radiat Environ Biophys 2010;49:463-8. [PMID: 20383517 DOI: 10.1007/s00411-010-0284-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
152 Grabham P, Sharma P, Bigelow A, Geard C. Two distinct types of the inhibition of vasculogenesis by different species of charged particles. Vasc Cell. 2013;5:16. [PMID: 24044765 DOI: 10.1186/2045-824x-5-16] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
153 Datta K, Suman S, Kumar S, Fornace AJ Jr. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway. J Cancer 2016;7:174-83. [PMID: 26819641 DOI: 10.7150/jca.13387] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
154 Hamada N, Imaoka T, Masunaga S, Ogata T, Okayasu R, Takahashi A, Kato TA, Kobayashi Y, Ohnishi T, Ono K, Shimada Y, Teshima T. Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res 2010;51:365-83. [PMID: 20679739 DOI: 10.1269/jrr.09137] [Cited by in Crossref: 99] [Cited by in F6Publishing: 83] [Article Influence: 8.3] [Reference Citation Analysis]
155 Tseng BP, Lan ML, Tran KK, Acharya MM, Giedzinski E, Limoli CL. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation. Redox Biol 2013;1:153-62. [PMID: 24024148 DOI: 10.1016/j.redox.2013.01.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
156 Patel R, Qing Y, Kennedy L, Yan Y, Pink J, Aguila B, Desai A, Gerson SL, Welford SM. MMR Deficiency Does Not Sensitize or Compromise the Function of Hematopoietic Stem Cells to Low and High LET Radiation. Stem Cells Transl Med 2018;7:513-20. [PMID: 29656536 DOI: 10.1002/sctm.17-0295] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
157 Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014;20:1501-23. [PMID: 24111926 DOI: 10.1089/ars.2013.5649] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
158 De Lellis G, Buontempo S, Di Capua F, Di Crescenzo A, Migliozzi P, Petukhov Y, Pistillo C, Russo A, Strolin P, Tioukov V, Durante M, Furusawa Y, Toshito T, Yasuda N, Ariga A, Naganawa N. Measurement of the fragmentation of Carbon nuclei used in hadron-therapy. Nuclear Physics A 2011;853:124-34. [DOI: 10.1016/j.nuclphysa.2011.01.019] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
159 Grabham P, Sharma P. The effects of radiation on angiogenesis. Vasc Cell 2013;5:19. [PMID: 24160185 DOI: 10.1186/2045-824X-5-19] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
160 Chiani F, Iannone C, Negri R, Paoletti D, D'Antonio M, De Meo PD, Castrignanò T. Radiation Genes: a database devoted to microarrays screenings revealing transcriptome alterations induced by ionizing radiation in mammalian cells. Database (Oxford) 2009;2009:bap007. [PMID: 20157480 DOI: 10.1093/database/bap007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
161 Bert C, Engenhart-Cabillic R, Durante M. Particle therapy for noncancer diseases. Med Phys 2012;39:1716-27. [PMID: 22482597 DOI: 10.1118/1.3691903] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
162 Schroeder MK, Liu B, Hinshaw RG, Park MA, Wang S, Dubey S, Liu GG, Shi Q, Holton P, Reiser V, Jones PA, Trigg W, Di Carli MF, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Long-Term Sex- and Genotype-Specific Effects of 56Fe Irradiation on Wild-Type and APPswe/PS1dE9 Transgenic Mice. Int J Mol Sci 2021;22:13305. [PMID: 34948098 DOI: 10.3390/ijms222413305] [Reference Citation Analysis]
163 Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020;12:E3022. [PMID: 33080914 DOI: 10.3390/cancers12103022] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
164 Zammuto V, Rizzo MG, De Plano LM, Franco D, Guglielmino S, Caccamo MT, Magazù S, Fujimori A, Giudice AL, Guglielmin M, McAlpin KR, Moeller R, Gugliandolo C. Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life (Basel) 2020;10:E264. [PMID: 33143156 DOI: 10.3390/life10110264] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
165 Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019;11:E1789. [PMID: 31739493 DOI: 10.3390/cancers11111789] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 14.0] [Reference Citation Analysis]
166 Snijders AM, Mannion BJ, Leung SG, Moon SC, Kronenberg A, Wiese C. Micronucleus formation in human keratinocytes is dependent on radiation quality and tissue architecture. Environ Mol Mutagen 2015;56:22-31. [PMID: 25041929 DOI: 10.1002/em.21887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
167 Wang H, Zhang X, Wang P, Yu X, Essers J, Chen D, Kanaar R, Takeda S, Wang Y. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy transfer radiation. Nucleic Acids Res 2010;38:3245-51. [PMID: 20150414 DOI: 10.1093/nar/gkq069] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 4.4] [Reference Citation Analysis]
168 Maeyama T, Yamashita S, Taguchi M, Baldacchino G, Sihver L, Murakami T, Katsumura Y. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution—2: Effects of nuclear fragmentation and its simulation with PHITS. Radiation Physics and Chemistry 2011;80:1352-7. [DOI: 10.1016/j.radphyschem.2011.07.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
169 Deperas-standylo J, Lee R, Ayriyan A, Nasonova E, Ritter S, Gudowska-nowak E. Time-course of aberrations and their distribution: impact of LET and track structure. Eur Phys J D 2010;60:93-9. [DOI: 10.1140/epjd/e2010-00155-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
170 Norbury JW, Slaba TC. Space radiation accelerator experiments – The role of neutrons and light ions. Life Sciences in Space Research 2014;3:90-4. [DOI: 10.1016/j.lssr.2014.09.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
171 Donaubauer AJ, Deloch L, Becker I, Fietkau R, Frey B, Gaipl US. The Influence of Radiation on Bone and Bone Cells-Differential Effects on Osteoclasts and Osteoblasts. Int J Mol Sci 2020;21:E6377. [PMID: 32887421 DOI: 10.3390/ijms21176377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
172 Schipler A, Iliakis G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res 2013;41:7589-605. [PMID: 23804754 DOI: 10.1093/nar/gkt556] [Cited by in Crossref: 164] [Cited by in F6Publishing: 147] [Article Influence: 18.2] [Reference Citation Analysis]
173 Feiveson A, George K, Shavers M, Moreno-Villanueva M, Zhang Y, Babiak-Vazquez A, Crucian B, Semones E, Wu H. Predicting chromosome damage in astronauts participating in international space station missions. Sci Rep 2021;11:5293. [PMID: 33674665 DOI: 10.1038/s41598-021-84242-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
174 Tseng BP, Giedzinski E, Izadi A, Suarez T, Lan ML, Tran KK, Acharya MM, Nelson GA, Raber J, Parihar VK, Limoli CL. Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation. Antioxid Redox Signal 2014;20:1410-22. [PMID: 23802883 DOI: 10.1089/ars.2012.5134] [Cited by in Crossref: 79] [Cited by in F6Publishing: 68] [Article Influence: 8.8] [Reference Citation Analysis]
175 Moding EJ, Min HD, Castle KD, Ali M, Woodlief L, Williams N, Ma Y, Kim Y, Lee CL, Kirsch DG. An extra copy of p53 suppresses development of spontaneous Kras-driven but not radiation-induced cancer. JCI Insight 2016;1:e86698. [PMID: 27453951 DOI: 10.1172/jci.insight.86698] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
176 Durante M, Reitz G, Angerer O. Space radiation research in Europe: flight experiments and ground-based studies. Radiat Environ Biophys 2010;49:295-302. [PMID: 20532544 DOI: 10.1007/s00411-010-0300-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
177 Zhao L, Wu D, Mi D, Sun Y. Radiosensitivity and relative biological effectiveness based on a generalized target model. J Radiat Res 2017;58:8-16. [PMID: 27422933 DOI: 10.1093/jrr/rrw062] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
178 Pshenichnov I, Botvina A, Mishustin I, Greiner W. Nuclear fragmentation reactions in extended media studied with Geant4 toolkit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010;268:604-15. [DOI: 10.1016/j.nimb.2009.12.023] [Cited by in Crossref: 42] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
179 Kim MY, De Angelis G, Cucinotta FA. Probabilistic assessment of radiation risk for astronauts in space missions. Acta Astronautica 2011;68:747-59. [DOI: 10.1016/j.actaastro.2010.08.035] [Cited by in Crossref: 24] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
180 Durante M, Cucinotta FA. Physical basis of radiation protection in space travel. Rev Mod Phys 2011;83:1245-81. [DOI: 10.1103/revmodphys.83.1245] [Cited by in Crossref: 219] [Cited by in F6Publishing: 1] [Article Influence: 19.9] [Reference Citation Analysis]
181 Ali YF, Cucinotta FA, Ning-ang L, Zhou G. Cancer Risk of Low Dose Ionizing Radiation. Front Phys 2020;8:234. [DOI: 10.3389/fphy.2020.00234] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
182 Niimi A, Yamauchi M, Limsirichaikul S, Sekine R, Oike T, Sato H, Suzuki K, Held KD, Nakano T, Shibata A. Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation. Genes Chromosomes Cancer 2016;55:650-60. [PMID: 27113385 DOI: 10.1002/gcc.22367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
183 Ikeda H, Muratani M, Hidema J, Hada M, Fujiwara K, Souda H, Yoshida Y, Takahashi A. Expression Profile of Cell Cycle-Related Genes in Human Fibroblasts Exposed Simultaneously to Radiation and Simulated Microgravity. Int J Mol Sci 2019;20:E4791. [PMID: 31561588 DOI: 10.3390/ijms20194791] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
184 Ng CY, Cheng SH, Yu KN. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos. Int J Mol Sci 2017;18:E385. [PMID: 28208665 DOI: 10.3390/ijms18020385] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
185 Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, Sioli M, Zoccoli A, Durante M. Hibernation for space travel: Impact on radioprotection. Life Sciences in Space Research 2016;11:1-9. [DOI: 10.1016/j.lssr.2016.09.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 6.5] [Reference Citation Analysis]
186 Pak S, Cucinotta FA. Comparison between PHITS and GEANT4 Simulations of the Heavy Ion Beams at the BEVALAC at LBNL and the Booster Accelerator at BNL. Life Sci Space Res (Amst) 2021;29:38-45. [PMID: 33888286 DOI: 10.1016/j.lssr.2021.03.002] [Reference Citation Analysis]
187 Ding LH, Park S, Peyton M, Girard L, Xie Y, Minna JD, Story MD. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy. BMC Genomics 2013;14:372. [PMID: 23724988 DOI: 10.1186/1471-2164-14-372] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
188 Matthiä D, Berger T. The radiation environment on the surface of Mars – Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS. Life Sciences in Space Research 2017;14:57-63. [DOI: 10.1016/j.lssr.2017.03.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
189 Durante M. Space radiation protection: Destination Mars. Life Sciences in Space Research 2014;1:2-9. [DOI: 10.1016/j.lssr.2014.01.002] [Cited by in Crossref: 84] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
190 Arena C, De Micco V, Aronne G, Pugliese M, Virzo De Santo A, De Maio A. Response of Phaseolus vulgaris L. plants to low-let ionizing radiation: Growth and oxidative stress. Acta Astronautica 2013;91:107-14. [DOI: 10.1016/j.actaastro.2013.05.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
191 Chernyavskiy P, Edmondson EF, Weil MM, Little MP. High-energy particle beam and gamma radiation exposure, familial relatedness and cancer in mice. Br J Cancer 2017;117:41-50. [PMID: 28535153 DOI: 10.1038/bjc.2017.141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
192 Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021;11:768493. [PMID: 34888245 DOI: 10.3389/fonc.2021.768493] [Reference Citation Analysis]
193 Daley JM, Tomimatsu N, Hooks G, Wang W, Miller AS, Xue X, Nguyen KA, Kaur H, Williamson E, Mukherjee B, Hromas R, Burma S, Sung P. Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions. Nat Commun 2020;11:3088. [PMID: 32555206 DOI: 10.1038/s41467-020-16903-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
194 McBeth RA, Borak TB. Spatial resolution requirements for active radiation detectors used beyond low earth orbit. Life Sci Space Res (Amst) 2018;18:52-63. [PMID: 30100148 DOI: 10.1016/j.lssr.2018.05.007] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
195 Dokic I, Mairani A, Niklas M, Zimmermann F, Chaudhri N, Krunic D, Tessonnier T, Ferrari A, Parodi K, Jäkel O, Debus J, Haberer T, Abdollahi A. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget 2016;7:56676-89. [PMID: 27494855 DOI: 10.18632/oncotarget.10996] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 10.5] [Reference Citation Analysis]
196 Belli M, Tabocchini MA. Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020;21:E5993. [PMID: 32825382 DOI: 10.3390/ijms21175993] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
197 Delgado O, Batten KG, Richardson JA, Xie XJ, Gazdar AF, Kaisani AA, Girard L, Behrens C, Suraokar M, Fasciani G, Wright WE, Story MD, Wistuba II, Minna JD, Shay JW. Radiation-enhanced lung cancer progression in a transgenic mouse model of lung cancer is predictive of outcomes in human lung and breast cancer. Clin Cancer Res 2014;20:1610-22. [PMID: 24486591 DOI: 10.1158/1078-0432.CCR-13-2589] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
198 Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, Bristow R, Demaria S, Eke I, Griffin RJ, Haas-Kogan D, Higgins GS, Kimmelman AC, Kimple RJ, Lombaert IM, Ma L, Marples B, Pajonk F, Park CC, Schaue D, Tran PT, Willers H, Wouters BG, Bernhard EJ. The Future of Radiobiology. J Natl Cancer Inst 2018;110:329-40. [PMID: 29126306 DOI: 10.1093/jnci/djx231] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 13.3] [Reference Citation Analysis]
199 Strigari L, Strolin S, Morganti AG, Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front Public Health 2021;9:733337. [PMID: 34820349 DOI: 10.3389/fpubh.2021.733337] [Reference Citation Analysis]
200 Straume T. Space Radiation Effects on Crew During and After Deep Space Missions. Curr Pathobiol Rep 2018;6:167-75. [DOI: 10.1007/s40139-018-0175-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
201 Durante M. Space radiobiology on the Moon. Planetary and Space Science 2012;74:72-7. [DOI: 10.1016/j.pss.2012.05.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
202 Pignalosa D, Durante M. Cellular effects of energetic heavy ions: from DNA breaks to chromosomal rearrangements. Radiat Prot Dosimetry 2011;143:391-3. [PMID: 21183534 DOI: 10.1093/rpd/ncq514] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
203 Pantelias A, Zafiropoulos D, Cherubini R, Sarchiapone L, De Nadal V, Pantelias GE, Georgakilas AG, Terzoudi GI. Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Cancers (Basel) 2020;12:E2336. [PMID: 32825012 DOI: 10.3390/cancers12092336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
204 Cucinotta FA, Alp M, Sulzman FM, Wang M. Space radiation risks to the central nervous system. Life Sciences in Space Research 2014;2:54-69. [DOI: 10.1016/j.lssr.2014.06.003] [Cited by in Crossref: 145] [Cited by in F6Publishing: 42] [Article Influence: 18.1] [Reference Citation Analysis]
205 Müller M, Durante M, Stöcker H, Merz F, Bechmann I. Modeling radiation effects at the tissue level. Eur Phys J D 2010;60:171-6. [DOI: 10.1140/epjd/e2010-00030-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
206 Wu Z, Liu Y, Chen J, Liu Y, Ahmad F, Zeng X, Li J, Shang P, Yin D. Magnetic confinement of diamagnetic objects for space utilization. Acta Astronautica 2018;153:71-81. [DOI: 10.1016/j.actaastro.2018.10.003] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
207 Sylvester CB, Abe JI, Patel ZS, Grande-Allen KJ. Radiation-Induced Cardiovascular Disease: Mechanisms and Importance of Linear Energy Transfer. Front Cardiovasc Med 2018;5:5. [PMID: 29445728 DOI: 10.3389/fcvm.2018.00005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
208 Hu Y, Hellweg CE, Baumstark-Khan C, Reitz G, Lau P. Cell cycle delay in murine pre-osteoblasts is more pronounced after exposure to high-LET compared to low-LET radiation. Radiat Environ Biophys 2014;53:73-81. [PMID: 24240273 DOI: 10.1007/s00411-013-0499-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
209 Abril I, Denton CD, de Vera P, Kyriakou I, Emfietzoglou D, Garcia-molina R. Effect of the Bethe surface description on the electronic excitations induced by energetic proton beams in liquid water and DNA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2010;268:1763-7. [DOI: 10.1016/j.nimb.2010.02.069] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
210 Deperas-standylo J, Lee R, Nasonova E, Ritter S, Gudowska-nowak E. Production and distribution of aberrations in resting or cycling human lymphocytes following Fe-ion or Cr-ion irradiation: Emphasis on single track effects. Advances in Space Research 2012;50:584-97. [DOI: 10.1016/j.asr.2012.05.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
211 Plante I, Cucinotta FA. Model of the initiation of signal transduction by ligands in a cell culture: simulation of molecules near a plane membrane comprising receptors. Phys Rev E Stat Nonlin Soft Matter Phys 2011;84:051920. [PMID: 22181457 DOI: 10.1103/PhysRevE.84.051920] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
212 Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles. Genome Integr 2012;3:8. [PMID: 23121736 DOI: 10.1186/2041-9414-3-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
213 Hada M, Ikeda H, Rhone JR, Beitman AJ, Plante I, Souda H, Yoshida Y, Held KD, Fujiwara K, Saganti PB, Takahashi A. Increased Chromosome Aberrations in Cells Exposed Simultaneously to Simulated Microgravity and Radiation. Int J Mol Sci 2018;20:E43. [PMID: 30583489 DOI: 10.3390/ijms20010043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
214 Maalouf M, Durante M, Foray N. Biological effects of space radiation on human cells: history, advances and outcomes. J Radiat Res 2011;52:126-46. [PMID: 21436608 DOI: 10.1269/jrr.10128] [Cited by in Crossref: 58] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
215 Indo HP, Majima HJ, Terada M, Suenaga S, Tomita K, Yamada S, Higashibata A, Ishioka N, Kanekura T, Nonaka I, Hawkins CL, Davies MJ, Clair DK, Mukai C. Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space. Sci Rep 2016;6:39015. [PMID: 27982062 DOI: 10.1038/srep39015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
216 Luitel K, Kim SB, Barron S, Richardson JA, Shay JW. Lung cancer progression using fast switching multiple ion beam radiation and countermeasure prevention. Life Sci Space Res (Amst) 2020;24:108-15. [PMID: 31987474 DOI: 10.1016/j.lssr.2019.07.011] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
217 Ding LH, Yu Y, Edmondson EF, Weil MM, Pop LM, McCarthy M, Ullrich RL, Story MD. Transcriptomic analysis links hepatocellular carcinoma (HCC) in HZE ion irradiated mice to a human HCC subtype with favorable outcomes. Sci Rep 2021;11:14052. [PMID: 34234215 DOI: 10.1038/s41598-021-93467-3] [Reference Citation Analysis]
218 Tinganelli W, Hitrec T, Romani F, Simoniello P, Squarcio F, Stanzani A, Piscitiello E, Marchesano V, Luppi M, Sioli M, Helm A, Compagnone G, Morganti AG, Amici R, Negrini M, Zoccoli A, Durante M, Cerri M. Hibernation and Radioprotection: Gene Expression in the Liver and Testicle of Rats Irradiated under Synthetic Torpor. Int J Mol Sci. 2019;20. [PMID: 30654467 DOI: 10.3390/ijms20020352] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
219 Barcellos-hoff MH. New Biological Insights on the Link Between Radiation Exposure and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2013;18:3-13. [DOI: 10.1007/s10911-013-9272-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
220 Kakoti S, Yamauchi M, Gu W, Kato R, Yasuhara T, Hagiwara Y, Laskar S, Oike T, Sato H, Held KD, Nakano T, Shibata A. p53 deficiency augments nucleolar instability after ionizing irradiation. Oncol Rep 2019;42:2293-302. [PMID: 31578593 DOI: 10.3892/or.2019.7341] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
221 Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017;93:457-69. [PMID: 28134023 DOI: 10.1080/09553002.2017.1287454] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 14.2] [Reference Citation Analysis]
222 Mirsch J, Tommasino F, Frohns A, Conrad S, Durante M, Scholz M, Friedrich T, Löbrich M. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue. Proc Natl Acad Sci U S A 2015;112:12396-401. [PMID: 26392532 DOI: 10.1073/pnas.1508702112] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
223 Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 2011;11:438-48. [PMID: 21593785 DOI: 10.1038/nrc3069] [Cited by in Crossref: 256] [Cited by in F6Publishing: 197] [Article Influence: 23.3] [Reference Citation Analysis]
224 Fokas E, Kraft G, An H, Engenhart-Cabillic R. Ion beam radiobiology and cancer: time to update ourselves. Biochim Biophys Acta. 2009;1796:216-229. [PMID: 19682551 DOI: 10.1016/j.bbcan.2009.07.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 41] [Article Influence: 2.3] [Reference Citation Analysis]
225 Sollazzo A, Brzozowska B, Cheng L, Lundholm L, Scherthan H, Wojcik A. Live Dynamics of 53BP1 Foci Following Simultaneous Induction of Clustered and Dispersed DNA Damage in U2OS Cells. Int J Mol Sci 2018;19:E519. [PMID: 29419809 DOI: 10.3390/ijms19020519] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
226 Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in Space: What Does It Change? Int J Mol Sci 2021;22:3739. [PMID: 33916740 DOI: 10.3390/ijms22073739] [Reference Citation Analysis]
227 Turker MS, Grygoryev D, Lasarev M, Ohlrich A, Rwatambuga FA, Johnson S, Dan C, Eckelmann B, Hryciw G, Mao JH, Snijders AM, Gauny S, Kronenberg A. Simulated space radiation-induced mutants in the mouse kidney display widespread genomic change. PLoS One 2017;12:e0180412. [PMID: 28683078 DOI: 10.1371/journal.pone.0180412] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
228 Nguyen DH, Fredlund E, Zhao W, Perou CM, Balmain A, Mao JH, Barcellos-Hoff MH. Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes. Clin Cancer Res 2013;19:1353-62. [PMID: 23339125 DOI: 10.1158/1078-0432.CCR-12-3554] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
229 Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. Life Sci Space Res (Amst) 2016;9:19-47. [PMID: 27345199 DOI: 10.1016/j.lssr.2016.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
230 Elgart SR, Little MP, Chappell LJ, Milder CM, Shavers MR, Huff JL, Patel ZS. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts. Sci Rep 2018;8:8480. [PMID: 29855508 DOI: 10.1038/s41598-018-25467-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
231 Rose Li Y, Halliwill KD, Adams CJ, Iyer V, Riva L, Mamunur R, Jen KY, Del Rosario R, Fredlund E, Hirst G, Alexandrov LB, Adams D, Balmain A. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat Commun 2020;11:394. [PMID: 31959748 DOI: 10.1038/s41467-019-14261-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
232 Yu Z, Vanstalle M, La Tessa C, Jiang GL, Durante M. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery. J Radiat Res 2012;53:620-7. [PMID: 22843629 DOI: 10.1093/jrr/rrs007] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
233 Rithidech KN, Supanpaiboon W, Honikel L, Whorton EB. Induction of genomic instability after an acute whole-body exposure of mice to 56Fe ions. Advances in Space Research 2009;44:895-906. [DOI: 10.1016/j.asr.2009.05.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
234 Beheshti A, Ray S, Fogle H, Berrios D, Costes SV. A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response. PLoS One 2018;13:e0199621. [PMID: 30044882 DOI: 10.1371/journal.pone.0199621] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
235 Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S, Held KD, Nakano T, Shibata A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J Radiat Res 2019;60:69-79. [PMID: 30476166 DOI: 10.1093/jrr/rry096] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
236 Held KD. Effects of low fluences of radiations found in space on cellular systems. International Journal of Radiation Biology 2009;85:379-90. [DOI: 10.1080/09553000902838558] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
237 Miousse IR, Shao L, Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Zhou D, Koturbash I. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells. Radiat Res 2014;182:92-101. [PMID: 24960414 DOI: 10.1667/RR13580.1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 4.8] [Reference Citation Analysis]
238 Fukunaga H. The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int J Mol Sci 2020;21:E6349. [PMID: 32882991 DOI: 10.3390/ijms21176349] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
239 Arena C, De Micco V, Macaeva E, Quintens R. Space radiation effects on plant and mammalian cells. Acta Astronautica 2014;104:419-31. [DOI: 10.1016/j.actaastro.2014.05.005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 12] [Article Influence: 5.1] [Reference Citation Analysis]
240 Plante I, Ponomarev A, Cucinotta FA. 3D visualisation of the stochastic patterns of the radial dose in nano-volumes by a Monte Carlo simulation of HZE ion track structure. Radiat Prot Dosimetry 2011;143:156-61. [PMID: 21199826 DOI: 10.1093/rpd/ncq526] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
241 Ng WL, Chen G, Wang M, Wang H, Story M, Shay JW, Zhang X, Wang J, Amin AR, Hu B, Cucinotta FA, Wang Y. OCT4 as a target of miR-34a stimulates p63 but inhibits p53 to promote human cell transformation. Cell Death Dis 2014;5:e1024. [PMID: 24457968 DOI: 10.1038/cddis.2013.563] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
242 Jan S, Parween T, Siddiqi T, Mahmooduzzafar. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environ Rev 2012;20:17-39. [DOI: 10.1139/a11-021] [Cited by in Crossref: 69] [Cited by in F6Publishing: 28] [Article Influence: 6.9] [Reference Citation Analysis]
243 Jacobus JA, Duda CG, Coleman MC, Martin SM, Mapuskar K, Mao G, Smith BJ, Aykin-Burns N, Guida P, Gius D, Domann FE, Knudson CM, Spitz DR. Low-dose radiation-induced enhancement of thymic lymphomagenesis in Lck-Bax mice is dependent on LET and gender. Radiat Res 2013;180:156-65. [PMID: 23819597 DOI: 10.1667/RR3293.1] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
244 Hu Y, Lau P, Baumstark-khan C, Hellweg CE, Reitz G. X-ray induced alterations in the differentiation and mineralization potential of murine preosteoblastic cells. Advances in Space Research 2012;49:1422-31. [DOI: 10.1016/j.asr.2012.02.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
245 Grabham P, Bigelow A, Geard C. DNA damage foci formation and decline in two-dimensional monolayers and in three-dimensional human vessel models: Differential effects according to radiation quality. International Journal of Radiation Biology 2012;88:493-500. [DOI: 10.3109/09553002.2012.679382] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
246 Liu F, Wang Z, Li W, Zhou L, Du Y, Zhang M, Wei Y. The mechanisms for the radioprotective effect of beta-d-glucan on high linear-energy-transfer carbon ion irradiated mice. International Journal of Biological Macromolecules 2019;131:282-92. [DOI: 10.1016/j.ijbiomac.2019.03.073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
247 Cucinotta FA, Plante I, Ponomarev AL, Kim MY. Nuclear interactions in heavy ion transport and event-based risk models. Radiation Protection Dosimetry 2011;143:384-90. [DOI: 10.1093/rpd/ncq512] [Cited by in Crossref: 35] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
248 Yatagai F, Honma M, Takahashi A, Omori K, Suzuki H, Shimazu T, Seki M, Hashizume T, Ukai A, Sugasawa K, Abe T, Dohmae N, Enomoto S, Ohnishi T, Gordon A, Ishioka N. Frozen human cells can record radiation damage accumulated during space flight: mutation induction and radioadaptation. Radiat Environ Biophys 2011;50:125-34. [PMID: 21161544 DOI: 10.1007/s00411-010-0348-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
249 Liu B, Hinshaw RG, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Shi Q, Holton P, Trojanczyk L, Reiser V, Jones PA, Trigg W, Di Carli MF, Lorello P, Caldarone BJ, Williams JP, O'Banion MK, Lemere CA. Space-like 56Fe irradiation manifests mild, early sex-specific behavioral and neuropathological changes in wildtype and Alzheimer's-like transgenic mice. Sci Rep 2019;9:12118. [PMID: 31431669 DOI: 10.1038/s41598-019-48615-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
250 Held KD. Summary: achievements, critical issues, and thoughts on the future. Health Phys 2012;103:681-4. [PMID: 23032899 DOI: 10.1097/HP.0b013e318264b2f5] [Reference Citation Analysis]
251 Durante M. New challenges in high-energy particle radiobiology. Br J Radiol 2014;87:20130626. [PMID: 24198199 DOI: 10.1259/bjr.20130626] [Cited by in Crossref: 85] [Cited by in F6Publishing: 72] [Article Influence: 10.6] [Reference Citation Analysis]
252 Durante M, Golubev A, Park W, Trautmann C. Applied nuclear physics at the new high-energy particle accelerator facilities. Physics Reports 2019;800:1-37. [DOI: 10.1016/j.physrep.2019.01.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 6.7] [Reference Citation Analysis]
253 George KA, Rhone J, Chappell LJ, Cucinotta FA. Cytogenetic biodosimetry using the blood lymphocytes of astronauts. Acta Astronautica 2013;92:97-102. [DOI: 10.1016/j.actaastro.2012.05.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
254 Wang ZZ, Li WJ, Wang BQ, Zhang BT, Xing JZ, Jing XG, Dang BR, Wei W, Zhao WX. Cytogenetic effects induced by accelerated carbon ions with shielding. Radiat Environ Biophys 2011;50:383-7. [PMID: 21656249 DOI: 10.1007/s00411-011-0372-y] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
255 Kondyurin A, Kondyurina I, Bilek M. Radiation damage of polyethylene exposed in the stratosphere at an altitude of 40 km. Polymer Degradation and Stability 2013;98:1526-36. [DOI: 10.1016/j.polymdegradstab.2013.04.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
256 Barcellos-Hoff MH, Blakely EA, Burma S, Fornace AJ Jr, Gerson S, Hlatky L, Kirsch DG, Luderer U, Shay J, Wang Y, Weil MM. Concepts and challenges in cancer risk prediction for the space radiation environment. Life Sci Space Res (Amst) 2015;6:92-103. [PMID: 26256633 DOI: 10.1016/j.lssr.2015.07.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
257 Radivoyevitch T, Li H, Sachs RK. Etiology and treatment of hematological neoplasms: stochastic mathematical models. Adv Exp Med Biol 2014;844:317-46. [PMID: 25480649 DOI: 10.1007/978-1-4939-2095-2_16] [Reference Citation Analysis]
258 Durante M, Bruno C. Impact of rocket propulsion technology on the radiation risk in missions to Mars. Eur Phys J D 2010;60:215-8. [DOI: 10.1140/epjd/e2010-00035-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
259 Durante M. Eighth Warren K. Sinclair keynote address: Heavy ions in therapy and space: benefits and risks. Health Phys 2012;103:532-9. [PMID: 23032882 DOI: 10.1097/HP.0b013e318264b4b6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
260 Radivoyevitch T, Hlatky L, Landaw J, Sachs RK. Quantitative modeling of chronic myeloid leukemia: insights from radiobiology. Blood 2012;119:4363-71. [PMID: 22353999 DOI: 10.1182/blood-2011-09-381855] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
261 De Micco V, Paradiso R, Aronne G, De Pascale S, Quarto M, Arena C. Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. ScientificWorldJournal 2014;2014:428141. [PMID: 24883400 DOI: 10.1155/2014/428141] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
262 Andarawewa KL, Costes SV, Fernandez-garcia I, Chou WS, Ravani SA, Park H, Barcellos-hoff MH. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor β. International Journal of Radiation Oncology*Biology*Physics 2011;79:1523-31. [DOI: 10.1016/j.ijrobp.2010.11.058] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
263 Zeitlin C, Narici L, Rios RR, Rizzo A, Stoffle N, Hassler DM, Ehresmann B, Wimmer‐schweingruber RF, Guo J, Schwadron NA, Spence HE. Comparisons of High‐Linear Energy Transfer Spectra on the ISS and in Deep Space. Space Weather 2019;17:396-418. [DOI: 10.1029/2018sw002103] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
264 Giovanetti A, Tortolici F, Rufini S. Why Do the Cosmic Rays Induce Aging? Front Physiol 2020;11:955. [PMID: 32903447 DOI: 10.3389/fphys.2020.00955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
265 Griko Y, Regan MD. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. Life Sci Space Res (Amst). 2018;16:101-107. [PMID: 29475515 DOI: 10.1016/j.lssr.2018.01.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
266 Kennedy A, Wan X. Countermeasures for space radiation induced adverse biologic effects. Advances in Space Research 2011;48:1460-79. [DOI: 10.1016/j.asr.2011.07.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
267 Jakob B, Splinter J, Durante M, Taucher-Scholz G. Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc Natl Acad Sci U S A 2009;106:3172-7. [PMID: 19221031 DOI: 10.1073/pnas.0810987106] [Cited by in Crossref: 131] [Cited by in F6Publishing: 109] [Article Influence: 10.1] [Reference Citation Analysis]
268 Saeed Y, Xie B, Xu J, Wang H, Hassan M, Wang R, Hong M, Hong Q, Deng Y. Indirect effects of radiation induce apoptosis and neuroinflammation in neuronal SH-SY5Y cells. Neurochem Res 2014;39:2334-42. [PMID: 25227747 DOI: 10.1007/s11064-014-1432-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
269 Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, Geyer FC, Reis-Filho JS, Mao JH, Ravani SA, Zavadil J, Borowsky AD, Jerry DJ, Dunphy KA, Seo JH, Haslam S, Medina D, Barcellos-Hoff MH. Radiation acts on the microenvironment to affect breast carcinogenesis by distinct mechanisms that decrease cancer latency and affect tumor type. Cancer Cell 2011;19:640-51. [PMID: 21575864 DOI: 10.1016/j.ccr.2011.03.011] [Cited by in Crossref: 110] [Cited by in F6Publishing: 96] [Article Influence: 10.0] [Reference Citation Analysis]
270 Zhao L, Bao C, Shang Y, He X, Ma C, Lei X, Mi D, Sun Y. The Determinant of DNA Repair Pathway Choices in Ionising Radiation-Induced DNA Double-Strand Breaks. Biomed Res Int 2020;2020:4834965. [PMID: 32908893 DOI: 10.1155/2020/4834965] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
271 Stokkevåg CH, Schneider U, Muren LP, Newhauser W. Radiation-induced cancer risk predictions in proton and heavy ion radiotherapy. Physica Medica 2017;42:259-62. [DOI: 10.1016/j.ejmp.2017.04.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
272 Beheshti A, Peluso M, Lamont C, Hahnfeldt P, Hlatky L. Proton irradiation augments the suppression of tumor progression observed with advanced age. Radiat Res 2014;181:272-83. [PMID: 24568128 DOI: 10.1667/RR13538.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
273 Zhang B, Davidson MM, Hei TK. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation. Life Sci Space Res (Amst) 2014;1:80-8. [PMID: 25072018 DOI: 10.1016/j.lssr.2014.02.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
274 Parihar VK, Allen B, Tran KK, Macaraeg TG, Chu EM, Kwok SF, Chmielewski NN, Craver BM, Baulch JE, Acharya MM, Cucinotta FA, Limoli CL. What happens to your brain on the way to Mars. Sci Adv 2015;1:e1400256. [PMID: 26180843 DOI: 10.1126/sciadv.1400256] [Cited by in Crossref: 127] [Cited by in F6Publishing: 91] [Article Influence: 18.1] [Reference Citation Analysis]
275 Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021:S0149-7634(21)00492-9. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Reference Citation Analysis]
276 Patel ZS, Brunstetter TJ, Tarver WJ, Whitmire AM, Zwart SR, Smith SM, Huff JL. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020;6:33. [PMID: 33298950 DOI: 10.1038/s41526-020-00124-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
277 Matthiä D, Ehresmann B, Lohf H, Köhler J, Zeitlin C, Appel J, Sato T, Slaba T, Martin C, Berger T, Boehm E, Boettcher S, Brinza DE, Burmeister S, Guo J, Hassler DM, Posner A, Rafkin SCR, Reitz G, Wilson JW, Wimmer-schweingruber RF. The Martian surface radiation environment – a comparison of models and MSL/RAD measurements. J Space Weather Space Clim 2016;6:A13. [DOI: 10.1051/swsc/2016008] [Cited by in Crossref: 49] [Cited by in F6Publishing: 18] [Article Influence: 8.2] [Reference Citation Analysis]
278 Zhou R, Zhang H, Wang Z, Zhou X, Si J, Gan L, Li J, Liu Y. The developmental toxicity and apoptosis in zebrafish eyes induced by carbon-ion irradiation. Life Sciences 2015;139:114-22. [DOI: 10.1016/j.lfs.2015.08.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
279 Tang J, Fernandez-Garcia I, Vijayakumar S, Martinez-Ruis H, Illa-Bochaca I, Nguyen DH, Mao JH, Costes SV, Barcellos-Hoff MH. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors. Stem Cells 2014;32:649-61. [PMID: 24038768 DOI: 10.1002/stem.1533] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
280 Carpenter JD, Angerer O, Durante M, Linnarson D, Pike WT. Life Sciences Investigations for ESA’s First Lunar Lander. Earth Moon Planets 2010;107:11-23. [DOI: 10.1007/s11038-010-9375-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
281 Lee R, Nasonova E, Hartel C, Durante M, Ritter S. Chromosome aberration measurements in mitotic and G2-PCC lymphocytes at the standard sampling time of 48 h underestimate the effectiveness of high-LET particles. Radiat Environ Biophys 2011;50:371-81. [PMID: 21479955 DOI: 10.1007/s00411-011-0360-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
282 Hu W, Pei H, Li H, Ding N, He J, Wang J, Furusawa Y, Hirayama R, Matsumoto Y, Liu C, Li Y, Kawata T, Zhou G. Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures. J Radiat Res 2014;55:10-6. [PMID: 23728321 DOI: 10.1093/jrr/rrt078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
283 Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016;58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]