BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Göggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L, Brade H, Ehlers S, Slutsky AS, Schütze S. PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med. 2004;10:155-160. [PMID: 14704790 DOI: 10.1038/nm977] [Cited by in Crossref: 209] [Cited by in F6Publishing: 195] [Article Influence: 11.6] [Reference Citation Analysis]
Number Citing Articles
1 von Bismarck P, Klemm K, Wistädt CG, Winoto-morbach S, Uhlig U, Schütze S, Uhlig S, Lachmann B, Krause MF. Surfactant “fortification” by topical inhibition of nuclear factor-κB activity in a newborn piglet lavage model*: . Critical Care Medicine 2007;35:2309-18. [DOI: 10.1097/01.ccm.0000281472.47067.45] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
2 Baker JE, Boudreau RM, Seitz AP, Caldwell CC, Gulbins E, Edwards MJ. Sphingolipids and Innate Immunity: A New Approach to Infection in the Post-Antibiotic Era? Surgical Infections 2018;19:792-803. [DOI: 10.1089/sur.2018.187] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
3 Zimmerman GA, McIntyre TM. PAF, ceramide and pulmonary edema: alveolar flooding and a flood of questions. Trends Mol Med 2004;10:245-8. [PMID: 15177186 DOI: 10.1016/j.molmed.2004.03.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
4 Truman JP, García-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M, Fuks Z, Kolesnick R, Haimovitz-Friedman A. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One 2010;5:e12310. [PMID: 20808818 DOI: 10.1371/journal.pone.0012310] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 5.3] [Reference Citation Analysis]
5 Roth A, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C. Potent and Selective Inhibition of Acid Sphingomyelinase by Bisphosphonates. Angew Chem Int Ed 2009;48:7560-3. [DOI: 10.1002/anie.200903288] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 4.7] [Reference Citation Analysis]
6 Mohamed ZH, Rhein C, Saied EM, Kornhuber J, Arenz C. FRET probes for measuring sphingolipid metabolizing enzyme activity. Chemistry and Physics of Lipids 2018;216:152-61. [DOI: 10.1016/j.chemphyslip.2018.09.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
7 Schweitzer KS, Hatoum H, Brown MB, Gupta M, Justice MJ, Beteck B, Van Demark M, Gu Y, Presson RG Jr, Hubbard WC, Petrache I. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides. Am J Physiol Lung Cell Mol Physiol 2011;301:L836-46. [PMID: 21873444 DOI: 10.1152/ajplung.00385.2010] [Cited by in Crossref: 88] [Cited by in F6Publishing: 91] [Article Influence: 8.0] [Reference Citation Analysis]
8 Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV. Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 2007;8:91-106. [PMID: 17381401 DOI: 10.1089/sur.2006.050] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
9 Izquierdo-García JL, Naz S, Nin N, Rojas Y, Erazo M, Martínez-Caro L, García A, de Paula M, Fernández-Segoviano P, Casals C, Esteban A, Ruíz-Cabello J, Barbas C, Lorente JA. A Metabolomic Approach to the Pathogenesis of Ventilator-induced Lung Injury. Anesthesiology 2014;120:694-702. [PMID: 24253045 DOI: 10.1097/ALN.0000000000000074] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
10 Schaefer MB, Ott J, Mohr A, Bi MH, Grosz A, Weissmann N, Ishii S, Grimminger F, Seeger W, Mayer K. Immunomodulation by n-3- versus n-6-rich lipid emulsions in murine acute lung injury--role of platelet-activating factor receptor. Crit Care Med 2007;35:544-54. [PMID: 17205023 DOI: 10.1097/01.CCM.0000253811.74112.B6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
11 Cogolludo A, Moreno L, Frazziano G, Moral-Sanz J, Menendez C, Castañeda J, González C, Villamor E, Perez-Vizcaino F. Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovasc Res 2009;82:296-302. [PMID: 19088082 DOI: 10.1093/cvr/cvn349] [Cited by in Crossref: 79] [Cited by in F6Publishing: 68] [Article Influence: 5.6] [Reference Citation Analysis]
12 Yang J, Wang Y, Liu H, Bi J, Lu Y. C2-ceramide influences alveolar epithelial barrier function by downregulating Zo-1, occludin and claudin-4 expression. Toxicology Mechanisms and Methods 2017;27:293-7. [DOI: 10.1080/15376516.2017.1278812] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
13 Tekpli X, Holme JA, Sergent O, Lagadic-gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013;304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
14 Presa N, Gomez-Larrauri A, Dominguez-Herrera A, Trueba M, Gomez-Muñoz A. Novel signaling aspects of ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2020;1865:158630. [PMID: 31958571 DOI: 10.1016/j.bbalip.2020.158630] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
15 Cuzzocrea S, Genovese T, Mazzon E, Esposito E, Crisafulli C, Di Paola R, Bramanti P, Salvemini D. FUMONISIN B1 REDUCES THE DEVELOPMENT OF MULTIPLE ORGAN FAILURE INDUCED BY ZYMOSAN IN MICE. Shock 2009;31:170-7. [DOI: 10.1097/shk.0b013e31817fbd4a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
16 Pinkert T, Furkert D, Korte T, Herrmann A, Arenz C. Amplification of a FRET Probe by Lipid-Water Partition for the Detection of Acid Sphingomyelinase in Live Cells. Angew Chem Int Ed 2017;56:2790-4. [DOI: 10.1002/anie.201611706] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
17 Yost CC, Weyrich AS, Zimmerman GA. The platelet activating factor (PAF) signaling cascade in systemic inflammatory responses. Biochimie. 2010;92:692-697. [PMID: 20167241 DOI: 10.1016/j.biochi.2010.02.011] [Cited by in Crossref: 95] [Cited by in F6Publishing: 85] [Article Influence: 7.9] [Reference Citation Analysis]
18 Ghidoni R, Caretti A, Signorelli P. Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015;2015:487508. [PMID: 26770018 DOI: 10.1155/2015/487508] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 7.6] [Reference Citation Analysis]
19 Zhao Y, Xu H, Tian Z, Wang X, Xu L, Li K, Gao X, Fan D, Ma X, Ling W, Yang Y. Dose-dependent reductions in plasma ceramides after anthocyanin supplementation are associated with improvements in plasma lipids and cholesterol efflux capacity in dyslipidemia: A randomized controlled trial. Clin Nutr 2021;40:1871-8. [PMID: 33131908 DOI: 10.1016/j.clnu.2020.10.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Uhlig S, Yang Y. Sphingolipids in acute lung injury. Handb Exp Pharmacol 2013;:227-46. [PMID: 23563659 DOI: 10.1007/978-3-7091-1511-4_11] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
21 Jacobson JR. Sphingolipids as a Novel Therapeutic Target in Radiation-Induced Lung Injury. Cell Biochem Biophys 2021. [PMID: 34370281 DOI: 10.1007/s12013-021-01022-8] [Reference Citation Analysis]
22 Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112-116. [PMID: 16001071 DOI: 10.1038/nature03712] [Cited by in Crossref: 1473] [Cited by in F6Publishing: 1350] [Article Influence: 86.6] [Reference Citation Analysis]
23 Petrache I, Medler TR, Richter AT, Kamocki K, Chukwueke U, Zhen L, Gu Y, Adamowicz J, Schweitzer KS, Hubbard WC, Berdyshev EV, Lungarella G, Tuder RM. Superoxide dismutase protects against apoptosis and alveolar enlargement induced by ceramide. Am J Physiol Lung Cell Mol Physiol 2008;295:L44-53. [PMID: 18441093 DOI: 10.1152/ajplung.00448.2007] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 4.9] [Reference Citation Analysis]
24 Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains--structure and function. Biochim Biophys Acta. 2009;1788:178-183. [PMID: 18786504 DOI: 10.1016/j.bbamem.2008.07.030] [Cited by in Crossref: 164] [Cited by in F6Publishing: 157] [Article Influence: 11.7] [Reference Citation Analysis]
25 Zheng Y, Fan J, Chen H, Liu E. Trametes orientalis polysaccharide alleviates PM 2.5 -induced lung injury in mice through its antioxidant and anti-inflammatory activities. Food Funct 2019;10:8005-15. [DOI: 10.1039/c9fo01777a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
26 Becker KA, Gellhaus A, Winterhager E, Gulbins E. Ceramide-Enriched Membrane Domains in Infectious Biology and Development. In: Quinn PJ, Wang X, editors. Lipids in Health and Disease. Dordrecht: Springer Netherlands; 2008. pp. 523-38. [DOI: 10.1007/978-1-4020-8831-5_20] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
27 O'Dea KP, Wilson MR, Dokpesi JO, Wakabayashi K, Tatton L, van Rooijen N, Takata M. Mobilization and margination of bone marrow Gr-1high monocytes during subclinical endotoxemia predisposes the lungs toward acute injury. J Immunol 2009;182:1155-66. [PMID: 19124759 DOI: 10.4049/jimmunol.182.2.1155] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 3.7] [Reference Citation Analysis]
28 Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol. 2005;33:319-327. [PMID: 16172252 DOI: 10.1165/rcmb.f305] [Cited by in Crossref: 408] [Cited by in F6Publishing: 201] [Article Influence: 24.0] [Reference Citation Analysis]
29 Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010;49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Cited by in Crossref: 99] [Cited by in F6Publishing: 91] [Article Influence: 8.3] [Reference Citation Analysis]
30 Witzenrath M, Gutbier B, Owen JS, Schmeck B, Mitchell TJ, Mayer K, Thomas MJ, Ishii S, Rosseau S, Suttorp N, Schütte H. Role of platelet-activating factor in pneumolysin-induced acute lung injury. Crit Care Med 2007;35:1756-62. [PMID: 17522574 DOI: 10.1097/01.CCM.0000269212.84709.23] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
31 Fernández N, Jancar S, Crespo MS. Blood and endothelium in immune complex-mediated tissue injury. Trends in Pharmacological Sciences 2004;25:512-7. [DOI: 10.1016/j.tips.2004.08.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
32 Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol 2019;597:997-1021. [PMID: 30015354 DOI: 10.1113/JP276245] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
33 Xu W, Xia S, Wang H, Chen H, Wang Y. Role of platelet activating factor in pathogenesis of acute respiratory distress syndrome: . Chinese Medical Journal 2007;120:1840-4. [DOI: 10.1097/00029330-200710020-00022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
34 Preuss S, Omam FD, Scheiermann J, Stadelmann S, Winoto-Morbach S, von Bismarck P, Adam-Klages S, Knerlich-Lukoschus F, Lex D, Wesch D, Held-Feindt J, Uhlig S, Schütze S, Krause MF. Topical application of phosphatidyl-inositol-3,5-bisphosphate for acute lung injury in neonatal swine. J Cell Mol Med 2012;16:2813-26. [PMID: 22882773 DOI: 10.1111/j.1582-4934.2012.01618.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
35 Sparkman L, Chandru H, Boggaram V. Ceramide decreases surfactant protein B gene expression via downregulation of TTF-1 DNA binding activity. Am J Physiol Lung Cell Mol Physiol 2006;290:L351-8. [PMID: 16183668 DOI: 10.1152/ajplung.00275.2005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.2] [Reference Citation Analysis]
36 Claus RA, Bunck AC, Bockmeyer CL, Brunkhorst FM, Lösche W, Kinscherf R, Deigner HP. Role of increased sphingomyelinase activity in apoptosis and organ failure of patients with severe sepsis. FASEB J 2005;19:1719-21. [PMID: 16051685 DOI: 10.1096/fj.04-2842fje] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 4.4] [Reference Citation Analysis]
37 Kielczewski JL, Li Calzi S, Shaw LC, Cai J, Qi X, Ruan Q, Wu L, Liu L, Hu P, Chan-Ling T, Mames RN, Firth S, Baxter RC, Turowski P, Busik JV, Boulton ME, Grant MB. Free insulin-like growth factor binding protein-3 (IGFBP-3) reduces retinal vascular permeability in association with a reduction of acid sphingomyelinase (ASMase). Invest Ophthalmol Vis Sci 2011;52:8278-86. [PMID: 21931131 DOI: 10.1167/iovs.11-8167] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
38 Narayanavari SA, Sritharan M, Haake DA, Matsunaga J. Multiple leptospiral sphingomyelinases (or are there?). Microbiology (Reading) 2012;158:1137-46. [PMID: 22422753 DOI: 10.1099/mic.0.057737-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
39 Rastogi P, McHowat J. Inhibition of calcium-independent phospholipase A2 prevents inflammatory mediator production in pulmonary microvascular endothelium. Respir Physiol Neurobiol 2009;165:167-74. [PMID: 19059366 DOI: 10.1016/j.resp.2008.11.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
40 Guo L, Tan G, Liu P, Li H, Tang L, Huang L, Ren Q. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci Rep 2015;5:15126. [PMID: 26459926 DOI: 10.1038/srep15126] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
41 Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021;139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Reference Citation Analysis]
42 Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordoñez M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2016;61:51-62. [PMID: 26703189 DOI: 10.1016/j.plipres.2015.09.002] [Cited by in Crossref: 107] [Cited by in F6Publishing: 103] [Article Influence: 15.3] [Reference Citation Analysis]
43 Mathew B, Jacobson JR, Berdyshev E, Huang Y, Sun X, Zhao Y, Gerhold LM, Siegler J, Evenoski C, Wang T, Zhou T, Zaidi R, Moreno-Vinasco L, Bittman R, Chen CT, LaRiviere PJ, Sammani S, Lussier YA, Dudek SM, Natarajan V, Weichselbaum RR, Garcia JG. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. FASEB J 2011;25:3388-400. [PMID: 21712494 DOI: 10.1096/fj.11-183970] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
44 Grassmé H, Riethmüller J, Gulbins E. Biological aspects of ceramide-enriched membrane domains. Progress in Lipid Research 2007;46:161-70. [DOI: 10.1016/j.plipres.2007.03.002] [Cited by in Crossref: 131] [Cited by in F6Publishing: 120] [Article Influence: 8.7] [Reference Citation Analysis]
45 Looney MR, Matthay MA. Animal models of transfusion-related acute lung injury. Crit Care Med 2006;34:S132-6. [PMID: 16617257 DOI: 10.1097/01.CCM.0000214287.58444.2D] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
46 Novgorodov SA, Voltin JR, Wang W, Tomlinson S, Riley CL, Gudz TI. Acid sphingomyelinase deficiency protects mitochondria and improves function recovery after brain injury. J Lipid Res 2019;60:609-23. [PMID: 30662008 DOI: 10.1194/jlr.M091132] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
47 Birukov KG, Bochkov VN, Birukova AA, Kawkitinarong K, Rios A, Leitner A, Verin AD, Bokoch GM, Leitinger N, Garcia JG. Epoxycyclopentenone-Containing Oxidized Phospholipids Restore Endothelial Barrier Function via Cdc42 and Rac. Circulation Research 2004;95:892-901. [DOI: 10.1161/01.res.0000147310.18962.06] [Cited by in Crossref: 128] [Cited by in F6Publishing: 85] [Article Influence: 7.1] [Reference Citation Analysis]
48 Hayashida A, Bartlett AH, Foster TJ, Park PW. Staphylococcus aureus beta-toxin induces lung injury through syndecan-1. Am J Pathol. 2009;174:509-518. [PMID: 19147831 DOI: 10.2353/ajpath.2009.080394] [Cited by in Crossref: 65] [Cited by in F6Publishing: 63] [Article Influence: 5.0] [Reference Citation Analysis]
49 McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012;303:L364-81. [PMID: 22728467 DOI: 10.1152/ajplung.00354.2011] [Cited by in Crossref: 99] [Cited by in F6Publishing: 98] [Article Influence: 9.9] [Reference Citation Analysis]
50 Kuebler WM, Wittenberg C, Lee WL, Reppien E, Goldenberg NM, Lindner K, Gao Y, Winoto-Morbach S, Drab M, Mühlfeld C, Dombrowsky H, Ochs M, Schütze S, Uhlig S. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. Am J Physiol Lung Cell Mol Physiol 2016;310:L720-32. [PMID: 26851257 DOI: 10.1152/ajplung.00157.2015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
51 Lautenschläger I, Frerichs I, Dombrowsky H, Sarau J, Goldmann T, Zitta K, Albrecht M, Weiler N, Uhlig S. Quinidine, but not eicosanoid antagonists or dexamethasone, protect the gut from platelet activating factor-induced vasoconstriction, edema and paralysis. PLoS One 2015;10:e0120802. [PMID: 25793535 DOI: 10.1371/journal.pone.0120802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
52 Dietrich A, Steinritz D, Gudermann T. Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 2017;67:123-37. [PMID: 28499580 DOI: 10.1016/j.ceca.2017.04.005] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
53 Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, Jendrossek V, Ishii S, Shimizu T, Waidmann M, Hessler G, Huber SM, Lang F, Wieder T. Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 2005;118:1233-43. [PMID: 15741229 DOI: 10.1242/jcs.01730] [Cited by in Crossref: 106] [Cited by in F6Publishing: 94] [Article Influence: 6.2] [Reference Citation Analysis]
54 Saslowsky DE, Tanaka N, Reddy KP, Lencer WI. Ceramide activates JNK to inhibit a cAMP-gated K+ conductance and Cl- secretion in intestinal epithelia. FASEB J 2009;23:259-70. [PMID: 18820034 DOI: 10.1096/fj.08-116467] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
55 Cornell TT, Shanley TP. Signal transduction overview. Crit Care Med 2005;33:S410-3. [PMID: 16340407 DOI: 10.1097/01.ccm.0000191713.71308.fd] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
56 Filosto S, Castillo S, Danielson A, Franzi L, Khan E, Kenyon N, Last J, Pinkerton K, Tuder R, Goldkorn T. Neutral sphingomyelinase 2: a novel target in cigarette smoke-induced apoptosis and lung injury. Am J Respir Cell Mol Biol 2011;44:350-60. [PMID: 20448054 DOI: 10.1165/rcmb.2009-0422OC] [Cited by in Crossref: 54] [Cited by in F6Publishing: 43] [Article Influence: 4.5] [Reference Citation Analysis]
57 Nussbaumer P. Medicinal chemistry aspects of drug targets in sphingolipid metabolism. ChemMedChem 2008;3:543-51. [PMID: 18061920 DOI: 10.1002/cmdc.200700252] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
58 Mawn TM, Popov AV, Beardsley NJ, Stefflova K, Milkevitch M, Zheng G, Delikatny EJ. In vivo detection of phospholipase C by enzyme-activated near-infrared probes. Bioconjug Chem 2011;22:2434-43. [PMID: 22034913 DOI: 10.1021/bc200242v] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
59 Lex D, Uhlig S. One-hit Models of Ventilator-induced Lung Injury: Benign Inflammation versus Inflammation as a By-product. Anesthesiology 2017;126:909-22. [PMID: 28277372 DOI: 10.1097/ALN.0000000000001605] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
60 Vutukuri R, Brunkhorst R, Kestner RI, Hansen L, Bouzas NF, Pfeilschifter J, Devraj K, Pfeilschifter W. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. J Neurochem 2018;144:172-85. [PMID: 29023711 DOI: 10.1111/jnc.14236] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
61 Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal 2006;8:1183-92. [PMID: 16910766 DOI: 10.1089/ars.2006.8.1183] [Cited by in Crossref: 147] [Cited by in F6Publishing: 135] [Article Influence: 9.2] [Reference Citation Analysis]
62 Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 2011;6:e23852. [PMID: 21909365 DOI: 10.1371/journal.pone.0023852] [Cited by in Crossref: 88] [Cited by in F6Publishing: 77] [Article Influence: 8.0] [Reference Citation Analysis]
63 Okuro RT, Machado MN, Casquilho NV, Jardim-neto A, Roncally-carvalho A, Atella GC, Zin WA. The role of sphingolipid metabolism disruption on lipopolysaccharide-induced lung injury in mice. Pulmonary Pharmacology & Therapeutics 2018;50:100-10. [DOI: 10.1016/j.pupt.2018.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
64 Fuentes-Mateos R, Jimeno D, Gómez C, Calzada N, Fernández-Medarde A, Santos E. Concomitant deletion of HRAS and NRAS leads to pulmonary immaturity, respiratory failure and neonatal death in mice. Cell Death Dis 2019;10:838. [PMID: 31685810 DOI: 10.1038/s41419-019-2075-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Reichel M, Beck J, Mühle C, Rotter A, Bleich S, Gulbins E, Kornhuber J. Activity of Secretory Sphingomyelinase Is Increased in Plasma of Alcohol-Dependent Patients: PLASMA ASM IN ALCOHOL-DEPENDENT PATIENTS. Alcoholism: Clinical and Experimental Research 2011;35:1852-9. [DOI: 10.1111/j.1530-0277.2011.01529.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.3] [Reference Citation Analysis]
66 Bellido-Reyes YA, Akamatsu H, Kojima K, Arai H, Tanaka H, Sunamori M. Cytosolic phospholipase A2 inhibition attenuates ischemia-reperfusion injury in an isolated rat lung model. Transplantation 2006;81:1700-7. [PMID: 16794537 DOI: 10.1097/01.tp.0000226065.82066.21] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
67 Sabourdy F, Kedjouar B, Sorli SC, Colié S, Milhas D, Salma Y, Levade T. Functions of sphingolipid metabolism in mammals--lessons from genetic defects. Biochim Biophys Acta 2008;1781:145-83. [PMID: 18294974 DOI: 10.1016/j.bbalip.2008.01.004] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 3.6] [Reference Citation Analysis]
68 Yeganeh B, Lee J, Bilodeau C, Lok I, Ermini L, Ackerley C, Caniggia I, Tibboel J, Kroon A, Post M. Acid Sphingomyelinase Inhibition Attenuates Cell Death in Mechanically Ventilated Newborn Rat Lung. Am J Respir Crit Care Med 2019;199:760-72. [PMID: 30326731 DOI: 10.1164/rccm.201803-0583OC] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
69 Hua G, Kolesnick R. Using ASMase knockout mice to model human diseases. Handb Exp Pharmacol 2013;:29-54. [PMID: 23563650 DOI: 10.1007/978-3-7091-1511-4_2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
70 Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 2009;28:886-898. [PMID: 19060920 DOI: 10.1038/onc.2008.441] [Cited by in Crossref: 191] [Cited by in F6Publishing: 193] [Article Influence: 13.6] [Reference Citation Analysis]
71 Lautenschläger I, Dombrowsky H, Frerichs I, Kuchenbecker S, Bade S, Schultz H, Zabel P, Scholz J, Weiler N, Uhlig S. A model of the isolated perfused rat small intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology 2010;298:G304-13. [DOI: 10.1152/ajpgi.00313.2009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
72 von Bismarck P, García Wistädt C, Klemm K, Winoto-morbach S, Uhlig U, Schütze S, Adam D, Lachmann B, Uhlig S, Krause MF. Improved Pulmonary Function by Acid Sphingomyelinase Inhibition in a Newborn Piglet Lavage Model. Am J Respir Crit Care Med 2008;177:1233-41. [DOI: 10.1164/rccm.200705-752oc] [Cited by in Crossref: 43] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
73 Xu Z, Zhou J, McCoy DM, Mallampalli RK. LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J Lipid Res 2005;46:1229-38. [PMID: 15772421 DOI: 10.1194/jlr.M500001-JLR200] [Cited by in Crossref: 37] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
74 Lin WC, Lin CF, Chen CL, Chen CW, Lin YS. Inhibition of neutrophil apoptosis via sphingolipid signaling in acute lung injury. J Pharmacol Exp Ther 2011;339:45-53. [PMID: 21724966 DOI: 10.1124/jpet.111.181560] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
75 Uhlig S, Gulbins E. Sphingolipids in the lungs. Am J Respir Crit Care Med. 2008;178:1100-1114. [PMID: 18755926 DOI: 10.1164/rccm.200804-595so] [Cited by in Crossref: 111] [Cited by in F6Publishing: 60] [Article Influence: 7.9] [Reference Citation Analysis]
76 Kornhuber J, Müller CP, Becker KA, Reichel M, Gulbins E. The ceramide system as a novel antidepressant target. Trends Pharmacol Sci 2014;35:293-304. [PMID: 24793541 DOI: 10.1016/j.tips.2014.04.003] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 8.4] [Reference Citation Analysis]
77 Yu FPS, Islam D, Sikora J, Dworski S, Gurka J, López-Vásquez L, Liu M, Kuebler WM, Levade T, Zhang H, Medin JA. Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency. Am J Physiol Lung Cell Mol Physiol 2018;314:L406-20. [PMID: 29167126 DOI: 10.1152/ajplung.00223.2017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
78 Kim S, Kim Y, Lee Y, Chung JH. Ceramide accelerates ultraviolet-induced MMP-1 expression through JAK1/STAT-1 pathway in cultured human dermal fibroblasts. Journal of Lipid Research 2008;49:2571-81. [DOI: 10.1194/jlr.m800112-jlr200] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
79 Grassmé H, Becker KA, Zhang Y, Gulbins E. Ceramide in bacterial infections and cystic fibrosis. Biol Chem 2008;389:1371-9. [PMID: 18783339 DOI: 10.1515/BC.2008.162] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
80 Medler TR, Petrusca DN, Lee PJ, Hubbard WC, Berdyshev EV, Skirball J, Kamocki K, Schuchman E, Tuder RM, Petrache I. Apoptotic sphingolipid signaling by ceramides in lung endothelial cells. Am J Respir Cell Mol Biol 2008;38:639-46. [PMID: 18192502 DOI: 10.1165/rcmb.2007-0274OC] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
81 Biswas R, Trout KL, Jessop F, Harkema JR, Holian A. Imipramine blocks acute silicosis in a mouse model. Part Fibre Toxicol 2017;14:36. [PMID: 28893276 DOI: 10.1186/s12989-017-0217-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
82 Wieder T, Lang PA, Lang KS, Kempe DS, Niemoeller OM, Duranton C, Gulbins E, Huber SM, Lang F. Studying Mechanisms of Eryptosis. Cytotechnology 2005;49:117-32. [DOI: 10.1007/s10616-006-6335-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
83 Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Osmotic shock-induced suicidal death of erythrocytes. Acta Physiol (Oxf) 2006;187:191-8. [PMID: 16734755 DOI: 10.1111/j.1748-1716.2006.01564.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
84 Frank JA, Matthay MA. Leukotrienes in acute lung injury: a potential therapeutic target? Am J Respir Crit Care Med 2005;172:261-2. [PMID: 16040787 DOI: 10.1164/rccm.2505008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.6] [Reference Citation Analysis]
85 Patti GJ, Yanes O, Shriver LP, Courade JP, Tautenhahn R, Manchester M, Siuzdak G. Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat Chem Biol 2012;8:232-4. [PMID: 22267119 DOI: 10.1038/nchembio.767] [Cited by in Crossref: 135] [Cited by in F6Publishing: 124] [Article Influence: 13.5] [Reference Citation Analysis]
86 Schwarzmann G, Arenz C, Sandhoff K. Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochim Biophys Acta 2014;1841:1161-73. [PMID: 24389251 DOI: 10.1016/j.bbalip.2013.12.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
87 Henry B, Ziobro R, Becker KA, Kolesnick R, Gulbins E. Acid sphingomyelinase. Handb Exp Pharmacol 2013;:77-88. [PMID: 23579450 DOI: 10.1007/978-3-7091-1368-4_4] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
88 Riethmüller J, Riehle A, Grassmé H, Gulbins E. Ceramide in Pseudomonas aeruginosa infections. Eur J Lipid Sci Technol 2007;109:998-1002. [DOI: 10.1002/ejlt.200700045] [Reference Citation Analysis]
89 Becker KA, Beckmann N, Adams C, Hessler G, Kramer M, Gulbins E, Carpinteiro A. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets. Clin Exp Metastasis 2017;34:25-35. [PMID: 27744579 DOI: 10.1007/s10585-016-9826-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
90 Álvarez-Fuente M, Arruza L, Lopez-Ortego P, Moreno L, Ramírez-Orellana M, Labrandero C, González Á, Melen G, Cerro MJD. Off-label mesenchymal stromal cell treatment in two infants with severe bronchopulmonary dysplasia: clinical course and biomarkers profile. Cytotherapy 2018;20:1337-44. [PMID: 30327248 DOI: 10.1016/j.jcyt.2018.09.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
91 Bao HF, Zhang ZR, Liang YY, Ma JJ, Eaton DC, Ma HP. Ceramide mediates inhibition of the renal epithelial sodium channel by tumor necrosis factor-alpha through protein kinase C. Am J Physiol Renal Physiol 2007;293:F1178-86. [PMID: 17634398 DOI: 10.1152/ajprenal.00153.2007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 2.2] [Reference Citation Analysis]
92 Cogolludo A, Villamor E, Perez-Vizcaino F, Moreno L. Ceramide and Regulation of Vascular Tone. Int J Mol Sci 2019;20:E411. [PMID: 30669371 DOI: 10.3390/ijms20020411] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
93 Gomez-Larrauri A, Ouro A, Trueba M, Gomez-Muñoz A. Regulation of cell growth, survival and migration by ceramide 1-phosphate - implications in lung cancer progression and inflammation. Cell Signal 2021;83:109980. [PMID: 33727076 DOI: 10.1016/j.cellsig.2021.109980] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Predescu S, Knezevic I, Bardita C, Neamu RF, Brovcovych V, Predescu D. Platelet activating factor-induced ceramide micro-domains drive endothelial NOS activation and contribute to barrier dysfunction. PLoS One 2013;8:e75846. [PMID: 24086643 DOI: 10.1371/journal.pone.0075846] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
95 Gomez-larrauri A, Trueba M, Gomez-muñoz A. Potential of ceramide 1-phosphate as a novel therapeutic agent in pulmonary inflammation. Expert Review of Clinical Pharmacology 2016;9:629-31. [DOI: 10.1586/17512433.2016.1152181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
96 Masini E, Giannini L, Nistri S, Cinci L, Mastroianni R, Xu W, Comhair SA, Li D, Cuzzocrea S, Matuschak GM, Salvemini D. Ceramide: a key signaling molecule in a Guinea pig model of allergic asthmatic response and airway inflammation. J Pharmacol Exp Ther 2008;324:548-57. [PMID: 18042827 DOI: 10.1124/jpet.107.131565] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 3.3] [Reference Citation Analysis]
97 Roth AG, Redmer S, Arenz C. Development of carbohydrate-derived inhibitors of acid sphingomyelinase. Bioorganic & Medicinal Chemistry 2010;18:939-44. [DOI: 10.1016/j.bmc.2009.11.030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
98 Cuzzocrea S, Deigner H, Genovese T, Mazzon E, Esposito E, Crisafulli C, Di Paola R, Bramanti P, Matuschak G, Salvemini D. INHIBITION OF CERAMIDE BIOSYNTHESIS AMELIORATES PATHOLOGICAL CONSEQUENCES OF SPINAL CORD INJURY. Shock 2009;31:635-45. [DOI: 10.1097/shk.0b013e3181891396] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
99 Chamorro V, Pandolfi R, Moreno L, Barreira B, Martínez-Ramas A, Morales-Cano D, Ruiz-Cabello J, Lorente JA, Duarte J, Cogolludo Á, Alvarez-Sala JL, Perez-Vizcaino F. Effects of Quercetin in a Rat Model of Hemorrhagic Traumatic Shock and Reperfusion. Molecules 2016;21:E1739. [PMID: 27999410 DOI: 10.3390/molecules21121739] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
100 Kornhuber J, Tripal P, Gulbins E, Muehlbacher M. Functional inhibitors of acid sphingomyelinase (FIASMAs). Handb Exp Pharmacol 2013;:169-86. [PMID: 23579455 DOI: 10.1007/978-3-7091-1368-4_9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
101 Goldkorn T, Filosto S. Lung injury and cancer: Mechanistic insights into ceramide and EGFR signaling under cigarette smoke. Am J Respir Cell Mol Biol 2010;43:259-68. [PMID: 20525802 DOI: 10.1165/rcmb.2010-0220RT] [Cited by in Crossref: 51] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
102 Gatidis S, Borst O, Föller M, Lang F. Effect of osmotic shock and urea on phosphatidylserine scrambling in thrombocyte cell membranes. Am J Physiol Cell Physiol 2010;299:C111-8. [PMID: 20237147 DOI: 10.1152/ajpcell.00477.2009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
103 Kumagai T, Kozakai Y, Ishino T, Yajima Y, Nakagawa Y, Imai H. Nrf2 up-regulates the induction of acidic sphingomyelinase by electrophiles. J Biochem 2015;158:127-37. [PMID: 25762726 DOI: 10.1093/jb/mvv030] [Reference Citation Analysis]
104 Müller-Redetzky HC, Suttorp N, Witzenrath M. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014;355:657-73. [PMID: 24599335 DOI: 10.1007/s00441-014-1821-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 5.5] [Reference Citation Analysis]
105 Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020;12:E223. [PMID: 32252376 DOI: 10.3390/toxins12040223] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
106 Lee HR, Choi SQ. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes. Adv Sci (Weinh) 2021;8:e2101766. [PMID: 34473415 DOI: 10.1002/advs.202101766] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
107 Palestini P, Botto L, Rivolta I, Miserocchi G. Remodelling of membrane rafts expression in lung cells as an early sign of mechanotransduction-signalling in pulmonary edema. J Lipids 2011;2011:695369. [PMID: 21785732 DOI: 10.1155/2011/695369] [Reference Citation Analysis]
108 Bollinger CR, Teichgräber V, Gulbins E. Ceramide-enriched membrane domains. Biochim Biophys Acta. 2005;1746:284-294. [PMID: 16226325 DOI: 10.1016/j.bbamcr.2005.09.001] [Cited by in Crossref: 229] [Cited by in F6Publishing: 225] [Article Influence: 13.5] [Reference Citation Analysis]
109 Carpinteiro A, Dumitru C, Schenck M, Gulbins E. Ceramide-induced cell death in malignant cells. Cancer Letters 2008;264:1-10. [DOI: 10.1016/j.canlet.2008.02.020] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
110 Samapati R, Yang Y, Yin J, Stoerger C, Arenz C, Dietrich A, Gudermann T, Adam D, Wu S, Freichel M, Flockerzi V, Uhlig S, Kuebler WM. Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am J Respir Crit Care Med 2012;185:160-70. [PMID: 22246702 DOI: 10.1164/rccm.201104-0717OC] [Cited by in Crossref: 54] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
111 Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021;22:11545. [PMID: 34768974 DOI: 10.3390/ijms222111545] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Muradashvili N, Khundmiri SJ, Tyagi R, Gartung A, Dean WL, Lee MJ, Lominadze D. Sphingolipids affect fibrinogen-induced caveolar transcytosis and cerebrovascular permeability. Am J Physiol Cell Physiol 2014;307:C169-79. [PMID: 24829496 DOI: 10.1152/ajpcell.00305.2013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
113 Liu L, Awoyemi AA, Fahy KE, Thapa P, Borchers C, Wu BY, McGlone CL, Schmeusser B, Sattouf Z, Rohan CA, Williams AR, Cates EE, Knisely C, Kelly LE, Bihl JC, Cool DR, Sahu RP, Wang J, Chen Y, Rapp CM, Kemp MG, Johnson RM, Travers JB. Keratinocyte-derived microvesicle particles mediate ultraviolet B radiation-induced systemic immunosuppression. J Clin Invest 2021;131:144963. [PMID: 33830943 DOI: 10.1172/JCI144963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
114 Spengler D, Rintz N, Krause MF. An Unsettled Promise: The Newborn Piglet Model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic Data and Systematic Review. Front Physiol 2019;10:1345. [PMID: 31736777 DOI: 10.3389/fphys.2019.01345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
115 McVey MJ, Weidenfeld S, Maishan M, Spring C, Kim M, Tabuchi A, Srbely V, Takabe-French A, Simmons S, Arenz C, Semple JW, Kuebler WM. Platelet extracellular vesicles mediate transfusion-related acute lung injury by imbalancing the sphingolipid rheostat. Blood 2021;137:690-701. [PMID: 33232973 DOI: 10.1182/blood.2020005985] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
116 Saslowsky DE, Lencer WI. Conversion of apical plasma membrane sphingomyelin to ceramide attenuates the intoxication of host cells by cholera toxin. Cell Microbiol 2008;10:67-80. [PMID: 18052945 DOI: 10.1111/j.1462-5822.2007.01015.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 0.2] [Reference Citation Analysis]
117 Jung JS, Shin KO, Lee YM, Shin JA, Park EM, Jeong J, Kim DH, Choi JW, Kim HS. Anti-inflammatory mechanism of exogenous C2 ceramide in lipopolysaccharide-stimulated microglia. Biochim Biophys Acta. 2013;1831:1016-1026. [PMID: 23384839 DOI: 10.1016/j.bbalip.2013.01.020] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
118 Laube M, Amann E, Uhlig U, Yang Y, Fuchs HW, Zemlin M, Mercier JC, Maier RF, Hummler HD, Uhlig S, Thome UH. Inflammatory Mediators in Tracheal Aspirates of Preterm Infants Participating in a Randomized Trial of Inhaled Nitric Oxide. PLoS One 2017;12:e0169352. [PMID: 28046032 DOI: 10.1371/journal.pone.0169352] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
119 Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017;33:429-55. [PMID: 28275881 DOI: 10.1007/s10565-017-9386-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
120 Pinkert T, Furkert D, Korte T, Herrmann A, Arenz C. Eine durch Lipid-Wasser-Trennung verstärkte FRET-Sonde zur Detektion der Sauren Sphingomyelinase in lebenden Zellen. Angew Chem 2017;129:2834-8. [DOI: 10.1002/ange.201611706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
121 Chung HY, Witt CJ, Hurtado-Oliveros J, Wickel J, Gräler MH, Lupp A, Claus RA. Acid Sphingomyelinase Inhibition Stabilizes Hepatic Ceramide Content and Improves Hepatic Biotransformation Capacity in a Murine Model of Polymicrobial Sepsis. Int J Mol Sci 2018;19:E3163. [PMID: 30326559 DOI: 10.3390/ijms19103163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
122 Petrache I, Petrusca DN, Bowler RP, Kamocki K. Involvement of ceramide in cell death responses in the pulmonary circulation. Proc Am Thorac Soc 2011;8:492-6. [PMID: 22052925 DOI: 10.1513/pats.201104-034MW] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
123 Roth AG, Redmer S, Arenz C. Potent Inhibition of Acid Sphingomyelinase by Phosphoinositide Analogues. ChemBioChem 2009;10:2367-74. [DOI: 10.1002/cbic.200900281] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
124 Gomez-muñoz A, Gangoiti P, Arana L, Ouro A, Rivera I, Ordoñez M, Trueba M. New insights on the role of ceramide 1-phosphate in inflammation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2013;1831:1060-6. [DOI: 10.1016/j.bbalip.2013.02.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
125 Chang W, Chen J, Schlueter CF, Hoyle GW. Common pathways for activation of proinflammatory gene expression by G protein-coupled receptors in primary lung epithelial and endothelial cells. Exp Lung Res 2009;35:324-43. [PMID: 19415549 DOI: 10.1080/01902140802712738] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
126 Lopes Pinheiro MA, Kroon J, Hoogenboezem M, Geerts D, van Het Hof B, van der Pol SM, van Buul JD, de Vries HE. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells. J Immunol 2016;196:72-9. [PMID: 26597010 DOI: 10.4049/jimmunol.1500702] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
127 Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725-738. [PMID: 21531958 DOI: 10.1165/rcmb.2009-0210st] [Cited by in Crossref: 758] [Cited by in F6Publishing: 474] [Article Influence: 68.9] [Reference Citation Analysis]
128 Schneider M, Levant B, Reichel M, Gulbins E, Kornhuber J, Müller CP. Lipids in psychiatric disorders and preventive medicine. Neuroscience & Biobehavioral Reviews 2017;76:336-62. [DOI: 10.1016/j.neubiorev.2016.06.002] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 13.4] [Reference Citation Analysis]
129 Presa N, Gomez-larrauri A, Rivera I, Ordoñez M, Trueba M, Gomez-muñoz A. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2016;1861:402-9. [DOI: 10.1016/j.bbalip.2016.02.007] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
130 Yang Y, Uhlig S. The role of sphingolipids in respiratory disease. Ther Adv Respir Dis 2011;5:325-44. [PMID: 21900155 DOI: 10.1177/1753465811406772] [Cited by in Crossref: 63] [Cited by in F6Publishing: 61] [Article Influence: 5.7] [Reference Citation Analysis]
131 Lang KS, Lang PA, Bauer C, Duranton C, Wieder T, Huber SM, Lang F. Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 2005;15:195-202. [PMID: 15956782 DOI: 10.1159/000086406] [Cited by in Crossref: 265] [Cited by in F6Publishing: 247] [Article Influence: 15.6] [Reference Citation Analysis]
132 Dechecchi MC, Nicolis E, Mazzi P, Cioffi F, Bezzerri V, Lampronti I, Huang S, Wiszniewski L, Gambari R, Scupoli MT, Berton G, Cabrini G. Modulators of Sphingolipid Metabolism Reduce Lung Inflammation. Am J Respir Cell Mol Biol 2011;45:825-33. [DOI: 10.1165/rcmb.2010-0457oc] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
133 Levy M, Khan E, Careaga M, Goldkorn T. Neutral sphingomyelinase 2 is activated by cigarette smoke to augment ceramide-induced apoptosis in lung cell death. Am J Physiol Lung Cell Mol Physiol 2009;297:L125-33. [PMID: 19395669 DOI: 10.1152/ajplung.00031.2009] [Cited by in Crossref: 61] [Cited by in F6Publishing: 61] [Article Influence: 4.7] [Reference Citation Analysis]
134 Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol 2007; 13(39): 5217-5225 [PMID: 17876892 DOI: 10.3748/wjg.v13.i39.5217] [Cited by in CrossRef: 22] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
135 Assi E, Cazzato D, De Palma C, Perrotta C, Clementi E, Cervia D. Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013;2013:309302. [PMID: 24078816 DOI: 10.1155/2013/309302] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
136 Prause K, Naseri G, Schumacher F, Kappe C, Kleuser B, Arenz C. A photocaged inhibitor of acid sphingomyelinase. Chem Commun (Camb) 2020;56:14885-8. [PMID: 33179626 DOI: 10.1039/d0cc06661c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Smith EL, Schuchman EH. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 2008;22:3419-31. [PMID: 18567738 DOI: 10.1096/fj.08-108043] [Cited by in Crossref: 146] [Cited by in F6Publishing: 150] [Article Influence: 10.4] [Reference Citation Analysis]
138 Gowda S, Yeang C, Wadgaonkar S, Anjum F, Grinkina N, Cutaia M, Jiang XC, Wadgaonkar R. Sphingomyelin synthase 2 (SMS2) deficiency attenuates LPS-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2011;300:L430-40. [PMID: 21191108 DOI: 10.1152/ajplung.00208.2010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.5] [Reference Citation Analysis]
139 Gentner S, Laube M, Uhlig U, Yang Y, Fuchs HW, Dreyhaupt J, Hummler HD, Uhlig S, Thome UH. Inflammatory Mediators in Tracheal Aspirates of Preterm Infants Participating in a Randomized Trial of Permissive Hypercapnia. Front Pediatr 2017;5:246. [PMID: 29209598 DOI: 10.3389/fped.2017.00246] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
140 Cuzzocrea S, Di Paola R, Genovese T, Mazzon E, Esposito E, Crisafulli C, Bramanti P, Salvemini D. Anti-Inflammatory and Anti-Apoptotic Effects of Fumonisin B1, an Inhibitor of Ceramide Synthase, in a Rodent Model of Splanchnic Ischemia and Reperfusion Injury. J Pharmacol Exp Ther 2008;327:45-57. [DOI: 10.1124/jpet.108.139808] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
141 Mcvey MJ, Kim M, Tabuchi A, Srbely V, Japtok L, Arenz C, Rotstein O, Kleuser B, Semple JW, Kuebler WM. Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets. American Journal of Physiology-Lung Cellular and Molecular Physiology 2017;312:L625-37. [DOI: 10.1152/ajplung.00317.2016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
142 Henry B, Möller C, Dimanche-Boitrel MT, Gulbins E, Becker KA. Targeting the ceramide system in cancer. Cancer Lett. 2013;332:286-294. [PMID: 21862212 DOI: 10.1016/j.canlet.2011.07.010] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 4.3] [Reference Citation Analysis]
143 Bottai D, Adami R, Paroni R, Ghidoni R. Brain Cancer-Activated Microglia: A Potential Role for Sphingolipids. Curr Med Chem 2020;27:4039-61. [PMID: 31057101 DOI: 10.2174/0929867326666190506120213] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
144 Gon Y, Wood MR, Kiosses WB, Jo E, Sanna MG, Chun J, Rosen H. S1P3 receptor-induced reorganization of epithelial tight junctions compromises lung barrier integrity and is potentiated by TNF. Proc Natl Acad Sci U S A 2005;102:9270-5. [PMID: 15968000 DOI: 10.1073/pnas.0501997102] [Cited by in Crossref: 108] [Cited by in F6Publishing: 102] [Article Influence: 6.4] [Reference Citation Analysis]
145 Chandru H, Boggaram V. The role of sphingosine 1-phosphate in the TNF-alpha induction of IL-8 gene expression in lung epithelial cells. Gene 2007;391:150-60. [PMID: 17306937 DOI: 10.1016/j.gene.2006.12.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.4] [Reference Citation Analysis]
146 Schenck M, Carpinteiro A, Grassmé H, Lang F, Gulbins E. Ceramide: Physiological and pathophysiological aspects. Archives of Biochemistry and Biophysics 2007;462:171-5. [DOI: 10.1016/j.abb.2007.03.031] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 4.9] [Reference Citation Analysis]
147 Petrache I, Petrusca DN. The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb Exp Pharmacol 2013;:247-64. [PMID: 23563660 DOI: 10.1007/978-3-7091-1511-4_12] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
148 Prows DR, Hafertepen AP, Winterberg AV, Gibbons WJ Jr, Liu C, Nick TG. Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol Genomics 2007;30:271-81. [PMID: 17488888 DOI: 10.1152/physiolgenomics.00038.2007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
149 Barnes PJ. Ceramide lances the lungs. Nat Med 2004;10:130-1. [DOI: 10.1038/nm0204-130] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 0.8] [Reference Citation Analysis]
150 Filosto S, Fry W, Knowlton AA, Goldkorn T. Neutral sphingomyelinase 2 (nSMase2) is a phosphoprotein regulated by calcineurin (PP2B). J Biol Chem 2010;285:10213-22. [PMID: 20106976 DOI: 10.1074/jbc.M109.069963] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 3.9] [Reference Citation Analysis]
151 Shanbhogue P, Hannun YA. Exploring the Therapeutic Landscape of Sphingomyelinases. In: Gomez-cambronero J, Frohman MA, editors. Lipid Signaling in Human Diseases. Cham: Springer International Publishing; 2020. pp. 19-47. [DOI: 10.1007/164_2018_179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
152 Ohlsson L, Hjelte L, Hühn M, Scholte BJ, Wilke M, Flodström-Tullberg M, Nilsson A. Expression of intestinal and lung alkaline sphingomyelinase and neutral ceramidase in cystic fibrosis f508del transgenic mice. J Pediatr Gastroenterol Nutr 2008;47:547-54. [PMID: 18955860 DOI: 10.1097/MPG.0b013e3181826daf] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
153 Poirier C, Berdyshev EV, Dimitropoulou C, Bogatcheva NV, Biddinger PW, Verin AD. Neutral sphingomyelinase 2 deficiency is associated with lung anomalies similar to emphysema. Mamm Genome 2012;23:758-63. [PMID: 22945695 DOI: 10.1007/s00335-012-9419-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
154 Petrache I, Natarajan V, Zhen L, Medler TR, Richter AT, Cho C, Hubbard WC, Berdyshev EV, Tuder RM. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 2005;11:491-8. [PMID: 15852018 DOI: 10.1038/nm1238] [Cited by in Crossref: 344] [Cited by in F6Publishing: 344] [Article Influence: 20.2] [Reference Citation Analysis]
155 Kott M, Elke G, Reinicke M, Winoto-Morbach S, Schädler D, Zick G, Frerichs I, Weiler N, Schütze S. Acid sphingomyelinase serum activity predicts mortality in intensive care unit patients after systemic inflammation: a prospective cohort study. PLoS One 2014;9:e112323. [PMID: 25384060 DOI: 10.1371/journal.pone.0112323] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
156 Birukova AA, Zebda N, Fu P, Poroyko V, Cokic I, Birukov KG. Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol 2011;226:2052-62. [PMID: 21520057 DOI: 10.1002/jcp.22543] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 4.4] [Reference Citation Analysis]
157 Mielke MM, Syrjanen JA, Bui HH, Petersen RC, Knopman DS, Jack CR Jr, Graff-Radford J, Vemuri P. Elevated Plasma Ceramides Are Associated With Higher White Matter Hyperintensity Volume-Brief Report. Arterioscler Thromb Vasc Biol 2019;39:2431-6. [PMID: 31510790 DOI: 10.1161/ATVBAHA.119.313099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
158 Jin S, Yi F, Li PL. Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 2007;9:1417-26. [PMID: 17638544 DOI: 10.1089/ars.2007.1660] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 1.7] [Reference Citation Analysis]
159 Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of New Functional Inhibitors of Acid Sphingomyelinase Using a Structure−Property−Activity Relation Model. J Med Chem 2008;51:219-37. [DOI: 10.1021/jm070524a] [Cited by in Crossref: 129] [Cited by in F6Publishing: 124] [Article Influence: 8.6] [Reference Citation Analysis]
160 Chung HY, Claus RA. Keep Your Friends Close, but Your Enemies Closer: Role of Acid Sphingomyelinase During Infection and Host Response. Front Med (Lausanne) 2020;7:616500. [PMID: 33553211 DOI: 10.3389/fmed.2020.616500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
161 Jernigan PL, Makley AT, Hoehn RS, Edwards MJ, Pritts TA. The role of sphingolipids in endothelial barrier function. Biol Chem 2015;396:681-91. [PMID: 25867999 DOI: 10.1515/hsz-2014-0305] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
162 Reiss LK, Raffetseder U, Gibbert L, Drescher HK, Streetz KL, Schwarz A, Martin C, Uhlig S, Adam D. Reevaluation of Lung Injury in TNF-Induced Shock: The Role of the Acid Sphingomyelinase. Mediators Inflamm 2020;2020:3650508. [PMID: 32410851 DOI: 10.1155/2020/3650508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
163 Pexa A, Deussen A. Modulation of ecto-5'-nucleotidase by phospholipids in human umbilical vein endothelial cells (HUVEC). Naunyn Schmiedebergs Arch Pharmacol 2005;372:131-8. [PMID: 16200394 DOI: 10.1007/s00210-005-0002-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
164 Preuss S, Stadelmann S, Omam FD, Scheiermann J, Winoto-Morbach S, von Bismarck P, Knerlich-Lukoschus F, Lex D, Adam-Klages S, Wesch D, Held-Feindt J, Uhlig S, Schütze S, Krause MF. Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury. Am J Respir Cell Mol Biol 2012;47:158-69. [PMID: 22403805 DOI: 10.1165/rcmb.2011-0262OC] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
165 Gulbins E, Li PL. Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol. 2006;290:R11-R26. [PMID: 16352856 DOI: 10.1152/ajpregu.00416.2005] [Cited by in Crossref: 150] [Cited by in F6Publishing: 144] [Article Influence: 9.4] [Reference Citation Analysis]
166 Yang J, Qu J, Summah H, Zhang J, Zhu Y, Jiang H. Protective effects of imipramine in murine endotoxin-induced acute lung injury. European Journal of Pharmacology 2010;638:128-33. [DOI: 10.1016/j.ejphar.2010.04.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
167 Pandolfi R, Barreira B, Moreno E, Lara-acedo V, Morales-cano D, Martínez-ramas A, de Olaiz Navarro B, Herrero R, Lorente JÁ, Cogolludo Á, Pérez-vizcaíno F, Moreno L. Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction. Thorax 2017;72:460-71. [DOI: 10.1136/thoraxjnl-2015-208067] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
168 Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R. Caspase-dependent and -independent Activation of Acid Sphingomyelinase Signaling. Journal of Biological Chemistry 2005;280:26425-34. [DOI: 10.1074/jbc.m414569200] [Cited by in Crossref: 124] [Cited by in F6Publishing: 55] [Article Influence: 7.3] [Reference Citation Analysis]
169 Rubin BB, Downey GP, Koh A, Degousee N, Ghomashchi F, Nallan L, Stefanski E, Harkin DW, Sun C, Smart BP. Cytosolic phospholipase A2-alpha is necessary for platelet-activating factor biosynthesis, efficient neutrophil-mediated bacterial killing, and the innate immune response to pulmonary infection: cPLA2-alpha does not regulate neutrophil NADPH oxidase activity. J Biol Chem. 2005;280:7519-7529. [PMID: 15475363 DOI: 10.1074/jbc.m407438200] [Cited by in Crossref: 81] [Cited by in F6Publishing: 40] [Article Influence: 4.5] [Reference Citation Analysis]
170 Jiang J, Shi Y, Cao J, Lu Y, Sun G, Yang J. Role of ASM/Cer/TXNIP signaling module in the NLRP3 inflammasome activation. Lipids Health Dis 2021;20:19. [PMID: 33612104 DOI: 10.1186/s12944-021-01446-4] [Reference Citation Analysis]
171 Lautenschläger I, Wong YL, Sarau J, Goldmann T, Zitta K, Albrecht M, Frerichs I, Weiler N, Uhlig S. Signalling mechanisms in PAF-induced intestinal failure. Sci Rep 2017;7:13382. [PMID: 29042668 DOI: 10.1038/s41598-017-13850-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
172 Tibboel J, Reiss I, de Jongste JC, Post M. Ceramides: a potential therapeutic target in pulmonary emphysema. Respir Res 2013;14:96. [PMID: 24083966 DOI: 10.1186/1465-9921-14-96] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
173 Riethmüller J, Riehle A, Grassmé H, Gulbins E. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 2006;1758:2139-47. [PMID: 17094939 DOI: 10.1016/j.bbamem.2006.07.017] [Cited by in Crossref: 117] [Cited by in F6Publishing: 110] [Article Influence: 7.3] [Reference Citation Analysis]
174 Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, Petrusca DN, Mollace V, Mazzon E, Li D, Petrache I, Matuschak GM, Salvemini D. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 2009;329:64-75. [PMID: 19033555 DOI: 10.1124/jpet.108.146290] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 3.8] [Reference Citation Analysis]
175 Billich A, Baumruker T. Sphingolipid metabolizing enzymes as novel therapeutic targets. Subcell Biochem 2008;49:487-522. [PMID: 18751924 DOI: 10.1007/978-1-4020-8831-5_19] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
176 Granero-Moltó F, Sarmah S, O'Rear L, Spagnoli A, Abrahamson D, Saus J, Hudson BG, Knapik EW. Goodpasture antigen-binding protein and its spliced variant, ceramide transfer protein, have different functions in the modulation of apoptosis during zebrafish development. J Biol Chem 2008;283:20495-504. [PMID: 18424781 DOI: 10.1074/jbc.M801806200] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
177 Sun T, Li D, Wang L, Xia L, Ma J, Guan Z, Feng G, Zhu X. c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J Transl Med 2011;9:161. [PMID: 21943220 DOI: 10.1186/1479-5876-9-161] [Cited by in Crossref: 46] [Cited by in F6Publishing: 52] [Article Influence: 4.2] [Reference Citation Analysis]
178 Arana L, Gangoiti P, Ouro A, Trueba M, Gómez-Muñoz A. Ceramide and ceramide 1-phosphate in health and disease. Lipids Health Dis 2010;9:15. [PMID: 20137073 DOI: 10.1186/1476-511X-9-15] [Cited by in Crossref: 125] [Cited by in F6Publishing: 68] [Article Influence: 10.4] [Reference Citation Analysis]
179 Tung J, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Reviews 2022. [DOI: 10.1016/j.blre.2021.100926] [Reference Citation Analysis]
180 Xu M, Liu K, Southall N, Marugan JJ, Remaley AT, Zheng W. A high-throughput sphingomyelinase assay using natural substrate. Anal Bioanal Chem 2012;404:407-14. [PMID: 22710568 DOI: 10.1007/s00216-012-6174-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
181 Jbeily N, Suckert I, Gonnert FA, Acht B, Bockmeyer CL, Grossmann SD, Blaess MF, Lueth A, Deigner HP, Bauer M, Claus RA. Hyperresponsiveness of mice deficient in plasma-secreted sphingomyelinase reveals its pivotal role in early phase of host response. J Lipid Res 2013;54:410-24. [PMID: 23230083 DOI: 10.1194/jlr.M031625] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
182 Frank JA, Parsons PE, Matthay MA. Pathogenetic significance of biological markers of ventilator-associated lung injury in experimental and clinical studies. Chest 2006;130:1906-14. [PMID: 17167015 DOI: 10.1378/chest.130.6.1906] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 5.5] [Reference Citation Analysis]
183 Goldkorn T, Khan EM. Dual Roles of Oxidative Stress in the Lungs. In: Valacchi G, Davis PA, editors. Oxidants in Biology. Dordrecht: Springer Netherlands; 2008. pp. 231-50. [DOI: 10.1007/978-1-4020-8399-0_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
184 Lindner K, Uhlig U, Uhlig S. Ceramide alters endothelial cell permeability by a nonapoptotic mechanism. Br J Pharmacol 2005;145:132-40. [PMID: 15735657 DOI: 10.1038/sj.bjp.0706173] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.1] [Reference Citation Analysis]
185 von Bismarck P, Winoto-Morbach S, Herzberg M, Uhlig U, Schütze S, Lucius R, Krause MF. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model. Pulm Pharmacol Ther 2012;25:228-35. [PMID: 22469869 DOI: 10.1016/j.pupt.2012.03.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
186 Bodas M, Min T, Mazur S, Vij N. Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J Immunol 2011;186:602-13. [PMID: 21135173 DOI: 10.4049/jimmunol.1002850] [Cited by in Crossref: 71] [Cited by in F6Publishing: 70] [Article Influence: 5.9] [Reference Citation Analysis]
187 Stancevic B, Kolesnick R. Ceramide-rich platforms in transmembrane signaling. FEBS Lett 2010;584:1728-40. [PMID: 20178791 DOI: 10.1016/j.febslet.2010.02.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 178] [Article Influence: 15.7] [Reference Citation Analysis]
188 Gómez-muñoz A, Ordoñez M, Rivera I, Presa N, Gomez-larrauri A, Trueba M, Ouro A. Ceramide 1-Phosphate: A Mediator of Inflammatory Responses. In: Parnham MJ, editor. Compendium of Inflammatory Diseases. Basel: Springer; 2016. pp. 298-307. [DOI: 10.1007/978-3-7643-8550-7_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
189 Kolliputi N, Galam L, Parthasarathy PT, Tipparaju SM, Lockey RF. NALP-3 inflammasome silencing attenuates ceramide-induced transepithelial permeability. J Cell Physiol 2012;227:3310-6. [PMID: 22169929 DOI: 10.1002/jcp.24026] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
190 Patti GJ, Tautenhahn R, Rinehart D, Cho K, Shriver LP, Manchester M, Nikolskiy I, Johnson CH, Mahieu NG, Siuzdak G. A view from above: cloud plots to visualize global metabolomic data. Anal Chem 2013;85:798-804. [PMID: 23206250 DOI: 10.1021/ac3029745] [Cited by in Crossref: 65] [Cited by in F6Publishing: 64] [Article Influence: 6.5] [Reference Citation Analysis]
191 Rotolo J, Stancevic B, Zhang J, Hua G, Fuller J, Yin X, Haimovitz-Friedman A, Kim K, Qian M, Cardó-Vila M, Fuks Z, Pasqualini R, Arap W, Kolesnick R. Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice. J Clin Invest 2012;122:1786-90. [PMID: 22466649 DOI: 10.1172/JCI59920] [Cited by in Crossref: 79] [Cited by in F6Publishing: 51] [Article Influence: 7.9] [Reference Citation Analysis]
192 Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Review of Respiratory Medicine 2014;5:527-35. [DOI: 10.1586/ers.11.36] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
193 Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011;51:951-66. [PMID: 21277369 DOI: 10.1016/j.freeradbiomed.2011.01.026] [Cited by in Crossref: 167] [Cited by in F6Publishing: 168] [Article Influence: 15.2] [Reference Citation Analysis]
194 Becker KA, Riethmüller J, Zhang Y, Gulbins E. The role of sphingolipids and ceramide in pulmonary inflammation in cystic fibrosis. Open Respir Med J. 2010;4:39-47. [PMID: 20556203 DOI: 10.2174/1874306401004020039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 0.3] [Reference Citation Analysis]
195 Roth A, Drescher D, Yang Y, Redmer S, Uhlig S, Arenz C. Potente und selektive Inhibition der sauren Sphingomyelinase durch Bisphosphonate. Angew Chem 2009;121:7697-700. [DOI: 10.1002/ange.200903288] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
196 Beckmann N, Sharma D, Gulbins E, Becker KA, Edelmann B. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons. Front Physiol 2014;5:331. [PMID: 25228885 DOI: 10.3389/fphys.2014.00331] [Cited by in Crossref: 66] [Cited by in F6Publishing: 69] [Article Influence: 8.3] [Reference Citation Analysis]
197 Rodriguez-cuenca S, Pellegrinelli V, Campbell M, Oresic M, Vidal-puig A. Sphingolipids and glycerophospholipids – The “ying and yang” of lipotoxicity in metabolic diseases. Progress in Lipid Research 2017;66:14-29. [DOI: 10.1016/j.plipres.2017.01.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 7.4] [Reference Citation Analysis]
198 Rivera IG, Ordoñez M, Presa N, Gomez-Larrauri A, Simón J, Trueba M, Gomez-Muñoz A. Sphingomyelinase D/ceramide 1-phosphate in cell survival and inflammation. Toxins (Basel) 2015;7:1457-66. [PMID: 25938271 DOI: 10.3390/toxins7051457] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 5.1] [Reference Citation Analysis]
199 Deshpande PR, Ravi R, Gouda S, Stanley W, Hande MH. Interstitial lung disease probably caused by imipramine. Am J Ther 2014;21:e66-8. [PMID: 22960847 DOI: 10.1097/MJT.0b013e318245ce81] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
200 Gómez-muñoz A, Gangoiti P, Granado MH, Arana L, Ouro A. Ceramide-1-Phosphate in Cell Survival and Inflammatory Signaling. In: Chalfant C, Poeta MD, editors. Sphingolipids as Signaling and Regulatory Molecules. New York: Springer; 2010. pp. 118-30. [DOI: 10.1007/978-1-4419-6741-1_8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 2.9] [Reference Citation Analysis]
201 Ichikawa A, Kuba K, Morita M, Chida S, Tezuka H, Hara H, Sasaki T, Ohteki T, Ranieri VM, dos Santos CC, Kawaoka Y, Akira S, Luster AD, Lu B, Penninger JM, Uhlig S, Slutsky AS, Imai Y. CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med 2013;187:65-77. [PMID: 23144331 DOI: 10.1164/rccm.201203-0508OC] [Cited by in Crossref: 146] [Cited by in F6Publishing: 100] [Article Influence: 14.6] [Reference Citation Analysis]