BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10:1366-1373. [PMID: 15558055 DOI: 10.1038/nm1140] [Cited by in Crossref: 777] [Cited by in F6Publishing: 731] [Article Influence: 45.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhao HW, Yue YH, Han H, Chen XL, Lu YG, Zheng JM, Hou HT, Lang XM, He LL, Hu QL, Dun ZQ. Effect of toll-like receptor 3 agonist poly I:C on intestinal mucosa and epithelial barrier function in mouse models of acute colitis. World J Gastroenterol 2017;23:999-1009. [PMID: 28246473 DOI: 10.3748/wjg.v23.i6.999] [Cited by in CrossRef: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
2 Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012;11:237-56. [PMID: 22309671 DOI: 10.1586/erv.11.189] [Cited by in Crossref: 85] [Cited by in F6Publishing: 74] [Article Influence: 9.4] [Reference Citation Analysis]
3 Lindquist L. Tick-borne encephalitis. Handb Clin Neurol 2014;123:531-59. [PMID: 25015503 DOI: 10.1016/B978-0-444-53488-0.00025-0] [Cited by in Crossref: 30] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
4 Winkelmann ER, Luo H, Wang T. West Nile Virus Infection in the Central Nervous System. F1000Res 2016;5:F1000 Faculty Rev-105. [PMID: 26918172 DOI: 10.12688/f1000research.7404.1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
5 Holzer P, Farzi A, Hassan AM, Zenz G, Jačan A, Reichmann F. Visceral Inflammation and Immune Activation Stress the Brain. Front Immunol 2017;8:1613. [PMID: 29213271 DOI: 10.3389/fimmu.2017.01613] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
6 Acharya D, Wang P, Paul AM, Dai J, Gate D, Lowery JE, Stokic DS, Leis AA, Flavell RA, Town T, Fikrig E, Bai F. Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance. J Virol 2017;91:e01529-16. [PMID: 27795421 DOI: 10.1128/JVI.01529-16] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
7 Butchi NB, Pourciau S, Du M, Morgan TW, Peterson KE. Analysis of the neuroinflammatory response to TLR7 stimulation in the brain: comparison of multiple TLR7 and/or TLR8 agonists. J Immunol 2008;180:7604-12. [PMID: 18490763 DOI: 10.4049/jimmunol.180.11.7604] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 4.5] [Reference Citation Analysis]
8 Shipley MM, Mangold CA, Kuny CV, Szpara ML. Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017;91:e00958-17. [PMID: 28956768 DOI: 10.1128/JVI.00958-17] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
9 Rawle DJ, Setoh YX, Edmonds JH, Khromykh AA. Comparison of attenuated and virulent West Nile virus strains in human monocyte-derived dendritic cells as a model of initial human infection. Virol J 2015;12:46. [PMID: 25884341 DOI: 10.1186/s12985-015-0279-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
10 Holtzman MJ, Byers DE, Alexander-Brett J, Wang X. The role of airway epithelial cells and innate immune cells in chronic respiratory disease. Nat Rev Immunol 2014;14:686-98. [PMID: 25234144 DOI: 10.1038/nri3739] [Cited by in Crossref: 142] [Cited by in F6Publishing: 129] [Article Influence: 20.3] [Reference Citation Analysis]
11 Saxena V, Xie G, Li B, Farris T, Welte T, Gong B, Boor P, Wu P, Tang SJ, Tesh R, Wang T. A hamster-derived West Nile virus isolate induces persistent renal infection in mice. PLoS Negl Trop Dis 2013;7:e2275. [PMID: 23785537 DOI: 10.1371/journal.pntd.0002275] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 3.9] [Reference Citation Analysis]
12 Yang C, Su J. Molecular identification and expression analysis of Toll-like receptor 3 in common carp Cyprinus carpio. Journal of Fish Biology 2010;76:1926-39. [DOI: 10.1111/j.1095-8649.2010.02624.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
13 Hardarson HS, Baker JS, Yang Z, Purevjav E, Huang CH, Alexopoulou L, Li N, Flavell RA, Bowles NE, Vallejo JG. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am J Physiol Heart Circ Physiol 2007;292:H251-8. [PMID: 16936008 DOI: 10.1152/ajpheart.00398.2006] [Cited by in Crossref: 119] [Cited by in F6Publishing: 115] [Article Influence: 7.9] [Reference Citation Analysis]
14 Carpentier PA, Duncan DS, Miller SD. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav Immun 2008;22:140-7. [PMID: 17920811 DOI: 10.1016/j.bbi.2007.08.011] [Cited by in Crossref: 119] [Cited by in F6Publishing: 116] [Article Influence: 8.5] [Reference Citation Analysis]
15 Kristensson K. Microbes' roadmap to neurons. Nat Rev Neurosci 2011;12:345-57. [DOI: 10.1038/nrn3029] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
16 Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci. 2013;35:102-129. [PMID: 23446060 DOI: 10.1159/000346157] [Cited by in Crossref: 88] [Cited by in F6Publishing: 77] [Article Influence: 11.0] [Reference Citation Analysis]
17 Zhao J, Kong HJ, Li H, Huang B, Yang M, Zhu C, Bogunovic M, Zheng F, Mayer L, Ozato K, Unkeless J, Xiong H. IRF-8/Interferon (IFN) Consensus Sequence-binding Protein Is Involved in Toll-like Receptor (TLR) Signaling and Contributes to the Cross-talk between TLR and IFN-γ Signaling Pathways. Journal of Biological Chemistry 2006;281:10073-80. [DOI: 10.1074/jbc.m507788200] [Cited by in Crossref: 105] [Cited by in F6Publishing: 58] [Article Influence: 7.0] [Reference Citation Analysis]
18 Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D. Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci 2011;68:2357-70. [PMID: 21560072 DOI: 10.1007/s00018-011-0699-1] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 8.3] [Reference Citation Analysis]
19 Kobayashi S, Orba Y, Yamaguchi H, Kimura T, Sawa H. Accumulation of ubiquitinated proteins is related to West Nile virus-induced neuronal apoptosis. Neuropathology. 2012;32:398-405. [PMID: 22129084 DOI: 10.1111/j.1440-1789.2011.01275.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
20 Gupta N, Rao PV. Transcriptomic profile of host response in Japanese encephalitis virus infection. Virol J 2011;8:92. [PMID: 21371334 DOI: 10.1186/1743-422X-8-92] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 3.9] [Reference Citation Analysis]
21 Bhattacharjee A, Chaudhuri R, Dash JJ, Saha M, Choudhury L, Roy S. Pre-treatment with Scopolamine Naturally Suppresses Japanese Encephalitis Viral Load in Embryonated Chick Through Regulation of Multiple Signaling Pathways. Appl Biochem Biotechnol 2021;193:1654-74. [PMID: 33620666 DOI: 10.1007/s12010-021-03526-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Peng Y, Zhang L. Extensive study of cytokine, chemokines expression in peripheral blood mononuclear cells upon CpG stimulation. J Immunoassay Immunochem 2015;36:387-97. [PMID: 25317864 DOI: 10.1080/15321819.2014.969435] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
23 Carty M, Guy C, Bowie AG. Detection of Viral Infections by Innate Immunity. Biochem Pharmacol. 2021;183:114316. [PMID: 33152343 DOI: 10.1016/j.bcp.2020.114316] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 28.0] [Reference Citation Analysis]
24 Netland J, Bevan MJ. CD8 and CD4 T cells in west nile virus immunity and pathogenesis. Viruses 2013;5:2573-84. [PMID: 24153060 DOI: 10.3390/v5102573] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
25 He X, Jia H, Jing Z, Liu D. Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors. Acta Biochim Biophys Sin (Shanghai) 2013;45:241-58. [PMID: 23369718 DOI: 10.1093/abbs/gms122] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
26 Garcia M, Alout H, Diop F, Damour A, Bengue M, Weill M, Missé D, Lévêque N, Bodet C. Innate Immune Response of Primary Human Keratinocytes to West Nile Virus Infection and Its Modulation by Mosquito Saliva. Front Cell Infect Microbiol 2018;8:387. [PMID: 30450338 DOI: 10.3389/fcimb.2018.00387] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
27 Negishi H, Osawa T, Ogami K, Ouyang X, Sakaguchi S, Koshiba R, Yanai H, Seko Y, Shitara H, Bishop K. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc Natl Acad Sci USA. 2008;105:20446-20451. [PMID: 19074283 DOI: 10.1073/pnas.0810372105] [Cited by in Crossref: 149] [Cited by in F6Publishing: 137] [Article Influence: 11.5] [Reference Citation Analysis]
28 Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A, Yamamoto M, Akira S, Fitzgerald KA. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol. 2005;175:5260-5268. [PMID: 16210631 DOI: 10.4049/jimmunol.175.8.5260] [Cited by in Crossref: 412] [Cited by in F6Publishing: 408] [Article Influence: 25.8] [Reference Citation Analysis]
29 Shingai M, Inoue N, Okuno T, Okabe M, Akazawa T, Miyamoto Y, Ayata M, Honda K, Kurita-Taniguchi M, Matsumoto M, Ogura H, Taniguchi T, Seya T. Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 2005;175:3252-61. [PMID: 16116216 DOI: 10.4049/jimmunol.175.5.3252] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 2.8] [Reference Citation Analysis]
30 Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. Handb Clin Neurol. 2014;123:225-247. [PMID: 25015488 DOI: 10.1016/b978-0-444-0.00010-9] [Reference Citation Analysis]
31 Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014;9:811-29. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
32 Cristofaro P, Opal SM. Role of Toll-like receptors in infection and immunity: clinical implications. Drugs 2006;66:15-29. [PMID: 16398566 DOI: 10.2165/00003495-200666010-00002] [Cited by in Crossref: 89] [Cited by in F6Publishing: 76] [Article Influence: 5.9] [Reference Citation Analysis]
33 Guggemoos S, Hangel D, Hamm S, Heit A, Bauer S, Adler H. TLR9 contributes to antiviral immunity during gammaherpesvirus infection. J Immunol 2008;180:438-43. [PMID: 18097045 DOI: 10.4049/jimmunol.180.1.438] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
34 Carpenter S, O'neill LAJ. How important are Toll-like receptors for antimicrobial responses? Cell Microbiol 2007;9:1891-901. [DOI: 10.1111/j.1462-5822.2007.00965.x] [Cited by in Crossref: 109] [Cited by in F6Publishing: 96] [Article Influence: 7.8] [Reference Citation Analysis]
35 Ulbert S. West Nile virus: the complex biology of an emerging pathogen. Intervirology 2011;54:171-84. [PMID: 21576931 DOI: 10.1159/000328320] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
36 Shwetank, Date OS, Kim KS, Manjunath R. Infection of human endothelial cells by Japanese encephalitis virus: increased expression and release of soluble HLA-E. PLoS One 2013;8:e79197. [PMID: 24236107 DOI: 10.1371/journal.pone.0079197] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
37 Szretter KJ, Daffis S, Patel J, Suthar MS, Klein RS, Gale M, Diamond MS. The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol. 2010;84:12125-12138. [PMID: 20881045 DOI: 10.1128/jvi.01026-10] [Cited by in Crossref: 83] [Cited by in F6Publishing: 71] [Article Influence: 7.5] [Reference Citation Analysis]
38 Sultana H, Foellmer HG, Neelakanta G, Oliphant T, Engle M, Ledizet M, Krishnan MN, Bonafé N, Anthony KG, Marasco WA, Kaplan P, Montgomery RR, Diamond MS, Koski RA, Fikrig E. Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody. J Immunol 2009;183:650-60. [PMID: 19535627 DOI: 10.4049/jimmunol.0900093] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
39 Moran EA, Ross SR. Insights into Sensing of Murine Retroviruses. Viruses 2020;12:E836. [PMID: 32751803 DOI: 10.3390/v12080836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Dutta K, Ghosh S, Basu A. Infections and Inflammation in the Brain and Spinal Cord: A Dangerous Liaison. In: Jana N, Basu A, Tandon PN, editors. Inflammation: the Common Link in Brain Pathologies. Singapore: Springer; 2016. pp. 71-138. [DOI: 10.1007/978-981-10-1711-7_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
41 Chugh PE, Damania BA, Dittmer DP. Toll-like receptor-3 is dispensable for the innate microRNA response to West Nile virus (WNV). PLoS One 2014;9:e104770. [PMID: 25127040 DOI: 10.1371/journal.pone.0104770] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
42 Paul AM, Acharya D, Le L, Wang P, Stokic DS, Leis AA, Alexopoulou L, Town T, Flavell RA, Fikrig E, Bai F. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice. J Immunol 2016;197:4425-35. [PMID: 27798161 DOI: 10.4049/jimmunol.1600902] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
43 Anders HJ, Zecher D, Pawar RD, Patole PS. Molecular mechanisms of autoimmunity triggered by microbial infection. Arthritis Res Ther 2005;7:215-24. [PMID: 16207351 DOI: 10.1186/ar1818] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
44 Zelaya H, Tada A, Vizoso-Pinto MG, Salva S, Kanmani P, Agüero G, Alvarez S, Kitazawa H, Villena J. Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res 2015;64:589-602. [PMID: 26072063 DOI: 10.1007/s00011-015-0837-6] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
45 Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 2014;6:2796-825. [PMID: 25046180 DOI: 10.3390/v6072796] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 10.4] [Reference Citation Analysis]
46 Chen CS, Yao YC, Lin SC, Lee YP, Wang YF, Wang JR, Liu CC, Lei HY, Yu CK. Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. J Virol 2007;81:8996-9003. [PMID: 17567704 DOI: 10.1128/JVI.00236-07] [Cited by in Crossref: 117] [Cited by in F6Publishing: 70] [Article Influence: 8.4] [Reference Citation Analysis]
47 Baronti C, Sire J, de Lamballerie X, Quérat G. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology 2010;404:319-30. [PMID: 20554300 DOI: 10.1016/j.virol.2010.05.020] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
48 Gamino V, Höfle U. Pathology and tissue tropism of natural West Nile virus infection in birds: a review. Vet Res 2013;44:39. [PMID: 23731695 DOI: 10.1186/1297-9716-44-39] [Cited by in Crossref: 55] [Cited by in F6Publishing: 43] [Article Influence: 6.9] [Reference Citation Analysis]
49 Sironi M, Biasin M, Cagliani R, Forni D, De Luca M, Saulle I, Lo Caputo S, Mazzotta F, Macías J, Pineda JA, Caruz A, Clerici M. A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol 2012;188:818-23. [PMID: 22174453 DOI: 10.4049/jimmunol.1102179] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 7.6] [Reference Citation Analysis]
50 Swiecki M, McCartney SA, Wang Y, Colonna M. TLR7/9 versus TLR3/MDA5 signaling during virus infections and diabetes. J Leukoc Biol 2011;90:691-701. [PMID: 21844166 DOI: 10.1189/jlb.0311166] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
51 Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13:552-9. [DOI: 10.1038/nm1589] [Cited by in Crossref: 609] [Cited by in F6Publishing: 565] [Article Influence: 43.5] [Reference Citation Analysis]
52 Hollidge BS, Cohen CA, Akuoku Frimpong J, Badger CV, Dye JM, Schmaljohn CS. Toll-like receptor 4 mediates blood-brain barrier permeability and disease in C3H mice during Venezuelan equine encephalitis virus infection. Virulence 2021;12:430-43. [PMID: 33487119 DOI: 10.1080/21505594.2020.1870834] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Okamoto M, Tsukamoto H, Kouwaki T, Seya T, Oshiumi H. Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunol 2017;30:408-20. [PMID: 28609250 DOI: 10.1089/vim.2016.0178] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
54 Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol 2009;9:429-39. [PMID: 19461673 DOI: 10.1038/nri2565] [Cited by in Crossref: 525] [Cited by in F6Publishing: 503] [Article Influence: 43.8] [Reference Citation Analysis]
55 Rivarola ME, Albrieu-Llinás G, Pisano MB, Tauro LB, Gorosito-Serrán M, Beccaria CG, Díaz LA, Vázquez A, Quaglia A, López C, Spinsanti L, Gruppi A, Contigiani MS. Tissue tropism of Saint Louis encephalitis virus: Histopathology triggered by epidemic and non-epidemic strains isolated in Argentina. Virology 2017;505:181-92. [PMID: 28279829 DOI: 10.1016/j.virol.2017.02.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
56 Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M Jr, Klein RS, Diamond MS. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 2015;7:284ra59. [PMID: 25904743 DOI: 10.1126/scitranslmed.aaa4304] [Cited by in Crossref: 139] [Cited by in F6Publishing: 122] [Article Influence: 27.8] [Reference Citation Analysis]
57 Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect 2014;69:203-15. [PMID: 24880028 DOI: 10.1016/j.jinf.2014.05.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
58 Oyer RJ, David Beckham J, Tyler KL. West Nile and St. Louis encephalitis viruses. Handb Clin Neurol. 2014;123:433-447. [PMID: 25015498 DOI: 10.1016/b978-0-444-53488-0.00020-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
59 Durrant DM, Daniels BP, Pasieka T, Dorsey D, Klein RS. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system. J Neuroinflammation 2015;12:233. [PMID: 26667390 DOI: 10.1186/s12974-015-0447-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
60 Ibi D, Nagai T, Kitahara Y, Mizoguchi H, Koike H, Shiraki A, Takuma K, Kamei H, Noda Y, Nitta A, Nabeshima T, Yoneda Y, Yamada K. Neonatal polyI:C treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood. Neurosci Res 2009;64:297-305. [PMID: 19447299 DOI: 10.1016/j.neures.2009.03.015] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 7.5] [Reference Citation Analysis]
61 Sahoo M, Ceballos-Olvera I, del Barrio L, Re F. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. ScientificWorldJournal 2011;11:2037-50. [PMID: 22125454 DOI: 10.1100/2011/212680] [Cited by in Crossref: 137] [Cited by in F6Publishing: 119] [Article Influence: 13.7] [Reference Citation Analysis]
62 Wang P, Bai F, Zenewicz LA, Dai J, Gate D, Cheng G, Yang L, Qian F, Yuan X, Montgomery RR, Flavell RA, Town T, Fikrig E. IL-22 signaling contributes to West Nile encephalitis pathogenesis. PLoS One 2012;7:e44153. [PMID: 22952908 DOI: 10.1371/journal.pone.0044153] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
63 Lin K, Ge H, Lin Q, Wu J, He L, Fang Q, Zhou C, Sun M, Huang Z. Molecular characterization and functional analysis of Toll-like receptor 3 gene in orange-spotted grouper (Epinephelus coioides). Gene 2013;527:174-82. [PMID: 23792060 DOI: 10.1016/j.gene.2013.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
64 Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020;21:E6148. [PMID: 32858917 DOI: 10.3390/ijms21176148] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Tang BL. Zika virus as a causative agent for primary microencephaly: the evidence so far. Arch Microbiol 2016;198:595-601. [PMID: 27412681 DOI: 10.1007/s00203-016-1268-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
66 Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity 2017;60:1-12. [DOI: 10.1016/j.bbi.2016.03.010] [Cited by in Crossref: 370] [Cited by in F6Publishing: 315] [Article Influence: 92.5] [Reference Citation Analysis]
67 Al-Jabi SW. Global research trends in West Nile virus from 1943 to 2016: a bibliometric analysis. Global Health. 2017;13:55. [PMID: 28774315 DOI: 10.1186/s12992-017-0284-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
68 Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol 2018;48:1607-20. [PMID: 30160302 DOI: 10.1002/eji.201646789] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
69 Saito T, Gale M Jr. Principles of intracellular viral recognition. Curr Opin Immunol 2007;19:17-23. [PMID: 17118636 DOI: 10.1016/j.coi.2006.11.003] [Cited by in Crossref: 106] [Cited by in F6Publishing: 106] [Article Influence: 7.1] [Reference Citation Analysis]
70 Gralinski LE, Ferris MT, Aylor DL, Whitmore AC, Green R, Frieman MB, Deming D, Menachery VD, Miller DR, Buus RJ, Bell TA, Churchill GA, Threadgill DW, Katze MG, McMillan L, Valdar W, Heise MT, Pardo-Manuel de Villena F, Baric RS. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet 2015;11:e1005504. [PMID: 26452100 DOI: 10.1371/journal.pgen.1005504] [Cited by in Crossref: 95] [Cited by in F6Publishing: 80] [Article Influence: 15.8] [Reference Citation Analysis]
71 Sips GJ, Wilschut J, Smit JM. Neuroinvasive flavivirus infections. Rev Med Virol 2012;22:69-87. [PMID: 22086854 DOI: 10.1002/rmv.712] [Cited by in Crossref: 98] [Cited by in F6Publishing: 78] [Article Influence: 9.8] [Reference Citation Analysis]
72 Shrestha B, Diamond MS. Fas ligand interactions contribute to CD8+ T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol 2007;81:11749-57. [PMID: 17804505 DOI: 10.1128/JVI.01136-07] [Cited by in Crossref: 72] [Cited by in F6Publishing: 50] [Article Influence: 5.1] [Reference Citation Analysis]
73 Kajaste-Rudnitski A, Naldini L. Cellular innate immunity and restriction of viral infection: implications for lentiviral gene therapy in human hematopoietic cells. Hum Gene Ther 2015;26:201-9. [PMID: 25808164 DOI: 10.1089/hum.2015.036] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
74 Vercammen E, Staal J, Beyaert R. Sensing of viral infection and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 2008;21:13-25. [PMID: 18202435 DOI: 10.1128/CMR.00022-07] [Cited by in Crossref: 199] [Cited by in F6Publishing: 120] [Article Influence: 15.3] [Reference Citation Analysis]
75 Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020;13:1001-46. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
76 Hochrein H, O'Keeffe M. Dendritic cell subsets and toll-like receptors. Handb Exp Pharmacol 2008;:153-79. [PMID: 18071659 DOI: 10.1007/978-3-540-72167-3_8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
77 Wang X, Wu K, Keeler SP, Mao D, Agapov EV, Zhang Y, Holtzman MJ. TLR3-Activated Monocyte-Derived Dendritic Cells Trigger Progression from Acute Viral Infection to Chronic Disease in the Lung. J Immunol 2021;206:1297-314. [PMID: 33514511 DOI: 10.4049/jimmunol.2000965] [Reference Citation Analysis]
78 McCall RL, Cacaccio J, Wrabel E, Schwartz ME, Coleman TP, Sirianni RW. Pathogen-inspired drug delivery to the central nervous system. Tissue Barriers 2014;2:e944449. [PMID: 25610755 DOI: 10.4161/21688362.2014.944449] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
79 Cao L, Yang G, Gao S, Jing C, Montgomery RR, Yin Y, Wang P, Fikrig E, You F. HIPK2 is necessary for type I interferon-mediated antiviral immunity. Sci Signal 2019;12:eaau4604. [PMID: 30890658 DOI: 10.1126/scisignal.aau4604] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
80 Valadão AL, Aguiar RS, de Arruda LB. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses. Front Microbiol 2016;7:1233. [PMID: 27610098 DOI: 10.3389/fmicb.2016.01233] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
81 Lazear HM, Diamond MS. New insights into innate immune restriction of West Nile virus infection. Curr Opin Virol 2015;11:1-6. [PMID: 25554924 DOI: 10.1016/j.coviro.2014.12.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
82 Shrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol 2006;80:119-29. [PMID: 16352536 DOI: 10.1128/JVI.80.1.119-129.2006] [Cited by in Crossref: 155] [Cited by in F6Publishing: 117] [Article Influence: 11.1] [Reference Citation Analysis]
83 Ishikawa T, Yamada H, Oyamada A, Goshima F, Nishiyama Y, Yoshikai Y. Protective role of Fas-FasL signaling in lethal infection with herpes simplex virus type 2 in mice. J Virol 2009;83:11777-83. [PMID: 19740996 DOI: 10.1128/JVI.01006-09] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
84 Su J, Jang S, Yang C, Wang Y, Zhu Z. Genomic organization and expression analysis of Toll-like receptor 3 in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2009;27:433-9. [PMID: 19545638 DOI: 10.1016/j.fsi.2009.06.009] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 4.1] [Reference Citation Analysis]
85 Lim J, Louie C, Glaser C, Jean C, Johnson B, Johnson H, Mcdermott D, Murphy P. Genetic Deficiency of Chemokine Receptor CCR5 Is a Strong Risk Factor for Symptomatic West Nile Virus Infection: A Meta‐Analysis of 4 Cohorts in the US Epidemic. J INFECT DIS 2008;197:262-5. [DOI: 10.1086/524691] [Cited by in Crossref: 145] [Cited by in F6Publishing: 133] [Article Influence: 11.2] [Reference Citation Analysis]
86 Xie G, Luo H, Pang L, Peng BH, Winkelmann E, McGruder B, Hesse J, Whiteman M, Campbell G, Milligan GN, Cong Y, Barrett AD, Wang T. Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice. J Virol 2016;90:1333-44. [PMID: 26581984 DOI: 10.1128/JVI.02488-15] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.2] [Reference Citation Analysis]
87 Hopkins PA, Sriskandan S. Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol. 2005;140:395-407. [PMID: 15932500 DOI: 10.1111/j.1365-2249.2005.02801.x] [Cited by in Crossref: 145] [Cited by in F6Publishing: 133] [Article Influence: 9.1] [Reference Citation Analysis]
88 Rieder M, Conzelmann KK. Interferon in rabies virus infection. Adv Virus Res 2011;79:91-114. [PMID: 21601044 DOI: 10.1016/B978-0-12-387040-7.00006-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
89 Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol. 2006;80:5338-5348. [PMID: 16699014 DOI: 10.1128/jvi.00274-06] [Cited by in Crossref: 148] [Cited by in F6Publishing: 96] [Article Influence: 10.6] [Reference Citation Analysis]
90 Conrady CD, Zheng M, van Rooijen N, Drevets DA, Royer D, Alleman A, Carr DJ. Microglia and a functional type I IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis. J Immunol 2013;190:2807-17. [PMID: 23382563 DOI: 10.4049/jimmunol.1203265] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 6.3] [Reference Citation Analysis]
91 Daffis S, Samuel MA, Keller BC, Gale M, Diamond MS. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and -independent mechanisms. PLoS Pathog. 2007;3:e106. [PMID: 17676997 DOI: 10.1371/journal.ppat.0030106] [Cited by in Crossref: 146] [Cited by in F6Publishing: 144] [Article Influence: 10.4] [Reference Citation Analysis]
92 Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 2011;6:e20472. [PMID: 21629771 DOI: 10.1371/journal.pone.0020472] [Cited by in Crossref: 75] [Cited by in F6Publishing: 64] [Article Influence: 7.5] [Reference Citation Analysis]
93 Olson B, Marks DL. Pretreatment Cancer-Related Cognitive Impairment-Mechanisms and Outlook. Cancers (Basel) 2019;11:E687. [PMID: 31100985 DOI: 10.3390/cancers11050687] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
94 Burgan SC, Gervasi SS, Martin LB. Parasite Tolerance and Host Competence in Avian Host Defense to West Nile Virus. Ecohealth 2018;15:360-71. [PMID: 29569179 DOI: 10.1007/s10393-018-1332-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
95 Ahmed-Hassan H, Abdul-Cader MS, Ahmed Sabry M, Hamza E, Sharif S, Nagy E, Abdul-Careem MF. Double-Stranded Ribonucleic Acid-Mediated Antiviral Response Against Low Pathogenic Avian Influenza Virus Infection. Viral Immunol 2018;31:433-46. [PMID: 29813000 DOI: 10.1089/vim.2017.0142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
96 Kindberg E, Vene S, Mickiene A, Lundkvist Å, Lindquist L, Svensson L. A functional Toll-like receptor 3 gene (TLR3) may be a risk factor for tick-borne encephalitis virus (TBEV) infection. J Infect Dis 2011;203:523-8. [PMID: 21216866 DOI: 10.1093/infdis/jiq082] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 7.0] [Reference Citation Analysis]
97 Patel S, Sinigaglia A, Barzon L, Fassan M, Sparber F, LeibundGut-Landmann S, Ackermann M. Role of NS1 and TLR3 in Pathogenesis and Immunity of WNV. Viruses 2019;11:E603. [PMID: 31277274 DOI: 10.3390/v11070603] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
98 Chen K, Huang J, Liu Y, Gong W, Cui Y, Wang JM. Synergy of TRIF-dependent TLR3 and MyD88-dependent TLR7 in up-regulating expression of mouse FPR2, a promiscuous G-protein-coupled receptor, in microglial cells. J Neuroimmunol 2009;213:69-77. [PMID: 19559490 DOI: 10.1016/j.jneuroim.2009.05.018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
99 Abrantes J, Areal H, Esteves PJ. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genet 2013;14:73. [PMID: 23964588 DOI: 10.1186/1471-2156-14-73] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
100 Neal JW, Gasque P. The role of primary infection of Schwann cells in the aetiology of infective inflammatory neuropathies. J Infect 2016;73:402-18. [PMID: 27546064 DOI: 10.1016/j.jinf.2016.08.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
101 Matsumoto M, Funami K, Oshiumi H, Seya T. Toll-IL-1-receptor-containing adaptor molecule-1: a signaling adaptor linking innate immunity to adaptive immunity. Prog Mol Biol Transl Sci 2013;117:487-510. [PMID: 23663980 DOI: 10.1016/B978-0-12-386931-9.00018-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
102 Cheng K, Wang X, Yin H. Small-molecule inhibitors of the TLR3/dsRNA complex. J Am Chem Soc 2011;133:3764-7. [PMID: 21355588 DOI: 10.1021/ja111312h] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 7.0] [Reference Citation Analysis]
103 Deleidi M, Isacson O. Viral and inflammatory triggers of neurodegenerative diseases. Sci Transl Med 2012;4:121ps3. [PMID: 22344685 DOI: 10.1126/scitranslmed.3003492] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.1] [Reference Citation Analysis]
104 Arsenault D, St-Amour I, Cisbani G, Rousseau LS, Cicchetti F. The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain Behav Immun 2014;38:77-90. [PMID: 24384468 DOI: 10.1016/j.bbi.2013.12.016] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 6.5] [Reference Citation Analysis]
105 Carty M, Bowie AG. Recent insights into the role of Toll-like receptors in viral infection. Clin Exp Immunol. 2010;161:397-406. [PMID: 20560984 DOI: 10.1111/j.1365-2249.2010.04196.x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 6.8] [Reference Citation Analysis]
106 Pott J, Stockinger S, Torow N, Smoczek A, Lindner C, McInerney G, Bäckhed F, Baumann U, Pabst O, Bleich A. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog. 2012;8:e1002670. [PMID: 22570612 DOI: 10.1371/journal.ppat.1002670] [Cited by in Crossref: 104] [Cited by in F6Publishing: 92] [Article Influence: 11.6] [Reference Citation Analysis]
107 Matas-Cobos AM, Redondo-Cerezo E, Alegría-Motte C, Martínez-Chamorro A, Saenz-López P, Jiménez P, Jiménez MR, González-Calvín JL, de Teresa J, Osuna FR. The role of Toll-like receptor polymorphisms in acute pancreatitis occurrence and severity. Pancreas. 2015;44:429-433. [PMID: 25423559 DOI: 10.1097/MPA.0000000000000272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
108 Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell RA, Diamond MS, Colonna M. Essential role of mda-5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA. 2006;103:8459-8464. [PMID: 16714379 DOI: 10.1073/pnas.0603082103] [Cited by in Crossref: 814] [Cited by in F6Publishing: 777] [Article Influence: 54.3] [Reference Citation Analysis]
109 Best SM, Mitzel DN, Bloom ME. Action and reaction: the arthropod-borne flaviviruses and host interferon responses. Future Virology 2006;1:447-59. [DOI: 10.2217/17460794.1.4.447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
110 Klein RS, Diamond MS. Immunological headgear: antiviral immune responses protect against neuroinvasive West Nile virus. Trends Mol Med 2008;14:286-94. [PMID: 18539532 DOI: 10.1016/j.molmed.2008.05.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
111 Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol 2007;Chapter 14:Unit 14.12. [PMID: 18432983 DOI: 10.1002/0471142735.im1412s77] [Cited by in Crossref: 58] [Cited by in F6Publishing: 82] [Article Influence: 4.5] [Reference Citation Analysis]
112 Welte T, Xie G, Wicker JA, Whiteman MC, Li L, Rachamallu A, Barrett A, Wang T. Immune responses to an attenuated West Nile virus NS4B-P38G mutant strain. Vaccine. 2011;29:4853-4861. [PMID: 21549792 DOI: 10.1016/j.vaccine.2011.04.057] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
113 Zhong B, Wang YY, Shu HB. Regulation of virus-triggered type I interferon signaling by cellular and viral proteins. Front Biol (Beijing) 2010;5:12-31. [PMID: 32215003 DOI: 10.1007/s11515-010-0013-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
114 Wang Y, Swiecki M, McCartney SA, Colonna M. dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunol Rev 2011;243:74-90. [PMID: 21884168 DOI: 10.1111/j.1600-065X.2011.01049.x] [Cited by in Crossref: 39] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
115 Gralinski LE, Ashley SL, Dixon SD, Spindler KR. Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 2009;83:9398-410. [PMID: 19570856 DOI: 10.1128/JVI.00954-09] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
116 Oliphant T, Nybakken GE, Austin SK, Xu Q, Bramson J, Loeb M, Throsby M, Fremont DH, Pierson TC, Diamond MS. Induction of epitope-specific neutralizing antibodies against West Nile virus. J Virol 2007;81:11828-39. [PMID: 17715236 DOI: 10.1128/JVI.00643-07] [Cited by in Crossref: 137] [Cited by in F6Publishing: 104] [Article Influence: 9.8] [Reference Citation Analysis]
117 Fischer S, Cabrera-fuentes HA, Noll T, Preissner KT. Impact of extracellular RNA on endothelial barrier function. Cell Tissue Res 2014;355:635-45. [DOI: 10.1007/s00441-014-1850-8] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
118 Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. FEMS Immunol Med Microbiol 2011;63:297-318. [PMID: 22092557 DOI: 10.1111/j.1574-695X.2011.00867.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
119 Uematsu S, Fujimoto K. The innate immune system in the intestine. Microbiol Immunol. 2010;54:645-657. [PMID: 21044138 DOI: 10.1111/j.1348-0421.2010.00267.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
120 Town T, Nikolic V, Tan J. The microglial "activation" continuum: from innate to adaptive responses. J Neuroinflammation 2005;2:24. [PMID: 16259628 DOI: 10.1186/1742-2094-2-24] [Cited by in Crossref: 268] [Cited by in F6Publishing: 279] [Article Influence: 16.8] [Reference Citation Analysis]
121 Hida H, Mouri A, Ando Y, Mori K, Mamiya T, Iwamoto K, Ozaki N, Yamada K, Nabeshima T, Noda Y. Combination of neonatal PolyI:C and adolescent phencyclidine treatments is required to induce behavioral abnormalities with overexpression of GLAST in adult mice. Behav Brain Res 2014;258:34-42. [PMID: 24060653 DOI: 10.1016/j.bbr.2013.09.026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
122 Bunting RA, Duffy KE, Lamb RJ, San Mateo LR, Smalley K, Raymond H, Liu X, Petley T, Fisher J, Beck H, Flavell RA, Alexopoulou L, Ward CK. Novel antagonist antibody to TLR3 blocks poly(I:C)-induced inflammation in vivo and in vitro. Cell Immunol 2011;267:9-16. [PMID: 21092943 DOI: 10.1016/j.cellimm.2010.10.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
123 Zhao P, Zhao L, Zhang T, Qi Y, Wang T, Liu K, Wang H, Feng H, Jin H, Qin C, Yang S, Xia X. Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. Comp Immunol Microbiol Infect Dis 2011;34:503-12. [PMID: 22005334 DOI: 10.1016/j.cimid.2011.09.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
124 Pedras-Vasconcelos JA, Puig M, Sauder C, Wolbert C, Ovanesov M, Goucher D, Verthelyi D. Immunotherapy with CpG oligonucleotides and antibodies to TNF-alpha rescues neonatal mice from lethal arenavirus-induced meningoencephalitis. J Immunol 2008;180:8231-40. [PMID: 18523289 DOI: 10.4049/jimmunol.180.12.8231] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
125 Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 2013;140:153-67. [PMID: 23909285 DOI: 10.1111/imm.12143] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
126 Han YW, Choi JY, Uyangaa E, Kim SB, Kim JH, Kim BS, Kim K, Eo SK. Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog 2014;10:e1004319. [PMID: 25188232 DOI: 10.1371/journal.ppat.1004319] [Cited by in Crossref: 56] [Cited by in F6Publishing: 53] [Article Influence: 8.0] [Reference Citation Analysis]
127 Diamond MS, Pierson TC, Fremont DH. The structural immunology of antibody protection against West Nile virus. Immunol Rev. 2008;225:212-225. [PMID: 18837784 DOI: 10.1111/j.1600-065x.2008.00676.x] [Cited by in Crossref: 92] [Cited by in F6Publishing: 64] [Article Influence: 7.7] [Reference Citation Analysis]
128 Sultana H, Neelakanta G, Foellmer HG, Montgomery RR, Anderson JF, Koski RA, Medzhitov RM, Fikrig E. Semaphorin 7A contributes to West Nile virus pathogenesis through TGF-β1/Smad6 signaling. J Immunol 2012;189:3150-8. [PMID: 22896629 DOI: 10.4049/jimmunol.1201140] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
129 Yang EJ, Seo JW, Choi IH. Ribosomal Protein L19 and L22 Modulate TLR3 Signaling. Immune Netw 2011;11:155-62. [PMID: 21860608 DOI: 10.4110/in.2011.11.3.155] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
130 Verma R, Bharti K. Toll like receptor 3 and viral infections of nervous system. Journal of the Neurological Sciences 2017;372:40-8. [DOI: 10.1016/j.jns.2016.11.034] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
131 Figueroa-Lozano S, Valk-Weeber RL, van Leeuwen SS, Dijkhuizen L, de Vos P. Dietary N-Glycans from Bovine Lactoferrin and TLR Modulation. Mol Nutr Food Res 2018;62. [PMID: 28971586 DOI: 10.1002/mnfr.201700389] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
132 Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol. 2007;85:435-445. [PMID: 17667934 DOI: 10.1038/sj.icb.7100100] [Cited by in Crossref: 173] [Cited by in F6Publishing: 154] [Article Influence: 12.4] [Reference Citation Analysis]
133 David S, Abraham AM. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen. Infect Dis (Lond) 2016;48:571-86. [PMID: 27207312 DOI: 10.3109/23744235.2016.1164890] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 8.6] [Reference Citation Analysis]
134 Paludan SR, Mogensen TH. Constitutive and latent immune mechanisms exert 'silent' control of virus infections in the central nervous system. Curr Opin Immunol 2021;72:158-66. [PMID: 34062364 DOI: 10.1016/j.coi.2021.05.004] [Reference Citation Analysis]
135 Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S. Innate host responses to West Nile virus: Implications for central nervous system immunopathology. World J Virol. 2013;2:49-56. [PMID: 24175229 DOI: 10.5501/wjv.v2.i2.49] [Cited by in CrossRef: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
136 Oliphant T, Diamond MS. The molecular basis of antibody-mediated neutralization of West Nile virus. Expert Opin Biol Ther 2007;7:885-92. [PMID: 17555373 DOI: 10.1517/14712598.7.6.885] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
137 Kumar M, Roe K, Nerurkar PV, Namekar M, Orillo B, Verma S, Nerurkar VR. Impaired virus clearance, compromised immune response and increased mortality in type 2 diabetic mice infected with West Nile virus. PLoS One 2012;7:e44682. [PMID: 22953001 DOI: 10.1371/journal.pone.0044682] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 3.7] [Reference Citation Analysis]
138 Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review. Autoimmun Rev 2016;15:1-8. [PMID: 26299984 DOI: 10.1016/j.autrev.2015.08.009] [Cited by in Crossref: 160] [Cited by in F6Publishing: 132] [Article Influence: 26.7] [Reference Citation Analysis]
139 Han YW, Singh SK, Eo SK. The Roles and Perspectives of Toll-Like Receptors and CD4(+) Helper T Cell Subsets in Acute Viral Encephalitis. Immune Netw 2012;12:48-57. [PMID: 22740790 DOI: 10.4110/in.2012.12.2.48] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
140 Bréhin AC, Mouriès J, Frenkiel MP, Dadaglio G, Desprès P, Lafon M, Couderc T. Dynamics of immune cell recruitment during West Nile encephalitis and identification of a new CD19+B220-BST-2+ leukocyte population. J Immunol 2008;180:6760-7. [PMID: 18453596 DOI: 10.4049/jimmunol.180.10.6760] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 3.7] [Reference Citation Analysis]
141 Yarovinsky F, Hieny S, Sher A. Recognition of Toxoplasma gondii by TLR11 prevents parasite-induced immunopathology. J Immunol 2008;181:8478-84. [PMID: 19050265 DOI: 10.4049/jimmunol.181.12.8478] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
142 Morrey JD, Siddharthan V, Wang H. Neurological approaches for investigating West Nile virus disease and its treatment in rodents. Antiviral Res 2013;100:535-45. [PMID: 24055448 DOI: 10.1016/j.antiviral.2013.09.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
143 McCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW, Colonna M. MDA-5 recognition of a murine norovirus. PLoS Pathog 2008;4:e1000108. [PMID: 18636103 DOI: 10.1371/journal.ppat.1000108] [Cited by in Crossref: 152] [Cited by in F6Publishing: 146] [Article Influence: 11.7] [Reference Citation Analysis]
144 Beasley DWC, Barrett ADT. Virulence of West Nile Virus in Different Animal Hosts. West Nile Encephalitis Virus Infection. New York: Springer; 2009. pp. 137-53. [DOI: 10.1007/978-0-387-79840-0_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
145 Clé M, Barthelemy J, Desmetz C, Foulongne V, Lapeyre L, Bolloré K, Tuaillon E, Erkilic N, Kalatzis V, Lecollinet S, Beck C, Pirot N, Glasson Y, Gosselet F, Alvarez Martinez MT, Van de Perre P, Salinas S, Simonin Y. Study of Usutu virus neuropathogenicity in mice and human cellular models. PLoS Negl Trop Dis 2020;14:e0008223. [PMID: 32324736 DOI: 10.1371/journal.pntd.0008223] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
146 Ott D, Wuchert F, Murgott J, Rummel C, Gerstberger R, Roth J. The viral mimetic polyinosinic:polycytidylic acid (poly I:C) induces cellular responses in primary cultures from rat brain sites with an incomplete blood-brain barrier. Neurosci Lett 2012;530:64-8. [PMID: 23022505 DOI: 10.1016/j.neulet.2012.09.038] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
147 Re SL, Giordano G, Yakoub Y, Devosse R, Uwambayinema F, Couillin I, Ryffel B, Marbaix E, Lison D, Huaux F. Uncoupling between inflammatory and fibrotic responses to silica: evidence from MyD88 knockout mice. PLoS One 2014;9:e99383. [PMID: 25050810 DOI: 10.1371/journal.pone.0099383] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
148 Xiao T. Innate immune recognition of nucleic acids. Immunol Res 2009;43:98-108. [PMID: 18810334 DOI: 10.1007/s12026-008-8053-x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
149 Shirato K, Miyoshi H, Kariwa H, Takashima I. The kinetics of proinflammatory cytokines in murine peritoneal macrophages infected with envelope protein-glycosylated or non-glycosylated West Nile virus. Virus Res 2006;121:11-6. [PMID: 16632038 DOI: 10.1016/j.virusres.2006.03.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
150 Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006;6:644-58. [PMID: 16932750 DOI: 10.1038/nri1900] [Cited by in Crossref: 1089] [Cited by in F6Publishing: 1033] [Article Influence: 72.6] [Reference Citation Analysis]
151 Noda M, Ifuku M, Hossain MS, Katafuchi T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front Psychiatry 2018;9:589. [PMID: 30505285 DOI: 10.3389/fpsyt.2018.00589] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
152 Lim JK, Glass WG, Mcdermott DH, Murphy PM. CCR5: no longer a ‘good for nothing’ gene – chemokine control of West Nile virus infection. Trends in Immunology 2006;27:308-12. [DOI: 10.1016/j.it.2006.05.007] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 4.9] [Reference Citation Analysis]
153 Oshiumi H, Okamoto M, Fujii K, Kawanishi T, Matsumoto M, Koike S, Seya T. The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection. J I 2011;187:5320-7. [DOI: 10.4049/jimmunol.1101503] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 5.6] [Reference Citation Analysis]
154 West J, Damania B. Upregulation of the TLR3 pathway by Kaposi's sarcoma-associated herpesvirus during primary infection. J Virol 2008;82:5440-9. [PMID: 18367536 DOI: 10.1128/JVI.02590-07] [Cited by in Crossref: 92] [Cited by in F6Publishing: 81] [Article Influence: 7.1] [Reference Citation Analysis]
155 Kumar M, Nerurkar VR. In Vitro and In Vivo Blood-Brain Barrier Models to Study West Nile Virus Pathogenesis. Methods Mol Biol 2016;1435:103-13. [PMID: 27188553 DOI: 10.1007/978-1-4939-3670-0_9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
156 Chhabra R, Ball C, Chantrey J, Ganapathy K. Differential innate immune responses induced by classical and variant infectious bronchitis viruses in specific pathogen free chicks. Dev Comp Immunol 2018;87:16-23. [PMID: 29751011 DOI: 10.1016/j.dci.2018.04.026] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
157 Goldstein DR. Role of aging on innate responses to viral infections. J Gerontol A Biol Sci Med Sci 2012;67:242-6. [PMID: 22042722 DOI: 10.1093/gerona/glr194] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
158 Funk KE, Klein RS. CSF1R antagonism limits local restimulation of antiviral CD8+ T cells during viral encephalitis. J Neuroinflammation 2019;16:22. [PMID: 30704498 DOI: 10.1186/s12974-019-1397-4] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 15.5] [Reference Citation Analysis]
159 Diamond MS, Gale M Jr. Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 2012;33:522-30. [PMID: 22726607 DOI: 10.1016/j.it.2012.05.008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
160 Cho H, Diamond MS. Immune responses to West Nile virus infection in the central nervous system. Viruses. 2012;4:3812-3830. [PMID: 23247502 DOI: 10.3390/v4123812] [Cited by in Crossref: 46] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
161 Lazear HM, Pinto AK, Vogt MR, Gale M Jr, Diamond MS. Beta interferon controls West Nile virus infection and pathogenesis in mice. J Virol 2011;85:7186-94. [PMID: 21543483 DOI: 10.1128/JVI.00396-11] [Cited by in Crossref: 74] [Cited by in F6Publishing: 56] [Article Influence: 7.4] [Reference Citation Analysis]
162 Lim PJ, Chu JJ. A polarized cell model for Chikungunya virus infection: entry and egress of virus occurs at the apical domain of polarized cells. PLoS Negl Trop Dis 2014;8:e2661. [PMID: 24587455 DOI: 10.1371/journal.pntd.0002661] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
163 Diamond MS. Mechanisms of evasion of the type I interferon antiviral response by flaviviruses. J Interferon Cytokine Res 2009;29:521-30. [PMID: 19694536 DOI: 10.1089/jir.2009.0069] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 5.7] [Reference Citation Analysis]
164 Wilson JR, de Sessions PF, Leon MA, Scholle F. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol. 2008;82:8262-8271. [PMID: 18562533 DOI: 10.1128/jvi.00226-08] [Cited by in Crossref: 117] [Cited by in F6Publishing: 74] [Article Influence: 9.0] [Reference Citation Analysis]
165 Ling ZL, Combes V, Grau GE, King NJ. Microparticles as immune regulators in infectious disease - an opinion. Front Immunol 2011;2:67. [PMID: 22566856 DOI: 10.3389/fimmu.2011.00067] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
166 Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol 2014;426:1246-64. [PMID: 24316048 DOI: 10.1016/j.jmb.2013.11.024] [Cited by in Crossref: 318] [Cited by in F6Publishing: 281] [Article Influence: 39.8] [Reference Citation Analysis]
167 Triantafilou K, Vakakis E, Richer EA, Evans GL, Villiers JP, Triantafilou M. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011;2:22-9. [PMID: 21224721 DOI: 10.4161/viru.2.1.13807] [Cited by in Crossref: 81] [Cited by in F6Publishing: 78] [Article Influence: 8.1] [Reference Citation Analysis]
168 Zhang CZ, Yin ZX, He W, Chen WJ, Luo YW, Lu QX, Weng SP, Yu XQ, He J. Cloning of IRAK1 and its upregulation in symptomatic mandarin fish infected with ISKNV. Biochem Biophys Res Commun 2009;383:298-302. [PMID: 19336221 DOI: 10.1016/j.bbrc.2009.03.137] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
169 Barreiro LB, Marioni JC, Blekhman R, Stephens M, Gilad Y. Functional comparison of innate immune signaling pathways in primates. PLoS Genet 2010;6:e1001249. [PMID: 21187902 DOI: 10.1371/journal.pgen.1001249] [Cited by in Crossref: 72] [Cited by in F6Publishing: 52] [Article Influence: 6.5] [Reference Citation Analysis]
170 Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010;58:253-63. [PMID: 19705460 DOI: 10.1002/glia.20928] [Cited by in Crossref: 73] [Cited by in F6Publishing: 217] [Article Influence: 6.6] [Reference Citation Analysis]
171 Tada A, Zelaya H, Clua P, Salva S, Alvarez S, Kitazawa H, Villena J. Immunobiotic Lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after Toll-like receptor 3 activation. Inflamm Res. 2016;771-783. [PMID: 27279272 DOI: 10.1007/s00011-016-0957-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
172 Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BR, Silverman RH, Gale M Jr, Diamond MS. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 2006;80:7009-19. [PMID: 16809306 DOI: 10.1128/JVI.00489-06] [Cited by in Crossref: 187] [Cited by in F6Publishing: 148] [Article Influence: 12.5] [Reference Citation Analysis]
173 Marin M, Quintana S, Leunda M, Odeón A, Pérez S. Toll-like receptor expression in the nervous system of bovine alpha-herpesvirus-infected calves. Research in Veterinary Science 2014;97:422-9. [DOI: 10.1016/j.rvsc.2014.06.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
174 Zhu J, Smith K, Hsieh PN, Mburu YK, Chattopadhyay S, Sen GC, Sarkar SN. High-throughput screening for TLR3-IFN regulatory factor 3 signaling pathway modulators identifies several antipsychotic drugs as TLR inhibitors. J Immunol 2010;184:5768-76. [PMID: 20382888 DOI: 10.4049/jimmunol.0903559] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
175 Welte T, Lamb J, Anderson JF, Born WK, O'Brien RL, Wang T. Role of two distinct gammadelta T cell subsets during West Nile virus infection. FEMS Immunol Med Microbiol 2008;53:275-83. [PMID: 18513355 DOI: 10.1111/j.1574-695X.2008.00430.x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
176 Terjung B, Spengler U. Atypical p-ANCA in PSC and AIH: a hint toward a "leaky gut"? Clin Rev Allergy Immunol. 2009;36:40-51. [PMID: 18626795 DOI: 10.1007/s12016-008-8088-8] [Cited by in Crossref: 49] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
177 Murray C, Griffin ÉW, O'Loughlin E, Lyons A, Sherwin E, Ahmed S, Stevenson NJ, Harkin A, Cunningham C. Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C. Brain Behav Immun 2015;48:274-86. [PMID: 25900439 DOI: 10.1016/j.bbi.2015.04.009] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 7.7] [Reference Citation Analysis]
178 Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Current Opinion in Immunology 2005;17:338-44. [DOI: 10.1016/j.coi.2005.02.007] [Cited by in Crossref: 406] [Cited by in F6Publishing: 366] [Article Influence: 25.4] [Reference Citation Analysis]
179 Tsai Y, Chang S, Lee C, Kao C. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cellular Microbiology 2009;11:604-15. [DOI: 10.1111/j.1462-5822.2008.01277.x] [Cited by in Crossref: 131] [Cited by in F6Publishing: 119] [Article Influence: 10.9] [Reference Citation Analysis]
180 Fitzgerald KA. Viral targeting of interferon regulatory factor-3 and type I interferon gene transcription. Future Virology 2006;1:783-93. [DOI: 10.2217/17460794.1.6.783] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
181 Barzon L, Pacenti M, Palù G. West Nile virus and kidney disease. Expert Rev Anti Infect Ther 2013;11:479-87. [PMID: 23627854 DOI: 10.1586/eri.13.34] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
182 Beutler B, Eidenschenk C, Crozat K, Imler JL, Takeuchi O, Hoffmann JA, Akira S. Genetic analysis of resistance to viral infection. Nat Rev Immunol 2007;7:753-66. [PMID: 17893693 DOI: 10.1038/nri2174] [Cited by in Crossref: 150] [Cited by in F6Publishing: 129] [Article Influence: 10.7] [Reference Citation Analysis]
183 Carty M, Reinert L, Paludan SR, Bowie AG. Innate antiviral signalling in the central nervous system. Trends in Immunology 2014;35:79-87. [DOI: 10.1016/j.it.2013.10.012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 6.9] [Reference Citation Analysis]
184 Chakraborty S, Nazmi A, Dutta K, Basu A. Neurons under viral attack: victims or warriors? Neurochem Int 2010;56:727-35. [PMID: 20206655 DOI: 10.1016/j.neuint.2010.02.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
185 Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res 2010;30:205-18. [PMID: 20377415 DOI: 10.1089/jir.2010.0026] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
186 Jiang D, Liang J, Li Y, Noble PW. The role of Toll-like receptors in non-infectious lung injury. Cell Res 2006;16:693-701. [PMID: 16894359 DOI: 10.1038/sj.cr.7310085] [Cited by in Crossref: 102] [Cited by in F6Publishing: 97] [Article Influence: 7.8] [Reference Citation Analysis]
187 Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem Neurosci. 2016;7:464-469. [PMID: 27058872 DOI: 10.1021/acschemneuro.6b00043] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 11.8] [Reference Citation Analysis]
188 Fadnis PR, Ravi V, Desai A, Turtle L, Solomon T. Innate immune mechanisms in Japanese encephalitis virus infection: effect on transcription of pattern recognition receptors in mouse neuronal cells and brain tissue. Viral Immunol 2013;26:366-77. [PMID: 24236856 DOI: 10.1089/vim.2013.0016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
189 Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15:275-292. [PMID: 26794270 DOI: 10.1038/nrd.2015.21] [Cited by in Crossref: 416] [Cited by in F6Publishing: 358] [Article Influence: 83.2] [Reference Citation Analysis]
190 de Bouteiller O, Merck E, Hasan UA, Hubac S, Benguigui B, Trinchieri G, Bates EE, Caux C. Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J Biol Chem 2005;280:38133-45. [PMID: 16144834 DOI: 10.1074/jbc.M507163200] [Cited by in Crossref: 183] [Cited by in F6Publishing: 77] [Article Influence: 11.4] [Reference Citation Analysis]
191 Zhao Y, Rivieccio MA, Lutz S, Scemes E, Brosnan CF. The TLR3 ligand polyI: C downregulates connexin 43 expression and function in astrocytes by a mechanism involving the NF-kappaB and PI3 kinase pathways. Glia 2006;54:775-85. [PMID: 16958087 DOI: 10.1002/glia.20418] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 3.1] [Reference Citation Analysis]
192 Sun X, Wang S, Lin X, Zhao L, Zhang D, Yi C, Sun X, Chen H, Jin M. Proteome analysis of Duck Tembusu virus (DTMUV)-infected BHK-21 cells. Proteomics 2017;17. [PMID: 28516729 DOI: 10.1002/pmic.201700033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
193 Mehlhop E, Diamond MS. The molecular basis of antibody protection against West Nile virus. Curr Top Microbiol Immunol 2008;317:125-53. [PMID: 17990792 DOI: 10.1007/978-3-540-72146-8_5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 0.1] [Reference Citation Analysis]
194 Stubblefield Park SR, Widness M, Levine AD, Patterson CE. T cell-, interleukin-12-, and gamma interferon-driven viral clearance in measles virus-infected brain tissue. J Virol 2011;85:3664-76. [PMID: 21270150 DOI: 10.1128/JVI.01496-10] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
195 Pujhari SK, Prabhakar S, Ratho R, Mishra B, Modi M, Sharma S, Singh P. Th1 immune response takeover among patients with severe Japanese encephalitis infection. J Neuroimmunol 2013;263:133-8. [PMID: 23993655 DOI: 10.1016/j.jneuroim.2013.08.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
196 Mulhern O, Harrington B, Bowie AG. Modulation of innate immune signalling pathways by viral proteins. Adv Exp Med Biol 2009;666:49-63. [PMID: 20054974 DOI: 10.1007/978-1-4419-1601-3_4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
197 de Groot NG, Bontrop RE. COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males? Immunogenetics 2020;72:275-7. [PMID: 32342146 DOI: 10.1007/s00251-020-01165-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
198 Hutchens M, Luker KE, Sottile P, Sonstein J, Lukacs NW, Núñez G, Curtis JL, Luker GD. TLR3 increases disease morbidity and mortality from vaccinia infection. J Immunol 2008;180:483-91. [PMID: 18097050 DOI: 10.4049/jimmunol.180.1.483] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 4.6] [Reference Citation Analysis]
199 Rasschaert J, Ladrière L, Urbain M, Dogusan Z, Katabua B, Sato S, Akira S, Gysemans C, Mathieu C, Eizirik DL. Toll-like Receptor 3 and STAT-1 Contribute to Double-stranded RNA+ Interferon-γ-induced Apoptosis in Primary Pancreatic β-Cells. Journal of Biological Chemistry 2005;280:33984-91. [DOI: 10.1074/jbc.m502213200] [Cited by in Crossref: 129] [Cited by in F6Publishing: 64] [Article Influence: 8.1] [Reference Citation Analysis]
200 Lazear HM, Lancaster A, Wilkins C, Suthar MS, Huang A, Vick SC, Clepper L, Thackray L, Brassil MM, Virgin HW. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog. 2013;9:e1003118. [PMID: 23300459 DOI: 10.1371/journal.ppat.1003118] [Cited by in Crossref: 191] [Cited by in F6Publishing: 192] [Article Influence: 23.9] [Reference Citation Analysis]
201 Ballarín-gonzález B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Advanced Drug Delivery Reviews 2012;64:1717-29. [DOI: 10.1016/j.addr.2012.07.004] [Cited by in Crossref: 108] [Cited by in F6Publishing: 101] [Article Influence: 12.0] [Reference Citation Analysis]
202 Baker DG, Woods TA, Butchi NB, Morgan TM, Taylor RT, Sunyakumthorn P, Mukherjee P, Lubick KJ, Best SM, Peterson KE. Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection. J Gen Virol 2013;94:336-47. [PMID: 23136362 DOI: 10.1099/vir.0.043984-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
203 Xie G, Welte T, Wang J, Whiteman MC, Wicker JA, Saxena V, Cong Y, Barrett AD, Wang T. A West Nile virus NS4B-P38G mutant strain induces adaptive immunity via TLR7-MyD88-dependent and independent signaling pathways. Vaccine 2013;31:4143-51. [PMID: 23845800 DOI: 10.1016/j.vaccine.2013.06.093] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
204 Ye J, Jiang R, Cui M, Zhu B, Sun L, Wang Y, Zohaib A, Dong Q, Ruan X, Song Y, He W, Chen H, Cao S. Etanercept reduces neuroinflammation and lethality in mouse model of Japanese encephalitis. J Infect Dis 2014;210:875-89. [PMID: 24652493 DOI: 10.1093/infdis/jiu179] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 5.9] [Reference Citation Analysis]
205 Zhang W, Chen S, Mahalingam S, Wang M, Cheng A. An updated review of avian-origin Tembusu virus: a newly emerging avian Flavivirus. J Gen Virol 2017;98:2413-20. [PMID: 28874226 DOI: 10.1099/jgv.0.000908] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
206 Yang S, Huang Y, Shi Y, Bai X, Yang P, Chen Q. Tembusu Virus entering the central nervous system caused nonsuppurative encephalitis without disrupting the blood-brain barrier. J Virol 2021:JVI. [PMID: 33472933 DOI: 10.1128/JVI.02191-20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
207 Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol 2015;109:14.12.1-14.12.10. [PMID: 25845562 DOI: 10.1002/0471142735.im1412s109] [Cited by in Crossref: 168] [Cited by in F6Publishing: 101] [Article Influence: 28.0] [Reference Citation Analysis]
208 Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol. 2006;80:9349-9360. [PMID: 16973541 DOI: 10.1128/jvi.01122-06] [Cited by in Crossref: 233] [Cited by in F6Publishing: 157] [Article Influence: 15.5] [Reference Citation Analysis]
209 Anders HJ. Pseudoviral immunity - a novel concept for lupus. Trends Mol Med 2009;15:553-61. [PMID: 19896418 DOI: 10.1016/j.molmed.2009.10.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
210 Vicenzi E, Pagani I, Ghezzi S, Taylor SL, Rudd TR, Lima MA, Skidmore MA, Yates EA. Subverting the mechanisms of cell death: flavivirus manipulation of host cell responses to infection. Biochemical Society Transactions 2018;46:609-17. [DOI: 10.1042/bst20170399] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 6.7] [Reference Citation Analysis]
211 Getts DR, Balcar VJ, Matsumoto I, Müller M, King NJC. Viruses and the immune system: their roles in seizure cascade development. J Neurochem 2008;104:1167-76. [DOI: 10.1111/j.1471-4159.2007.05171.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 3.2] [Reference Citation Analysis]
212 Eustaquio Do Imperio G, Lye P, Bloise E, Matthews SG. Function of Multidrug Resistance Transporters is Disrupted by Infection Mimics in Human Brain Endothelial Cells. Tissue Barriers 2021;9:1860616. [PMID: 33427563 DOI: 10.1080/21688370.2020.1860616] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
213 Moyano-Porcile V, Olavarría-Ramírez L, González-Arancibia C, Bravo JA, Julio-Pieper M. Short-term effects of Poly(I: C) on gut permeability. Pharmacol Res. 2015;101:130-136. [PMID: 26145280 DOI: 10.1016/j.phrs.2015.06.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
214 Handke W, Oelschlegel R, Franke R, Krüger DH, Rang A. Hantaan Virus Triggers TLR3-Dependent Innate Immune Responses. J Immunol 2009;182:2849-58. [DOI: 10.4049/jimmunol.0802893] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 3.8] [Reference Citation Analysis]
215 Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020;8:E485. [PMID: 32872152 DOI: 10.3390/vaccines8030485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
216 Arjona A, Ledizet M, Anthony K, Bonafé N, Modis Y, Town T, Fikrig E. West Nile virus envelope protein inhibits dsRNA-induced innate immune responses. J Immunol 2007;179:8403-9. [PMID: 18056386 DOI: 10.4049/jimmunol.179.12.8403] [Cited by in Crossref: 50] [Cited by in F6Publishing: 55] [Article Influence: 3.8] [Reference Citation Analysis]
217 Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006;7:131-7. [PMID: 16424890 DOI: 10.1038/ni1303] [Cited by in Crossref: 1162] [Cited by in F6Publishing: 1162] [Article Influence: 77.5] [Reference Citation Analysis]
218 Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32:305-315. [PMID: 20346772 DOI: 10.1016/j.immuni.2010.03.012] [Cited by in Crossref: 749] [Cited by in F6Publishing: 687] [Article Influence: 68.1] [Reference Citation Analysis]
219 Chopy D, Pothlichet J, Lafage M, Mégret F, Fiette L, Si-Tahar M, Lafon M. Ambivalent role of the innate immune response in rabies virus pathogenesis. J Virol 2011;85:6657-68. [PMID: 21525357 DOI: 10.1128/JVI.00302-11] [Cited by in Crossref: 40] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
220 Oh W, Yang MR, Lee EW, Park KM, Pyo S, Yang JS, Lee HW, Song J. Jab1 mediates cytoplasmic localization and degradation of West Nile virus capsid protein. J Biol Chem. 2006;281:30166-30174. [PMID: 16882664 DOI: 10.1074/jbc.m602651200] [Cited by in Crossref: 54] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
221 Udgata A, Dolasia K, Ghosh S, Mukhopadhyay S. Dribbling through the host defence: targeting the TLRs by pathogens. Critical Reviews in Microbiology 2019;45:354-68. [DOI: 10.1080/1040841x.2019.1608904] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
222 Swanson PA 2nd, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol. 2015;11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Cited by in Crossref: 148] [Cited by in F6Publishing: 117] [Article Influence: 24.7] [Reference Citation Analysis]
223 Modhiran N, Kalayanarooj S, Ubol S. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse. PLoS Negl Trop Dis 2010;4:e924. [PMID: 21200427 DOI: 10.1371/journal.pntd.0000924] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 5.1] [Reference Citation Analysis]
224 Priestley Y, Thiel M, Koevary SB. Systemic and ophthalmic manifestations of West Nile virus infection. Expert Review of Ophthalmology 2014;3:279-92. [DOI: 10.1586/17469899.3.3.279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
225 Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM, Okada H. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 2007;5:10. [PMID: 17295916 DOI: 10.1186/1479-5876-5-10] [Cited by in Crossref: 128] [Cited by in F6Publishing: 121] [Article Influence: 9.1] [Reference Citation Analysis]
226 Kielian T. Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res. 2006;83:711-730. [PMID: 16541438 DOI: 10.1002/jnr.20767] [Cited by in Crossref: 245] [Cited by in F6Publishing: 237] [Article Influence: 16.3] [Reference Citation Analysis]
227 Weiss ID, Shoham H, Wald O, Wald H, Beider K, Abraham M, Barashi N, Galun E, Nagler A, Peled A. Ccr5 deficiency regulates the proliferation and trafficking of natural killer cells under physiological conditions. Cytokine. 2011;54:249-257. [PMID: 21376626 DOI: 10.1016/j.cyto.2011.01.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
228 Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007;7:179-90. [DOI: 10.1038/nri2038] [Cited by in Crossref: 946] [Cited by in F6Publishing: 858] [Article Influence: 67.6] [Reference Citation Analysis]
229 Lousberg EL, Diener KR, Brown MP, Hayball JD. Innate immune recognition of poxviral vaccine vectors. Expert Rev Vaccines 2011;10:1435-49. [PMID: 21988308 DOI: 10.1586/erv.11.121] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
230 Adam A, Luo H, Osman SR, Wang B, Roundy CM, Auguste AJ, Plante KS, Peng BH, Thangamani S, Frolova EI, Frolov I, Weaver SC, Wang T. Optimized production and immunogenicity of an insect virus-based chikungunya virus candidate vaccine in cell culture and animal models. Emerg Microbes Infect 2021;10:305-16. [PMID: 33539255 DOI: 10.1080/22221751.2021.1886598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
231 Baum A, García-Sastre A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids. 2010;38:1283-1299. [PMID: 19882216 DOI: 10.1007/s00726-009-0374-0] [Cited by in Crossref: 89] [Cited by in F6Publishing: 89] [Article Influence: 7.4] [Reference Citation Analysis]
232 Giraldo D, Wilcox DR, Longnecker R. The Innate Immune Response to Herpes Simplex Virus 1 Infection Is Dampened in the Newborn Brain and Can Be Modulated by Exogenous Interferon Beta To Improve Survival. mBio 2020;11:e00921-20. [PMID: 32457247 DOI: 10.1128/mBio.00921-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
233 Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, Cadar D, Savini G, Teodori L, Monaco F, Schmidt-Chanasit J, Saiz JC, Gonzales G, Lecollinet S, Beck C, Gosselet F, Van de Perre P, Foulongne V, Salinas S, Simonin Y. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation 2021;18:11. [PMID: 33407600 DOI: 10.1186/s12974-020-02060-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
234 Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021. [PMID: 33844441 DOI: 10.1111/febs.15871] [Reference Citation Analysis]
235 Wang S, Welte T, Fang H, Chang GJ, Born WK, O'Brien RL, Sun B, Fujii H, Kosuna K, Wang T. Oral administration of active hexose correlated compound enhances host resistance to West Nile encephalitis in mice. J Nutr 2009;139:598-602. [PMID: 19141700 DOI: 10.3945/jn.108.100297] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
236 Winkelmann ER, Widman DG, Xia J, Ishikawa T, Miller-Kittrell M, Nelson MH, Bourne N, Scholle F, Mason PW, Milligan GN. Intrinsic adjuvanting of a novel single-cycle flavivirus vaccine in the absence of type I interferon receptor signaling. Vaccine 2012;30:1465-75. [PMID: 22226862 DOI: 10.1016/j.vaccine.2011.12.103] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
237 Yao Y, Strauss-Albee DM, Zhou JQ, Malawista A, Garcia MN, Murray KO, Blish CA, Montgomery RR. The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection. PLoS One 2017;12:e0172625. [PMID: 28235099 DOI: 10.1371/journal.pone.0172625] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
238 Holtzman MJ. Asthma as a chronic disease of the innate and adaptive immune systems responding to viruses and allergens. J Clin Invest 2012;122:2741-8. [PMID: 22850884 DOI: 10.1172/JCI60325] [Cited by in Crossref: 102] [Cited by in F6Publishing: 58] [Article Influence: 11.3] [Reference Citation Analysis]
239 Anders H, Zecher D, Schlöndorff D. Acides nucléiques microbiens dans la physiopathologie des glomérulonéphrites. Néphrologie & Thérapeutique 2006;2:422-31. [DOI: 10.1016/j.nephro.2006.10.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
240 Jin YH, Kaneyama T, Kang MH, Kang HS, Koh CS, Kim BS. TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection. J Neuroinflammation 2011;8:178. [PMID: 22189096 DOI: 10.1186/1742-2094-8-178] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
241 Bai F, Town T, Qian F, Wang P, Kamanaka M, Connolly TM, Gate D, Montgomery RR, Flavell RA, Fikrig E. IL-10 signaling blockade controls murine West Nile virus infection. PLoS Pathog 2009;5:e1000610. [PMID: 19816558 DOI: 10.1371/journal.ppat.1000610] [Cited by in Crossref: 64] [Cited by in F6Publishing: 68] [Article Influence: 5.3] [Reference Citation Analysis]
242 Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol 2012;93:1193-203. [PMID: 22398316 DOI: 10.1099/vir.0.040899-0] [Cited by in Crossref: 102] [Cited by in F6Publishing: 91] [Article Influence: 11.3] [Reference Citation Analysis]
243 Nair S, Diamond MS. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections. Curr Opin Immunol 2015;36:47-53. [PMID: 26163762 DOI: 10.1016/j.coi.2015.06.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
244 Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020;11:1100. [PMID: 32582186 DOI: 10.3389/fimmu.2020.01100] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 25.0] [Reference Citation Analysis]
245 Shah M, Anwar MA, Kim J, Choi S. Advances in Antiviral Therapies Targeting Toll-like Receptors. Expert Opinion on Investigational Drugs 2016;25:437-53. [DOI: 10.1517/13543784.2016.1154040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
246 Li N, Wang Y, Li R, Liu J, Zhang J, Cai Y, Liu S, Chai T, Wei L. Immune responses of ducks infected with duck Tembusu virus. Front Microbiol 2015;6:425. [PMID: 26005441 DOI: 10.3389/fmicb.2015.00425] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
247 Xu J, Yang Y, Sun J, Ding Y, Su L, Shao C, Jiang B. Expression of Toll-like receptors and their association with cytokine responses in peripheral blood mononuclear cells of children with acute rotavirus diarrhoea. Clin Exp Immunol 2006;144:376-81. [PMID: 16734605 DOI: 10.1111/j.1365-2249.2006.03079.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
248 Eisenächer K, Steinberg C, Reindl W, Krug A. The role of viral nucleic acid recognition in dendritic cells for innate and adaptive antiviral immunity. Immunobiology 2007;212:701-14. [PMID: 18086372 DOI: 10.1016/j.imbio.2007.09.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
249 Matsumoto M, Oshiumi H, Seya T. Antiviral responses induced by the TLR3 pathway. Rev Med Virol. 2011;Epub ahead of print. [PMID: 21312311 DOI: 10.1002/rmv.680] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 9.0] [Reference Citation Analysis]
250 Mendenhall M, Wong MH, Skirpstunas R, Morrey JD, Gowen BB. Punta Toro virus (Bunyaviridae, Phlebovirus) infection in mice: strain differences in pathogenesis and host interferon response. Virology 2009;395:143-51. [PMID: 19783024 DOI: 10.1016/j.virol.2009.09.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
251 OuYang X, Guo J, Lv Q, Jiang H, Zheng Y, Liu P, Zhao T, Kong D, Hao H, Jiang Y. TRIM32 Drives Pathogenesis in Streptococcal Toxic Shock-Like Syndrome and Streptococcus suis Meningitis by Regulating Innate Immune Responses. Infect Immun 2020;88:e00957-19. [PMID: 31988176 DOI: 10.1128/IAI.00957-19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
252 Kosch R, Delarocque J, Claus P, Becker SC, Jung K. Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis. BMC Genomics 2018;19:530. [PMID: 30001706 DOI: 10.1186/s12864-018-4914-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
253 McKimmie CS, Roy D, Forster T, Fazakerley JK. Innate immune response gene expression profiles of N9 microglia are pathogen-type specific. J Neuroimmunol 2006;175:128-41. [PMID: 16697053 DOI: 10.1016/j.jneuroim.2006.03.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.1] [Reference Citation Analysis]
254 Richer MJ, Lavallée DJ, Shanina I, Horwitz MS. Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PLoS One. 2009;4:e4127. [PMID: 19122812 DOI: 10.1371/journal.pone.0004127] [Cited by in Crossref: 105] [Cited by in F6Publishing: 98] [Article Influence: 8.8] [Reference Citation Analysis]
255 Nikolich-Žugich J, Bradshaw CM, Uhrlaub JL, Watanabe M. Immunity to acute virus infections with advanced age. Curr Opin Virol 2021;46:45-58. [PMID: 33160186 DOI: 10.1016/j.coviro.2020.09.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
256 Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm 2013;2013:342931. [PMID: 23843682 DOI: 10.1155/2013/342931] [Cited by in Crossref: 86] [Cited by in F6Publishing: 71] [Article Influence: 10.8] [Reference Citation Analysis]
257 Puerta-Guardo H, Glasner DR, Espinosa DA, Biering SB, Patana M, Ratnasiri K, Wang C, Beatty PR, Harris E. Flavivirus NS1 Triggers Tissue-Specific Vascular Endothelial Dysfunction Reflecting Disease Tropism. Cell Rep 2019;26:1598-1613.e8. [PMID: 30726741 DOI: 10.1016/j.celrep.2019.01.036] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 92.0] [Reference Citation Analysis]
258 Cunningham C, Campion S, Teeling J, Felton L, Perry VH. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I: C). Brain Behav Immun. 2007;21:490-502. [PMID: 17321719 DOI: 10.1016/j.bbi.2006.12.007] [Cited by in Crossref: 182] [Cited by in F6Publishing: 176] [Article Influence: 13.0] [Reference Citation Analysis]
259 Hyun J, Kanagavelu S, Fukata M. A unique host defense pathway: TRIF mediates both antiviral and antibacterial immune responses. Microbes Infect 2013;15:1-10. [PMID: 23116944 DOI: 10.1016/j.micinf.2012.10.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
260 Shukla V, Shakya AK, Shukla M, Kumari N, Krishnani N, Dhole TN, Misra UK. Circulating levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases during Japanese encephalitis virus infection. Virusdisease 2016;27:63-76. [PMID: 26925446 DOI: 10.1007/s13337-015-0301-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
261 Lafon M. Evasive strategies in rabies virus infection. Adv Virus Res 2011;79:33-53. [PMID: 21601041 DOI: 10.1016/B978-0-12-387040-7.00003-2] [Cited by in Crossref: 65] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
262 Chattopadhyay S, Sen GC. dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res 2014;34:427-36. [PMID: 24905199 DOI: 10.1089/jir.2014.0034] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 10.7] [Reference Citation Analysis]
263 Kuno G, Chang GJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 2005;18:608-37. [PMID: 16223950 DOI: 10.1128/CMR.18.4.608-637.2005] [Cited by in Crossref: 173] [Cited by in F6Publishing: 97] [Article Influence: 10.8] [Reference Citation Analysis]
264 Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res. 2010;59:791-808. [PMID: 20593217 DOI: 10.1007/s00011-010-0208-2] [Cited by in Crossref: 141] [Cited by in F6Publishing: 134] [Article Influence: 12.8] [Reference Citation Analysis]
265 Génin P, Vaccaro A, Civas A. The role of differential expression of human interferon-A genes in antiviral immunity. Cytokine & Growth Factor Reviews 2009;20:283-95. [DOI: 10.1016/j.cytogfr.2009.07.005] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 5.8] [Reference Citation Analysis]
266 Raven N, Lisovski S, Klaassen M, Lo N, Madsen T, Ho SYW, Ujvari B. Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. Infect Genet Evol 2017;53:135-45. [PMID: 28528860 DOI: 10.1016/j.meegid.2017.05.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
267 Vijay-Kumar M, Gentsch JR, Kaiser WJ, Borregaard N, Offermann MK, Neish AS, Gewirtz AT. Protein kinase R mediates intestinal epithelial gene remodeling in response to double-stranded RNA and live rotavirus. J Immunol. 2005;174:6322-6331. [PMID: 15879132 DOI: 10.4049/jimmunol.174.10.6322] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
268 Fredericksen BL, Gale M. West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling. J Virol. 2006;80:2913-2923. [PMID: 16501100 DOI: 10.1128/jvi.80.6.2913-2923.2006] [Cited by in Crossref: 135] [Cited by in F6Publishing: 97] [Article Influence: 9.0] [Reference Citation Analysis]
269 Drescher B, Bai F. Neutrophil in viral infections, friend or foe? Virus Res 2013;171:1-7. [PMID: 23178588 DOI: 10.1016/j.virusres.2012.11.002] [Cited by in Crossref: 77] [Cited by in F6Publishing: 66] [Article Influence: 8.6] [Reference Citation Analysis]
270 Spindler KR, Hsu TH. Viral disruption of the blood-brain barrier. Trends Microbiol 2012;20:282-90. [PMID: 22564250 DOI: 10.1016/j.tim.2012.03.009] [Cited by in Crossref: 109] [Cited by in F6Publishing: 99] [Article Influence: 12.1] [Reference Citation Analysis]
271 Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends in Immunology 2007;28:138-45. [DOI: 10.1016/j.it.2007.01.005] [Cited by in Crossref: 834] [Cited by in F6Publishing: 781] [Article Influence: 59.6] [Reference Citation Analysis]
272 Lesteberg KE, Beckham JD. Immunology of West Nile Virus Infection and the Role of Alpha-Synuclein as a Viral Restriction Factor. Viral Immunol 2019;32:38-47. [PMID: 30222521 DOI: 10.1089/vim.2018.0075] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
273 Indran SV, Lihoradova OA, Phoenix I, Lokugamage N, Kalveram B, Head JA, Tigabu B, Smith JK, Zhang L, Juelich TL, Gong B, Freiberg AN, Ikegami T. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice. J Gen Virol 2013;94:1441-50. [PMID: 23515022 DOI: 10.1099/vir.0.051250-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
274 Szretter KJ, Daniels BP, Cho H, Gainey MD, Yokoyama WM, Gale M, Virgin HW, Klein RS, Sen GC, Diamond MS. 2’-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012;8:e1002698. [PMID: 22589727 DOI: 10.1371/journal.ppat.1002698] [Cited by in Crossref: 120] [Cited by in F6Publishing: 113] [Article Influence: 13.3] [Reference Citation Analysis]
275 Nakayama E, Kato F, Tajima S, Ogawa S, Yan K, Takahashi K, Sato Y, Suzuki T, Kawai Y, Inagaki T, Taniguchi S, Le TT, Tang B, Prow NA, Uda A, Maeki T, Lim CK, Khromykh AA, Suhrbier A, Saijo M. Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/- mice maps to prM residues conserved amongst African genotype viruses. PLoS Pathog 2021;17:e1009788. [PMID: 34310650 DOI: 10.1371/journal.ppat.1009788] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
276 Yang X, Murthy V, Schultz K, Tatro JB, Fitzgerald KA, Beasley D. Toll-like receptor 3 signaling evokes a proinflammatory and proliferative phenotype in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2006;291:H2334-43. [PMID: 16782847 DOI: 10.1152/ajpheart.00252.2006] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 3.2] [Reference Citation Analysis]
277 Shinde PV, Xu HC, Maney SK, Kloetgen A, Namineni S, Zhuang Y, Honke N, Shaabani N, Bellora N, Doerrenberg M, Trilling M, Pozdeev VI, van Rooijen N, Scheu S, Pfeffer K, Crocker PR, Tanaka M, Duggimpudi S, Knolle P, Heikenwalder M, Ruland J, Mak TW, Brenner D, Pandyra AA, Hoell JI, Borkhardt A, Häussinger D, Lang KS, Lang PA. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection. J Virol 2018;92:e01637-17. [PMID: 29142134 DOI: 10.1128/JVI.01637-17] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
278 Denizot M, Neal JW, Gasque P. Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets. J Infect 2012;65:1-16. [PMID: 22484271 DOI: 10.1016/j.jinf.2012.03.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
279 Pastorino B, Nougairède A, Wurtz N, Gould E, de Lamballerie X. Role of host cell factors in flavivirus infection: Implications for pathogenesis and development of antiviral drugs. Antiviral Res 2010;87:281-94. [PMID: 20452379 DOI: 10.1016/j.antiviral.2010.04.014] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 5.5] [Reference Citation Analysis]
280 Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H. West Nile Virus Challenge Alters the Transcription Profiles of Innate Immune Genes in Rabbit Peripheral Blood Mononuclear Cells. Front Vet Sci 2015;2:76. [PMID: 26697438 DOI: 10.3389/fvets.2015.00076] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
281 Hussmann KL, Samuel MA, Kim KS, Diamond MS, Fredericksen BL. Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. J Virol 2013;87:2814-22. [PMID: 23269784 DOI: 10.1128/JVI.02577-12] [Cited by in Crossref: 43] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
282 Peña J, Plante JA, Carillo AC, Roberts KK, Smith JK, Juelich TL, Beasley DW, Freiberg AN, Labute MX, Naraghi-Arani P. Multiplexed digital mRNA profiling of the inflammatory response in the West Nile Swiss Webster mouse model. PLoS Negl Trop Dis 2014;8:e3216. [PMID: 25340818 DOI: 10.1371/journal.pntd.0003216] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
283 Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Res. 2005;15:407-422. [PMID: 15987599 DOI: 10.1038/sj.cr.7290309] [Cited by in Crossref: 224] [Cited by in F6Publishing: 210] [Article Influence: 14.0] [Reference Citation Analysis]
284 Miller KD, Schnell MJ, Rall GF. Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat Rev Neurosci 2016;17:766-76. [PMID: 27811921 DOI: 10.1038/nrn.2016.140] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
285 Garcia-Tapia D, Hassett DE, Mitchell WJ, Johnson GC, Kleiboeker SB. West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol. 2007;13:130-138. [PMID: 17505981 DOI: 10.1080/13550280601187185] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 2.8] [Reference Citation Analysis]
286 Wang JP, Cerny A, Asher DR, Kurt-Jones EA, Bronson RT, Finberg RW. MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol. 2010;84:254-260. [PMID: 19846534 DOI: 10.1128/jvi.00631-09] [Cited by in Crossref: 100] [Cited by in F6Publishing: 73] [Article Influence: 9.1] [Reference Citation Analysis]
287 Lanteri MC, Kaidarova Z, Peterson T, Cate S, Custer B, Wu S, Agapova M, Law JP, Bielawny T, Plummer F, Tobler LH, Loeb M, Busch MP, Bramson J, Luo M, Norris PJ. Association between HLA class I and class II alleles and the outcome of West Nile virus infection: an exploratory study. PLoS One 2011;6:e22948. [PMID: 21829673 DOI: 10.1371/journal.pone.0022948] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
288 Brien JD, Uhrlaub JL, Nikolich-Zugich J. Protective capacity and epitope specificity of CD8(+) T cells responding to lethal West Nile virus infection. Eur J Immunol 2007;37:1855-63. [PMID: 17559175 DOI: 10.1002/eji.200737196] [Cited by in Crossref: 106] [Cited by in F6Publishing: 103] [Article Influence: 7.6] [Reference Citation Analysis]
289 Clarke P, Leser JS, Quick ED, Dionne KR, Beckham JD, Tyler KL. Death receptor-mediated apoptotic signaling is activated in the brain following infection with West Nile virus in the absence of a peripheral immune response. J Virol 2014;88:1080-9. [PMID: 24198425 DOI: 10.1128/JVI.02944-13] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
290 Blaylock RL. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. Surg Neurol Int 2013;4:118. [PMID: 24083053 DOI: 10.4103/2152-7806.118349] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
291 Holbrook MR, Gowen BB. Animal models of highly pathogenic RNA viral infections: encephalitis viruses. Antiviral Res 2008;78:69-78. [PMID: 18031836 DOI: 10.1016/j.antiviral.2007.10.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
292 Nasu K, Itoh H, Yuge A, Nishida M, Narahara H. Human oviductal epithelial cells express Toll-like receptor 3 and respond to double-stranded RNA: Fallopian tube-specific mucosal immunity against viral infection. Hum Reprod 2007;22:356-61. [PMID: 17043099 DOI: 10.1093/humrep/del385] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
293 Qian F, Wang X, Zhang L, Lin A, Zhao H, Fikrig E, Montgomery RR. Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus. J Infect Dis 2011;203:1415-24. [PMID: 21398396 DOI: 10.1093/infdis/jir048] [Cited by in Crossref: 104] [Cited by in F6Publishing: 88] [Article Influence: 10.4] [Reference Citation Analysis]
294 Cheng J, Sun Y, Zhang X, Zhang F, Zhang S, Yu S, Qiu X, Tan L, Song C, Gao S, Wu Y, Ding C. Toll-like receptor 3 inhibits Newcastle disease virus replication through activation of pro-inflammatory cytokines and the type-1 interferon pathway. Arch Virol 2014;159:2937-48. [DOI: 10.1007/s00705-014-2148-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
295 Urbanowski MD, Ilkow CS, Hobman TC. Modulation of signaling pathways by RNA virus capsid proteins. Cell Signal 2008;20:1227-36. [PMID: 18258415 DOI: 10.1016/j.cellsig.2007.12.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
296 Liu TH, Liang LC, Wang CC, Liu HC, Chen WJ. The blood-brain barrier in the cerebrum is the initial site for the Japanese encephalitis virus entering the central nervous system. J Neurovirol 2008;14:514-21. [PMID: 19023687 DOI: 10.1080/13550280802339643] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.9] [Reference Citation Analysis]
297 Manuse MJ, Parks GD. TLR3-dependent upregulation of RIG-I leads to enhanced cytokine production from cells infected with the parainfluenza virus SV5. Virology 2010;397:231-41. [PMID: 19948350 DOI: 10.1016/j.virol.2009.11.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
298 Maródi L. Innate cellular immune responses in newborns. Clin Immunol 2006;118:137-44. [PMID: 16377252 DOI: 10.1016/j.clim.2005.10.012] [Cited by in Crossref: 163] [Cited by in F6Publishing: 139] [Article Influence: 10.2] [Reference Citation Analysis]
299 Welte T, Aronson J, Gong B, Rachamallu A, Mendell N, Tesh R, Paessler S, Born WK, O'Brien RL, Wang T. Vγ4+ T cells regulate host immune response to West Nile virus infection. FEMS Immunol Med Microbiol 2011;63:183-92. [PMID: 22077221 DOI: 10.1111/j.1574-695X.2011.00840.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
300 Finberg RW, Wang JP. Antiviral responses: different roles for different tolls. Immunity 2009;30:173-5. [PMID: 19239899 DOI: 10.1016/j.immuni.2009.02.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
301 Erickson AK, Pfeiffer JK. Spectrum of disease outcomes in mice infected with YFV-17D. J Gen Virol 2015;96:1328-39. [PMID: 25646269 DOI: 10.1099/vir.0.000075] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
302 Kumar M, Roe K, Nerurkar PV, Orillo B, Thompson KS, Verma S, Nerurkar VR. Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus. J Neuroinflammation 2014;11:80. [PMID: 24750819 DOI: 10.1186/1742-2094-11-80] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
303 Macêdo DS, Araújo DP, Sampaio LR, Vasconcelos SM, Sales PM, Sousa FC, Hallak JE, Crippa JA, Carvalho AF. Animal models of prenatal immune challenge and their contribution to the study of schizophrenia: a systematic review. Braz J Med Biol Res 2012;45:179-86. [PMID: 22392187 DOI: 10.1590/s0100-879x2012007500031] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
304 Lanteri MC, Diamond MS, Norris PJ, Busch MP. Infection par le virus West Nile chez l’homme: II. Aspects physiopathologiques et réponses immunitaires. Med Sci (Paris) 2011;27:382-6. [DOI: 10.1051/medsci/2011274013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
305 Takeuchi O, Akira S. Signaling pathways activated by microorganisms. Curr Opin Cell Biol 2007;19:185-91. [PMID: 17303405 DOI: 10.1016/j.ceb.2007.02.006] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 4.1] [Reference Citation Analysis]
306 Brown AN, Kent KA, Bennett CJ, Bernard KA. Tissue tropism and neuroinvasion of West Nile virus do not differ for two mouse strains with different survival rates. Virology 2007;368:422-30. [PMID: 17675128 DOI: 10.1016/j.virol.2007.06.033] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 4.2] [Reference Citation Analysis]
307 Radichev I, Shiryaev SA, Aleshin AE, Ratnikov BI, Smith JW, Liddington RC, Strongin AY. Structure-based mutagenesis identifies important novel determinants of the NS2B cofactor of the West Nile virus two-component NS2B–NS3 proteinase. Journal of General Virology 2008;89:636-41. [DOI: 10.1099/vir.0.83359-0] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
308 Bryant CE, Gay NJ, Heymans S, Sacre S, Schaefer L, Midwood KS. Advances in Toll-like receptor biology: Modes of activation by diverse stimuli. Critical Reviews in Biochemistry and Molecular Biology 2015;50:359-79. [DOI: 10.3109/10409238.2015.1033511] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 8.3] [Reference Citation Analysis]
309 Rensetti D, Marin M, Quintana S, Morán P, Verna A, Odeón A, Pérez S. Involvement of toll-like receptors 3 and 7/8 in the neuropathogenesis of bovine herpesvirus types 1 and 5. Research in Veterinary Science 2016;107:1-7. [DOI: 10.1016/j.rvsc.2016.04.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
310 Xiao S, Mo D, Wang Q, Jia J, Qin L, Yu X, Niu Y, Zhao X, Liu X, Chen Y. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling. BMC Genomics 2010;11:544. [PMID: 20929578 DOI: 10.1186/1471-2164-11-544] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 5.6] [Reference Citation Analysis]
311 Koyama S, Ishii KJ, Coban C, Akira S. Innate immune response to viral infection. Cytokine 2008;43:336-41. [DOI: 10.1016/j.cyto.2008.07.009] [Cited by in Crossref: 206] [Cited by in F6Publishing: 177] [Article Influence: 15.8] [Reference Citation Analysis]
312 Sabouri AH, Marcondes MC, Flynn C, Berger M, Xiao N, Fox HS, Sarvetnick NE. TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Res 2014;1574:84-95. [PMID: 24928618 DOI: 10.1016/j.brainres.2014.05.049] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
313 Onyango MG, Ciota AT, Kramer LD. The Vector - Host - Pathogen Interface: The Next Frontier in the Battle Against Mosquito-Borne Viral Diseases? Front Cell Infect Microbiol 2020;10:564518. [PMID: 33178624 DOI: 10.3389/fcimb.2020.564518] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
314 Verma S, Lo Y, Chapagain M, Lum S, Kumar M, Gurjav U, Luo H, Nakatsuka A, Nerurkar VR. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology 2009;385:425-33. [PMID: 19135695 DOI: 10.1016/j.virol.2008.11.047] [Cited by in Crossref: 146] [Cited by in F6Publishing: 140] [Article Influence: 12.2] [Reference Citation Analysis]
315 Zelaya H, Alvarez S, Kitazawa H, Villena J. Respiratory Antiviral Immunity and Immunobiotics: Beneficial Effects on Inflammation-Coagulation Interaction during Influenza Virus Infection. Front Immunol 2016;7:633. [PMID: 28066442 DOI: 10.3389/fimmu.2016.00633] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 8.0] [Reference Citation Analysis]
316 Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 2009;206:2091-9. [PMID: 19720839 DOI: 10.1084/jem.20081761] [Cited by in Crossref: 198] [Cited by in F6Publishing: 176] [Article Influence: 16.5] [Reference Citation Analysis]
317 Huang Y, Li X, Pan C, Cheng W, Wang X, Yang Z, Zheng L. The intervention mechanism of emodin on TLR3 pathway in the process of central nervous system injury caused by herpes virus infection. Neurol Res 2021;43:307-13. [PMID: 33274693 DOI: 10.1080/01616412.2020.1853989] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
318 Majde JA, Kapás L, Bohnet SG, De A, Krueger JM. Attenuation of the influenza virus sickness behavior in mice deficient in Toll-like receptor 3. Brain Behav Immun 2010;24:306-15. [PMID: 19861156 DOI: 10.1016/j.bbi.2009.10.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
319 Pawar RD, Patole PS, Wörnle M, Anders H. Microbial nucleic acids pay a Toll in kidney disease. American Journal of Physiology-Renal Physiology 2006;291:F509-16. [DOI: 10.1152/ajprenal.00453.2005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
320 Sprokholt J, Helgers LC, Geijtenbeek TB. Innate immune receptors drive dengue virus immune activation and disease. Future Virol 2017;13:287-305. [PMID: 29937918 DOI: 10.2217/fvl-2017-0146] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
321 Browne EP. Regulation of B-cell responses by Toll-like receptors. Immunology. 2012;136:370-379. [PMID: 22444240 DOI: 10.1111/j.1365-2567.2012.03587.x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 7.8] [Reference Citation Analysis]
322 Amarante MK, Oda JM, Reiche EM, Morimoto HK, Aoki MN, Watanabe MA. Human endogenous RNAs: Implications for the immunomodulation of Toll-like receptor 3. Exp Ther Med 2011;2:925-9. [PMID: 22977599 DOI: 10.3892/etm.2011.303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
323 Mesquita LP, Costa RC, Zanatto DA, Bruhn FRP, Mesquita LLR, Lara MCCSH, Villalobos EMC, Massoco CO, Mori CMC, Mori E, Maiorka PC. Equine herpesvirus 1 elicits a strong pro-inflammatory response in the brain of mice. J Gen Virol 2021;102. [PMID: 33528354 DOI: 10.1099/jgv.0.001556] [Reference Citation Analysis]
324 Brown KL, Cosseau C, Gardy JL, Hancock RE. Complexities of targeting innate immunity to treat infection. Trends Immunol 2007;28:260-6. [PMID: 17468048 DOI: 10.1016/j.it.2007.04.005] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 5.4] [Reference Citation Analysis]
325 Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5:446-458. [PMID: 15928677 DOI: 10.1038/nri1630] [Cited by in Crossref: 1100] [Cited by in F6Publishing: 1050] [Article Influence: 68.8] [Reference Citation Analysis]
326 Kadhim S, McDonald J, Lambert DG. Opioids, gliosis and central immunomodulation. J Anesth 2018;32:756-67. [PMID: 30054718 DOI: 10.1007/s00540-018-2534-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
327 Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology. 2010;397:130-138. [PMID: 19922973 DOI: 10.1016/j.virol.2009.10.036] [Cited by in Crossref: 86] [Cited by in F6Publishing: 83] [Article Influence: 7.2] [Reference Citation Analysis]
328 Bhargavan B, Kanmogne GD. Toll-Like Receptor-3 Mediates HIV-1-Induced Interleukin-6 Expression in the Human Brain Endothelium via TAK1 and JNK Pathways: Implications for Viral Neuropathogenesis. Mol Neurobiol 2018;55:5976-92. [PMID: 29128906 DOI: 10.1007/s12035-017-0816-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
329 Lee M, Kim H. Therapeutic application of the CRISPR system: current issues and new prospects. Hum Genet 2019;138:563-90. [DOI: 10.1007/s00439-019-02028-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
330 Tatematsu M, Seya T, Matsumoto M. Beyond dsRNA: Toll-like receptor 3 signalling in RNA-induced immune responses. Biochem J 2014;458:195-201. [PMID: 24524192 DOI: 10.1042/BJ20131492] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
331 Hunsperger EA, Roehrig JT. Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 2006;12:129-39. [PMID: 16798674 DOI: 10.1080/13550280600758341] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 4.1] [Reference Citation Analysis]
332 Kaiser JA, Luo H, Widen SG, Wood TG, Huang CY, Wang T, Barrett ADT. Genotypic and phenotypic characterization of West Nile virus NS5 methyltransferase mutants. Vaccine 2019;37:7155-64. [PMID: 31611100 DOI: 10.1016/j.vaccine.2019.09.045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
333 Ojha CR, Rodriguez M, Lapierre J, Muthu Karuppan MK, Branscome H, Kashanchi F, El-Hage N. Complementary Mechanisms Potentially Involved in the Pathology of Zika Virus. Front Immunol 2018;9:2340. [PMID: 30374352 DOI: 10.3389/fimmu.2018.02340] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
334 Sun R, Zhang Y, Lv Q, Liu B, Jin M, Zhang W, He Q, Deng M, Liu X, Li G, Li Y, Zhou G, Xie P, Xie X, Hu J, Duan Z. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha). J Biol Chem 2011;286:15918-28. [PMID: 21367858 DOI: 10.1074/jbc.M110.178798] [Cited by in Crossref: 79] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
335 Clark DC, Brault AC, Hunsperger E. The contribution of rodent models to the pathological assessment of flaviviral infections of the central nervous system. Arch Virol 2012;157:1423-40. [PMID: 22592957 DOI: 10.1007/s00705-012-1337-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
336 Grygorczuk S, Świerzbińska R, Kondrusik M, Dunaj J, Czupryna P, Moniuszko A, Siemieniako A, Pancewicz S. The intrathecal expression and pathogenetic role of Th17 cytokines and CXCR2-binding chemokines in tick-borne encephalitis. J Neuroinflammation 2018;15:115. [PMID: 29678185 DOI: 10.1186/s12974-018-1138-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
337 Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021;12:1145-73. [PMID: 33843445 DOI: 10.1080/21505594.2021.1908740] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
338 McGruder B, Saxena V, Wang T. Lessons from the Murine Models of West Nile Virus Infection. Methods Mol Biol 2016;1435:61-9. [PMID: 27188550 DOI: 10.1007/978-1-4939-3670-0_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
339 Guillot-Sestier MV, Town T. Innate immunity in Alzheimer's disease: a complex affair. CNS Neurol Disord Drug Targets 2013;12:593-607. [PMID: 23574177 DOI: 10.2174/1871527311312050008] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
340 Bleau C, Filliol A, Samson M, Lamontagne L. Brain Invasion by Mouse Hepatitis Virus Depends on Impairment of Tight Junctions and Beta Interferon Production in Brain Microvascular Endothelial Cells. J Virol 2015;89:9896-908. [PMID: 26202229 DOI: 10.1128/JVI.01501-15] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
341 Guo F, Zhao X, Gill T, Zhou Y, Campagna M, Wang L, Liu F, Zhang P, DiPaolo L, Du Y, Xu X, Jiang D, Wei L, Cuconati A, Block TM, Guo JT, Chang J. An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses. Antiviral Res 2014;107:56-65. [PMID: 24792753 DOI: 10.1016/j.antiviral.2014.04.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
342 Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev 2007;220:214-24. [DOI: 10.1111/j.1600-065x.2007.00562.x] [Cited by in Crossref: 237] [Cited by in F6Publishing: 130] [Article Influence: 16.9] [Reference Citation Analysis]
343 Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016;100:27-45. [PMID: 27162325 DOI: 10.1189/jlb.2RI1115-531R] [Cited by in Crossref: 72] [Cited by in F6Publishing: 34] [Article Influence: 14.4] [Reference Citation Analysis]
344 Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 2006;176:7666-75. [PMID: 16751414 DOI: 10.4049/jimmunol.176.12.7666] [Cited by in Crossref: 133] [Cited by in F6Publishing: 126] [Article Influence: 8.9] [Reference Citation Analysis]
345 Ong R, Lum F, Ng LF. The fine line between protection and pathology in neurotropic flavivirus and alphavirus infections. Future Virology 2014;9:313-30. [DOI: 10.2217/fvl.14.6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
346 Fan Y, Zhou Y, Zeng L, Jiang N, Liu W, Zhao J, Zhong Q. Identification, structural characterization, and expression analysis of toll-like receptors 2 and 3 from gibel carp (Carassius auratus gibelio). Fish & Shellfish Immunology 2018;72:629-38. [DOI: 10.1016/j.fsi.2017.11.044] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
347 Auguste AJ, Langsjoen RM, Porier DL, Erasmus JH, Bergren NA, Bolling BG, Luo H, Singh A, Guzman H, Popov VL, Travassos da Rosa APA, Wang T, Kang L, Allen IC, Carrington CVF, Tesh RB, Weaver SC. Isolation of a novel insect-specific flavivirus with immunomodulatory effects in vertebrate systems. Virology 2021;562:50-62. [PMID: 34256244 DOI: 10.1016/j.virol.2021.07.004] [Reference Citation Analysis]
348 Warden AS, Azzam M, DaCosta A, Mason S, Blednov YA, Messing RO, Mayfield RD, Harris RA. Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice. Brain Behav Immun 2019;77:55-65. [PMID: 30550931 DOI: 10.1016/j.bbi.2018.12.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
349 Ikegami T, Makino S. The pathogenesis of Rift Valley fever. Viruses 2011;3:493-519. [PMID: 21666766 DOI: 10.3390/v3050493] [Cited by in Crossref: 177] [Cited by in F6Publishing: 160] [Article Influence: 19.7] [Reference Citation Analysis]
350 Drevets DA, Schawang JE, Dillon MJ, Lerner MR, Bronze MS, Brackett DJ. Innate responses to systemic infection by intracellular bacteria trigger recruitment of Ly-6Chigh monocytes to the brain. J Immunol 2008;181:529-36. [PMID: 18566419 DOI: 10.4049/jimmunol.181.1.529] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
351 Park C, Lee S, Cho IH, Lee HK, Kim D, Choi SY, Oh SB, Park K, Kim JS, Lee SJ. TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia. 2006;53:248-256. [PMID: 16265667 DOI: 10.1002/glia.20278] [Cited by in Crossref: 103] [Cited by in F6Publishing: 101] [Article Influence: 6.9] [Reference Citation Analysis]
352 Bowie AG, Fitzgerald KA. RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol. 2007;28:147-150. [PMID: 17307033 DOI: 10.1016/j.it.2007.02.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 2.5] [Reference Citation Analysis]
353 Savarin C, Bergmann CC. Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol 2008;8:472-9. [PMID: 18562249 DOI: 10.1016/j.coph.2008.05.002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
354 Shen Y, Wang S, Sun F, Zheng G, Wu T, Du Y, Zhang S, Qian J, Sun R. Inhibition of murine herpesvirus-68 replication by IFN-gamma in macrophages is counteracted by the induction of SOCS1 expression. PLoS Pathog 2018;14:e1007202. [PMID: 30075008 DOI: 10.1371/journal.ppat.1007202] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
355 Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M. Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol. 2006;80:9424-9434. [PMID: 16973548 DOI: 10.1128/jvi.00768-06] [Cited by in Crossref: 149] [Cited by in F6Publishing: 120] [Article Influence: 9.9] [Reference Citation Analysis]
356 Kariwa H, Murata R, Totani M, Yoshii K, Takashima I. Increased pathogenicity of West Nile virus (WNV) by glycosylation of envelope protein and seroprevalence of WNV in wild birds in Far Eastern Russia. Int J Environ Res Public Health 2013;10:7144-64. [PMID: 24351738 DOI: 10.3390/ijerph10127144] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
357 Her Z, Teng TS, Tan JJ, Teo TH, Kam YW, Lum FM, Lee WW, Gabriel C, Melchiotti R, Andiappan AK, Lulla V, Lulla A, Win MK, Chow A, Biswas SK, Leo YS, Lecuit M, Merits A, Rénia L, Ng LF. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med 2015;7:24-41. [PMID: 25452586 DOI: 10.15252/emmm.201404459] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 9.2] [Reference Citation Analysis]
358 Lee KM, MacLean AG. New advances on glial activation in health and disease. World J Virol 2015;4:42-55. [PMID: 25964871 DOI: 10.5501/wjv.v4.i2.42] [Cited by in CrossRef: 40] [Cited by in F6Publishing: 35] [Article Influence: 6.7] [Reference Citation Analysis]
359 Samuel MA, Wang H, Siddharthan V, Morrey JD, Diamond MS. Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci U S A 2007;104:17140-5. [PMID: 17939996 DOI: 10.1073/pnas.0705837104] [Cited by in Crossref: 146] [Cited by in F6Publishing: 121] [Article Influence: 10.4] [Reference Citation Analysis]
360 Annamalai AS, Pattnaik A, Sahoo BR, Muthukrishnan E, Natarajan SK, Steffen D, Vu HLX, Delhon G, Osorio FA, Petro TM, Xiang SH, Pattnaik AK. Zika Virus Encoding Nonglycosylated Envelope Protein Is Attenuated and Defective in Neuroinvasion. J Virol 2017;91:e01348-17. [PMID: 28931684 DOI: 10.1128/JVI.01348-17] [Cited by in Crossref: 61] [Cited by in F6Publishing: 44] [Article Influence: 15.3] [Reference Citation Analysis]
361 Urbanowski MD, Hobman TC. The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J Virol. 2013;87:872-881. [PMID: 23115297 DOI: 10.1128/jvi.02030-12] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
362 O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177-197. [PMID: 19474110 DOI: 10.1124/pr.109.001073] [Cited by in Crossref: 302] [Cited by in F6Publishing: 275] [Article Influence: 25.2] [Reference Citation Analysis]
363 Tsou Y, Zhang X, Zhu H, Syed S, Xu X. Drug Delivery to the Brain across the Blood–Brain Barrier Using Nanomaterials. Small 2017;13:1701921. [DOI: 10.1002/smll.201701921] [Cited by in Crossref: 69] [Cited by in F6Publishing: 51] [Article Influence: 17.3] [Reference Citation Analysis]
364 Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and α-synuclein's prion-like behavior in Parkinson's disease--is there a link? Mol Neurobiol 2013;47:561-74. [PMID: 22544647 DOI: 10.1007/s12035-012-8267-8] [Cited by in Crossref: 126] [Cited by in F6Publishing: 113] [Article Influence: 14.0] [Reference Citation Analysis]
365 Dai J, Wang P, Bai F, Town T, Fikrig E. Icam-1 participates in the entry of west nile virus into the central nervous system. J Virol 2008;82:4164-8. [PMID: 18256150 DOI: 10.1128/JVI.02621-07] [Cited by in Crossref: 55] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
366 Pulendran B, Miller J, Querec TD, Akondy R, Moseley N, Laur O, Glidewell J, Monson N, Zhu T, Zhu H, Staprans S, Lee D, Brinton MA, Perelygin AA, Vellozzi C, Brachman P Jr, Lalor S, Teuwen D, Eidex RB, Cetron M, Priddy F, del Rio C, Altman J, Ahmed R. Case of yellow fever vaccine--associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes. J Infect Dis 2008;198:500-7. [PMID: 18598196 DOI: 10.1086/590187] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 7.2] [Reference Citation Analysis]
367 Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, Wang P, Krishnan MN, Higgs S, Fikrig E. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog 2011;7:e1002189. [PMID: 21909258 DOI: 10.1371/journal.ppat.1002189] [Cited by in Crossref: 139] [Cited by in F6Publishing: 118] [Article Influence: 13.9] [Reference Citation Analysis]
368 Li MM, Bozzacco L, Hoffmann HH, Breton G, Loschko J, Xiao JW, Monette S, Rice CM, MacDonald MR. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J Exp Med 2016;213:2931-47. [PMID: 27899441 DOI: 10.1084/jem.20160303] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
369 Kalodimou G, Veit S, Jany S, Kalinke U, Broder CC, Sutter G, Volz A. A Soluble Version of Nipah Virus Glycoprotein G Delivered by Vaccinia Virus MVA Activates Specific CD8 and CD4 T Cells in Mice. Viruses 2019;12:E26. [PMID: 31878180 DOI: 10.3390/v12010026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
370 Geng Y, Shen F, Wu W, Zhang L, Luo L, Fan Z, Hou R, Yue B, Zhang X. First demonstration of giant panda's immune response to canine distemper vaccine. Dev Comp Immunol 2020;102:103489. [PMID: 31473266 DOI: 10.1016/j.dci.2019.103489] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
371 Zhu X, Levasseur PR, Michaelis KA, Burfeind KG, Marks DL. A distinct brain pathway links viral RNA exposure to sickness behavior. Sci Rep 2016;6:29885. [PMID: 27435819 DOI: 10.1038/srep29885] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 4.2] [Reference Citation Analysis]
372 Klein R. A Moving Target: The Multiple Roles of CCR5 in Infectious Diseases. J INFECT DIS 2008;197:183-6. [DOI: 10.1086/524692] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
373 Pfeiffer JK. Innate host barriers to viral trafficking and population diversity: lessons learned from poliovirus. Adv Virus Res 2010;77:85-118. [PMID: 20951871 DOI: 10.1016/B978-0-12-385034-8.00004-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
374 Hussmann KL, Fredericksen BL. Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes. J Gen Virol 2014;95:862-7. [PMID: 24413421 DOI: 10.1099/vir.0.060558-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
375 Diamond MS. Progress on the development of therapeutics against West Nile virus. Antiviral Res. 2009;83:214-227. [PMID: 19501622 DOI: 10.1016/j.antiviral.2009.05.006] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 6.3] [Reference Citation Analysis]
376 Negishi H, Taniguchi T, Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol 2018;10:a028423. [PMID: 28963109 DOI: 10.1101/cshperspect.a028423] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 20.0] [Reference Citation Analysis]
377 Lazear HM, Pinto AK, Ramos HJ, Vick SC, Shrestha B, Suthar MS, Gale M Jr, Diamond MS. Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system. J Virol 2013;87:11401-15. [PMID: 23966390 DOI: 10.1128/JVI.01403-13] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
378 Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021;8:619690. [PMID: 33718448 DOI: 10.3389/fcvm.2021.619690] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
379 Carpentier PA, Williams BR, Miller SD. Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 2007;55:239-52. [PMID: 17091495 DOI: 10.1002/glia.20450] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 3.4] [Reference Citation Analysis]
380 DA Silva DG, Carvalho ILQ, Toscano ECB, Santos BÁDSS, Oliveira BDS, Campos MA, Fonseca FGD, Camargos QM, Sousa GF, Caliari MV, Teixeira AL, Miranda AS, Rachid MA. Brain-derived neurotrophic factor is down regulated after bovine alpha-herpesvirus 5 infection in both wild-type and TLR3/7/9 deficient mice. J Vet Med Sci 2021;83:180-6. [PMID: 33281142 DOI: 10.1292/jvms.20-0204] [Reference Citation Analysis]
381 Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021;96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Reference Citation Analysis]
382 Wang T, Welte T. Role of natural killer and Gamma-delta T cells in West Nile virus infection. Viruses 2013;5:2298-310. [PMID: 24061543 DOI: 10.3390/v5092298] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
383 Sapkal G, Harini S, Ayachit V, Fulmali P, Mahamuni S, Bondre V, Gore M. Neutralization escape variant of West Nile virus associated with altered peripheral pathogenicity and differential cytokine profile. Virus Research 2011;158:130-9. [DOI: 10.1016/j.virusres.2011.03.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
384 Villena J, Kitazawa H. The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Front Physiol 2020;11:699. [PMID: 32670091 DOI: 10.3389/fphys.2020.00699] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
385 McCartney SA, Colonna M. Viral sensors: diversity in pathogen recognition. Immunol Rev 2009;227:87-94. [PMID: 19120478 DOI: 10.1111/j.1600-065X.2008.00726.x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
386 Qian F, Bolen CR, Jing C, Wang X, Zheng W, Zhao H, Fikrig E, Bruce RD, Kleinstein SH, Montgomery RR. Impaired toll-like receptor 3-mediated immune responses from macrophages of patients chronically infected with hepatitis C virus. Clin Vaccine Immunol. 2013;20:146-155. [PMID: 23220997 DOI: 10.1128/cvi.00530-12] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
387 Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO. Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 2008;89:467-73. [PMID: 18198377 DOI: 10.1099/vir.0.83345-0] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 5.2] [Reference Citation Analysis]
388 Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. Handb Clin Neurol 2014;123:225-47. [PMID: 25015488 DOI: 10.1016/B978-0-444-53488-0.00010-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
389 Aguirre A, Maturana CJ, Harcha PA, Sáez JC. Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation. Mediators Inflamm 2013;2013:893521. [PMID: 23935250 DOI: 10.1155/2013/893521] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
390 Hu X, Ye J, Qin A, Zou H, Shao H, Qian K. Both MicroRNA-155 and Virus-Encoded MiR-155 Ortholog Regulate TLR3 Expression. PLoS One 2015;10:e0126012. [PMID: 25938551 DOI: 10.1371/journal.pone.0126012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
391 Guven-maiorov E, Tsai C, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Seminars in Cell & Developmental Biology 2016;58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 5.4] [Reference Citation Analysis]
392 Saitoh S, Miyake K. Regulatory molecules required for nucleotide-sensing Toll-like receptors. Immunological Reviews 2009;227:32-43. [DOI: 10.1111/j.1600-065x.2008.00729.x] [Cited by in Crossref: 55] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
393 Hermance ME, Thangamani S. Tick Saliva Enhances Powassan Virus Transmission to the Host, Influencing Its Dissemination and the Course of Disease. J Virol 2015;89:7852-60. [PMID: 25995246 DOI: 10.1128/JVI.01056-15] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 8.2] [Reference Citation Analysis]
394 Teofilović NK, Bihi M, Stojković MR, Tumir LM, Ester K, Kralj M, Majhen D, Oršolić N, Lepur A, Vrbanec D, Markotić A, Dembić Z, Weber AN, Piantanida I, Vugrek O, Diken M, Knežević J. 1-ethyl-3-(6-methylphenanthridine-8-il) urea modulates TLR3/9 activation and induces selective pro-inflammatory cytokine expression in vitro. Bioorg Med Chem Lett 2017;27:1530-7. [PMID: 28254484 DOI: 10.1016/j.bmcl.2017.02.048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
395 Roe K, Gibot S, Verma S. Triggering receptor expressed on myeloid cells-1 (TREM-1): a new player in antiviral immunity? Front Microbiol 2014;5:627. [PMID: 25505454 DOI: 10.3389/fmicb.2014.00627] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
396 Yao Y, Montgomery RR. Role of Immune Aging in Susceptibility to West Nile Virus. Methods Mol Biol 2016;1435:235-47. [PMID: 27188562 DOI: 10.1007/978-1-4939-3670-0_18] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
397 Hou YJ, Banerjee R, Thomas B, Nathan C, García-Sastre A, Ding A, Uccellini MB. SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection. J Immunol 2013;191:875-83. [PMID: 23749635 DOI: 10.4049/jimmunol.1300374] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
398 Ceballos-Olvera I, Sahoo M, Miller MA, Del Barrio L, Re F. Inflammasome-dependent pyroptosis and IL-18 protect against Burkholderia pseudomallei lung infection while IL-1β is deleterious. PLoS Pathog 2011;7:e1002452. [PMID: 22241982 DOI: 10.1371/journal.ppat.1002452] [Cited by in Crossref: 144] [Cited by in F6Publishing: 134] [Article Influence: 14.4] [Reference Citation Analysis]
399 Dörrbecker B, Dobler G, Spiegel M, Hufert FT. Tick-borne encephalitis virus and the immune response of the mammalian host. Travel Medicine and Infectious Disease 2010;8:213-22. [DOI: 10.1016/j.tmaid.2010.05.010] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
400 Montgomery RR. Age-related alterations in immune responses to West Nile virus infection. Clin Exp Immunol 2017;187:26-34. [PMID: 27612657 DOI: 10.1111/cei.12863] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
401 Seleme MC, Kosmac K, Jonjic S, Britt WJ. Tumor Necrosis Factor Alpha-Induced Recruitment of Inflammatory Mononuclear Cells Leads to Inflammation and Altered Brain Development in Murine Cytomegalovirus-Infected Newborn Mice. J Virol 2017;91:e01983-16. [PMID: 28122986 DOI: 10.1128/JVI.01983-16] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
402 Salimi H, Klein RS. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. In: Mitoma H, Manto M, editors. Neuroimmune Diseases. Cham: Springer International Publishing; 2019. pp. 195-234. [DOI: 10.1007/978-3-030-19515-1_7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
403 Bardina SV, Lim JK. The role of chemokines in the pathogenesis of neurotropic flaviviruses. Immunol Res 2012;54:121-32. [PMID: 22547394 DOI: 10.1007/s12026-012-8333-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
404 Derbigny WA, Shobe LR, Kamran JC, Toomey KS, Ofner S. Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun 2012;80:254-65. [PMID: 22006569 DOI: 10.1128/IAI.05549-11] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
405 You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, Walker W, Sutton R, Montgomery R, Lin R, Iwasaki A, Fikrig E. ELF4 is critical for induction of type I interferon and the host antiviral response. Nat Immunol 2013;14:1237-46. [PMID: 24185615 DOI: 10.1038/ni.2756] [Cited by in Crossref: 64] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
406 Brunen D, Mesman AW, Geijtenbeek TB. RIG-I-like receptors and intracellular Toll-like receptors in antiviral immunity. Future Virology 2013;8:183-94. [DOI: 10.2217/fvl.12.119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
407 Rossi SL, Ross TM, Evans JD. West Nile virus. Clin Lab Med. 2010;30:47-65. [PMID: 20513541 DOI: 10.1016/j.cll.2009.10.006] [Cited by in Crossref: 106] [Cited by in F6Publishing: 84] [Article Influence: 9.6] [Reference Citation Analysis]
408 Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J 2008;2:49-59. [PMID: 19088911 DOI: 10.2174/1874285800802010049] [Cited by in Crossref: 121] [Cited by in F6Publishing: 106] [Article Influence: 9.3] [Reference Citation Analysis]
409 Zelaya H, Tsukida K, Chiba E, Marranzino G, Alvarez S, Kitazawa H, Agüero G, Villena J. Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions. Int Immunopharmacol 2014;19:161-73. [PMID: 24394565 DOI: 10.1016/j.intimp.2013.12.020] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
410 Town T, Jeng D, Alexopoulou L, Tan J, Flavell RA. Microglia recognize double-stranded RNA via TLR3. J Immunol 2006;176:3804-12. [PMID: 16517751 DOI: 10.4049/jimmunol.176.6.3804] [Cited by in Crossref: 120] [Cited by in F6Publishing: 119] [Article Influence: 8.0] [Reference Citation Analysis]
411 Priya R, Dhanwani R, Patro IK, Rao PV, Parida MM. Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of Chikungunya virus with and without E1:A226V mutation. Infect Genet Evol 2013;20:396-406. [PMID: 24126361 DOI: 10.1016/j.meegid.2013.09.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
412 Shives KD, Tyler KL, Beckham JD. Molecular mechanisms of neuroinflammation and injury during acute viral encephalitis. Journal of Neuroimmunology 2017;308:102-11. [DOI: 10.1016/j.jneuroim.2017.03.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
413 Zhao J, Vijay R, Zhao J, Gale M Jr, Diamond MS, Perlman S. MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis. J Virol 2016;90:7098-108. [PMID: 27226371 DOI: 10.1128/JVI.00707-16] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
414 Borisevich V, Seregin A, Nistler R, Mutabazi D, Yamshchikov V. Biological properties of chimeric West Nile viruses. Virology 2006;349:371-81. [PMID: 16545851 DOI: 10.1016/j.virol.2006.02.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
415 Yang K, Puel A, Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S. Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity. 2005;23:465-478. [PMID: 16286015 DOI: 10.1016/j.immuni.2005.09.016] [Cited by in Crossref: 195] [Cited by in F6Publishing: 177] [Article Influence: 12.2] [Reference Citation Analysis]
416 Zhou Y, Guo Y, Liu X, Mei Y. Cell cycle inhibitor enhances the resolution of HSV-1-induced proinflammatory response in murine microglial cells. Neurological Research 2013;31:910-6. [DOI: 10.1179/174313209x383222] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
417 Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, Feinberg MB. Reservoir host immune responses to emerging zoonotic viruses. Cell 2015;160:20-35. [PMID: 25533784 DOI: 10.1016/j.cell.2014.12.003] [Cited by in Crossref: 76] [Cited by in F6Publishing: 68] [Article Influence: 10.9] [Reference Citation Analysis]
418 Ding X, Jin S, Tong Y, Jiang X, Chen Z, Mei S, Zhang L, Billiar TR, Li Q. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury. Sci Rep. 2017;7:34278. [PMID: 28198368 DOI: 10.1038/srep34278] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 5.5] [Reference Citation Analysis]
419 Salimi H, Cain MD, Klein RS. Encephalitic Arboviruses: Emergence, Clinical Presentation, and Neuropathogenesis. Neurotherapeutics 2016;13:514-34. [PMID: 27220616 DOI: 10.1007/s13311-016-0443-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
420 Wei X, Lan K. Activation and counteraction of antiviral innate immunity by KSHV: an Update. Sci Bull (Beijing) 2018;63:1223-34. [PMID: 30906617 DOI: 10.1016/j.scib.2018.07.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
421 Kong KF, Delroux K, Wang X, Qian F, Arjona A, Malawista SE, Fikrig E, Montgomery RR. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol. 2008;82:7613-7623. [PMID: 18508883 DOI: 10.1128/jvi.00618-08] [Cited by in Crossref: 112] [Cited by in F6Publishing: 89] [Article Influence: 8.6] [Reference Citation Analysis]
422 Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B, Kidd JR, Kidd KK, Alcaïs A, Ragimbeau J, Pellegrini S, Abel L, Casanova JL, Quintana-Murci L. Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 2009;5:e1000562. [PMID: 19609346 DOI: 10.1371/journal.pgen.1000562] [Cited by in Crossref: 267] [Cited by in F6Publishing: 228] [Article Influence: 22.3] [Reference Citation Analysis]
423 Crack PJ, Bray PJ. Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 2007;85:476-80. [PMID: 17667932 DOI: 10.1038/sj.icb.7100103] [Cited by in Crossref: 88] [Cited by in F6Publishing: 84] [Article Influence: 6.3] [Reference Citation Analysis]
424 Loo YM, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680-692. [PMID: 21616437 DOI: 10.1016/j.immuni.2011.05.003] [Cited by in Crossref: 1088] [Cited by in F6Publishing: 973] [Article Influence: 108.8] [Reference Citation Analysis]
425 Navarro-Sánchez E, Desprès P, Cedillo-Barrón L. Innate immune responses to dengue virus. Arch Med Res 2005;36:425-35. [PMID: 16099317 DOI: 10.1016/j.arcmed.2005.04.007] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 5.4] [Reference Citation Analysis]
426 Bartok E, Hartmann G. Immune Sensing Mechanisms that Discriminate Self from Altered Self and Foreign Nucleic Acids. Immunity 2020;53:54-77. [PMID: 32668228 DOI: 10.1016/j.immuni.2020.06.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 33.0] [Reference Citation Analysis]
427 Crook KR, Miller-Kittrell M, Morrison CR, Scholle F. Modulation of innate immune signaling by the secreted form of the West Nile virus NS1 glycoprotein. Virology 2014;458-459:172-82. [PMID: 24928049 DOI: 10.1016/j.virol.2014.04.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
428 Liu G, Gack MU. Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity 2020;53:26-42. [PMID: 32668226 DOI: 10.1016/j.immuni.2020.03.017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 19.0] [Reference Citation Analysis]
429 Cain MD, Salimi H, Diamond MS, Klein RS. Mechanisms of Pathogen Invasion into the Central Nervous System. Neuron 2019;103:771-83. [PMID: 31487528 DOI: 10.1016/j.neuron.2019.07.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
430 Lindqvist R, Överby AK. The Role of Viperin in Antiflavivirus Responses. DNA and Cell Biology 2018;37:725-30. [DOI: 10.1089/dna.2018.4328] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
431 Kong Y, Le Y. Toll-like receptors in inflammation of the central nervous system. Int Immunopharmacol 2011;11:1407-14. [PMID: 21600311 DOI: 10.1016/j.intimp.2011.04.025] [Cited by in Crossref: 85] [Cited by in F6Publishing: 89] [Article Influence: 8.5] [Reference Citation Analysis]
432 Arjona A, Foellmer HG, Town T, Leng L, McDonald C, Wang T, Wong SJ, Montgomery RR, Fikrig E, Bucala R. Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest. 2007;117:3059-3066. [PMID: 17909632 DOI: 10.1172/jci32218] [Cited by in Crossref: 113] [Cited by in F6Publishing: 77] [Article Influence: 8.1] [Reference Citation Analysis]
433 Garcel A, Fauquette W, Dehouck M, Crance J, Favier A. Vaccinia virus-induced smallpox postvaccinal encephalitis in case of blood–brain barrier damage. Vaccine 2012;30:1397-405. [DOI: 10.1016/j.vaccine.2011.08.116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
434 Shrestha B, Zhang B, Purtha WE, Klein RS, Diamond MS. Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol. 2008;82:8956-8964. [PMID: 18632856 DOI: 10.1128/jvi.01118-08] [Cited by in Crossref: 80] [Cited by in F6Publishing: 65] [Article Influence: 6.2] [Reference Citation Analysis]
435 Muñoz-Jordán JL, Fredericksen BL. How flaviviruses activate and suppress the interferon response. Viruses 2010;2:676-91. [PMID: 21994652 DOI: 10.3390/v2020676] [Cited by in Crossref: 41] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
436 Rozenberg F. Acute viral encephalitis. Pediatric Neurology Part II. Elsevier; 2013. pp. 1171-81. [DOI: 10.1016/b978-0-444-52910-7.00038-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
437 Hüsser L, Alves MP, Ruggli N, Summerfield A. Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA viruses in porcine epithelial cells using lentivirus-driven RNA interference. Virus Res 2011;159:9-16. [PMID: 21539869 DOI: 10.1016/j.virusres.2011.04.005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 5.6] [Reference Citation Analysis]
438 Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, Rudensky AY, Bevan MJ, Clark EA, Kaja MK. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 2010;6:e1000757. [PMID: 20140199 DOI: 10.1371/journal.ppat.1000757] [Cited by in Crossref: 166] [Cited by in F6Publishing: 160] [Article Influence: 15.1] [Reference Citation Analysis]
439 Colpitts TM, Rodenhuis-Zybert I, Moesker B, Wang P, Fikrig E, Smit JM. prM-antibody renders immature West Nile virus infectious in vivo. J Gen Virol 2011;92:2281-5. [PMID: 21697345 DOI: 10.1099/vir.0.031427-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
440 Verma S, Kumar M, Nerurkar VR. Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes. J Gen Virol 2011;92:507-15. [PMID: 21106803 DOI: 10.1099/vir.0.026716-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
441 Dahm T, Rudolph H, Schwerk C, Schroten H, Tenenbaum T. Neuroinvasion and Inflammation in Viral Central Nervous System Infections. Mediators Inflamm 2016;2016:8562805. [PMID: 27313404 DOI: 10.1155/2016/8562805] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 11.4] [Reference Citation Analysis]
442 Zorde-Khvalevsky E, Abramovitch R, Barash H, Spivak-Pohis I, Rivkin L, Rachmilewitz J, Galun E, Giladi H. Toll-like receptor 3 signaling attenuates liver regeneration. Hepatology. 2009;50:198-206. [PMID: 19441101 DOI: 10.1002/hep.22973] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
443 Walker DG, Tang TM, Lue LF. Increased expression of toll-like receptor 3, an anti-viral signaling molecule, and related genes in Alzheimer's disease brains. Exp Neurol 2018;309:91-106. [PMID: 30076830 DOI: 10.1016/j.expneurol.2018.07.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
444 Cheeran MC, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses of human brain cells to West Nile virus infection. J Neurovirol 2005;11:512-24. [DOI: 10.1080/13550280500384982] [Cited by in Crossref: 71] [Cited by in F6Publishing: 72] [Article Influence: 4.4] [Reference Citation Analysis]
445 He X, Chen Y, Kang S, Chen G, Wei P. Differential Regulation of chTLR3 by Infectious Bursal Disease Viruses with Different Virulence In Vitro and In Vivo. Viral Immunol 2017;30:490-9. [PMID: 28402729 DOI: 10.1089/vim.2016.0134] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
446 Lv H, Dong W, Qian G, Wang J, Li X, Cao Z, Lv Q, Wang C, Guo K, Zhang Y. uS10, a novel Npro-interacting protein, inhibits classical swine fever virus replication. J Gen Virol 2017;98:1679-92. [PMID: 28721853 DOI: 10.1099/jgv.0.000867] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
447 Gao H, Leaver SK, Burke-Gaffney A, Finney SJ. Severe sepsis and Toll-like receptors. Semin Immunopathol 2008;30:29-40. [PMID: 18071706 DOI: 10.1007/s00281-007-0101-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
448 Heine H. TLRs, NLRs and RLRs: innate sensors and their impact on allergic diseases--a current view. Immunol Lett 2011;139:14-24. [PMID: 21554901 DOI: 10.1016/j.imlet.2011.04.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
449 Rodriguez MF, Wiens GD, Purcell MK, Palti Y. Characterization of Toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2005;57:510-9. [PMID: 16086174 DOI: 10.1007/s00251-005-0013-1] [Cited by in Crossref: 111] [Cited by in F6Publishing: 101] [Article Influence: 6.9] [Reference Citation Analysis]
450 Guo HY, Zhang XC, Jia RY. Toll-Like Receptors and RIG-I-Like Receptors Play Important Roles in Resisting Flavivirus. J Immunol Res 2018;2018:6106582. [PMID: 29888293 DOI: 10.1155/2018/6106582] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
451 Winkelmann ER, Widman DG, Xia J, Johnson AJ, van Rooijen N, Mason PW, Bourne N, Milligan GN. Subcapsular sinus macrophages limit dissemination of West Nile virus particles after inoculation but are not essential for the development of West Nile virus-specific T cell responses. Virology 2014;450-451:278-89. [PMID: 24503091 DOI: 10.1016/j.virol.2013.12.021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
452 Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, Lee SC. TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology 2009;392:246-59. [PMID: 19646728 DOI: 10.1016/j.virol.2009.07.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 3.8] [Reference Citation Analysis]
453 Mickienė A, Pakalnienė J, Nordgren J, Carlsson B, Hagbom M, Svensson L, Lindquist L. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS One 2014;9:e106798. [PMID: 25226020 DOI: 10.1371/journal.pone.0106798] [Cited by in Crossref: 40] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
454 Bauer S, Hangel D, Yu P. Immunobiology of toll-like receptors in allergic disease. Immunobiology 2007;212:521-33. [DOI: 10.1016/j.imbio.2007.03.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 1.9] [Reference Citation Analysis]
455 Makola RT, Kgaladi J, More GK, Jansen van Vuren P, Paweska JT, Matsebatlela TM. Lithium inhibits NF-κB nuclear translocation and modulate inflammation profiles in Rift valley fever virus-infected Raw 264.7 macrophages. Virol J 2021;18:116. [PMID: 34088327 DOI: 10.1186/s12985-021-01579-z] [Reference Citation Analysis]
456 Wang Y, Bhattacharya D. Adjuvant-specific regulation of long-term antibody responses by ZBTB20. J Exp Med 2014;211:841-56. [PMID: 24711582 DOI: 10.1084/jem.20131821] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 7.4] [Reference Citation Analysis]
457 Ifuku M, Hossain SM, Noda M, Katafuchi T. Induction of interleukin-1β by activated microglia is a prerequisite for immunologically induced fatigue. Eur J Neurosci 2014;40:3253-63. [PMID: 25040499 DOI: 10.1111/ejn.12668] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
458 Tatematsu M, Funami K, Seya T, Matsumoto M. Extracellular RNA Sensing by Pattern Recognition Receptors. J Innate Immun 2018;10:398-406. [PMID: 30404092 DOI: 10.1159/000494034] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
459 Hocker AD, Stokes JA, Powell FL, Huxtable AG. The impact of inflammation on respiratory plasticity. Exp Neurol 2017;287:243-53. [PMID: 27476100 DOI: 10.1016/j.expneurol.2016.07.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
460 Costello DA, Lynch MA. Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus 2013;23:696-707. [PMID: 23554175 DOI: 10.1002/hipo.22129] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 6.3] [Reference Citation Analysis]
461 Indenbaum V, Bin H, Makarovsky D, Weil M, Shulman L, Albeck M, Sredni B, Mendelson E. In vitro and in vivo activity of AS101 against West Nile virus (WNV). Virus Research 2012;166:68-76. [DOI: 10.1016/j.virusres.2012.03.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
462 Debiasi RL, Tyler KL. West Nile virus meningoencephalitis. Nat Clin Pract Neurol 2006;2:264-75. [PMID: 16932563 DOI: 10.1038/ncpneuro0176] [Cited by in Crossref: 92] [Cited by in F6Publishing: 68] [Article Influence: 6.1] [Reference Citation Analysis]
463 Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X. PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 2018;100:183-200.e8. [PMID: 30269986 DOI: 10.1016/j.neuron.2018.08.030] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 15.3] [Reference Citation Analysis]
464 Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, Chang B, Duramad O, Coffman RL. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005;202:1131-9. [PMID: 16230478 DOI: 10.1084/jem.20050914] [Cited by in Crossref: 654] [Cited by in F6Publishing: 612] [Article Influence: 43.6] [Reference Citation Analysis]
465 Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Pérez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valérie Doireau, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 2011;208:2083-98. [PMID: 21911422 DOI: 10.1084/jem.20101568] [Cited by in Crossref: 208] [Cited by in F6Publishing: 176] [Article Influence: 20.8] [Reference Citation Analysis]
466 Slavuljica I, Kveštak D, Huszthy PC, Kosmac K, Britt WJ, Jonjić S. Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model. Cell Mol Immunol 2015;12:180-91. [PMID: 25042632 DOI: 10.1038/cmi.2014.51] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
467 Williams JH, Mentoor JD, Van Wilpe E, Venter M. Comparative pathology of neurovirulent lineage 1 (NY99/385) and lineage 2 (SPU93/01) West Nile virus infections in BALBc mice. Vet Pathol 2015;52:140-51. [PMID: 24513801 DOI: 10.1177/0300985813520246] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
468 Delcambre GH, Long MT. Flavivirus Encephalitides. Equine Infectious Diseases. Elsevier; 2014. pp. 217-226.e6. [DOI: 10.1016/b978-1-4557-0891-8.00021-x] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
469 Varthaman A, Moreau HD, Maurin M, Benaroch P. TLR3-Induced Maturation of Murine Dendritic Cells Regulates CTL Responses by Modulating PD-L1 Trafficking. PLoS One 2016;11:e0167057. [PMID: 27911948 DOI: 10.1371/journal.pone.0167057] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
470 Donadieu E, Bahuon C, Lowenski S, Zientara S, Coulpier M, Lecollinet S. Differential virulence and pathogenesis of West Nile viruses. Viruses 2013;5:2856-80. [PMID: 24284878 DOI: 10.3390/v5112856] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 4.9] [Reference Citation Analysis]
471 Palmieri C, Franca M, Uzal F, Anderson M, Barr B, Woods L, Moore J, Woolcock P, Shivaprasad HL. Pathology and immunohistochemical findings of west nile virus infection in psittaciformes. Vet Pathol 2011;48:975-84. [PMID: 21160024 DOI: 10.1177/0300985810391112] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
472 Liu T, Berta T, Xu ZZ, Park CK, Zhang L, Lü N, Liu Q, Liu Y, Gao YJ, Liu YC. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest. 2012;122:2195-2207. [PMID: 22565312 DOI: 10.1172/jci45414] [Cited by in Crossref: 98] [Cited by in F6Publishing: 63] [Article Influence: 10.9] [Reference Citation Analysis]
473 Wang P, Arjona A, Zhang Y, Sultana H, Dai J, Yang L, LeBlanc PM, Doiron K, Saleh M, Fikrig E. Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I. Nat Immunol. 2010;11:912-919. [PMID: 20818395 DOI: 10.1038/ni.1933] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 6.5] [Reference Citation Analysis]
474 Grygorczuk S, Czupryna P, Pancewicz S, Świerzbińska R, Kondrusik M, Dunaj J, Zajkowska J, Moniuszko-Malinowska A. Intrathecal expression of IL-5 and humoral response in patients with tick-borne encephalitis. Ticks Tick Borne Dis 2018;9:896-911. [PMID: 29602685 DOI: 10.1016/j.ttbdis.2018.03.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
475 Martín-Acebes MA, Saiz JC. West Nile virus: A re-emerging pathogen revisited. World J Virol 2012;1:51-70. [PMID: 24175211 DOI: 10.5501/wjv.v1.i2.51] [Cited by in CrossRef: 53] [Cited by in F6Publishing: 46] [Article Influence: 7.6] [Reference Citation Analysis]
476 Welte T, Reagan K, Fang H, Machain-Williams C, Zheng X, Mendell N, Chang GJ, Wu P, Blair CD, Wang T. Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J Gen Virol 2009;90:2660-8. [PMID: 19641044 DOI: 10.1099/vir.0.011783-0] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 5.6] [Reference Citation Analysis]
477 Daffis S, Suthar MS, Gale M, Diamond MS. Measure and countermeasure: type I IFN (IFN-alpha/beta) antiviral response against West Nile virus. J Innate Immun. 2009;1:435-445. [PMID: 20375601 DOI: 10.1159/000226248] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
478 Bode JG, Brenndörfer ED, Häussinger D. Hepatitis C virus (HCV) employs multiple strategies to subvert the host innate antiviral response. Biol Chem. 2008;389:1283-1298. [PMID: 18713016 DOI: 10.1515/bc.2008.147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
479 Peltier DC, Simms A, Farmer JR, Miller DJ. Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol 2010;184:7010-21. [PMID: 20483728 DOI: 10.4049/jimmunol.0904133] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 5.3] [Reference Citation Analysis]
480 Montgomery RR, Murray KO. Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 2015;13:317-25. [PMID: 25637260 DOI: 10.1586/14787210.2015.1007043] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
481 Luo H, Li G, Wang B, Tian B, Gao J, Zou J, Shi S, Zhu S, Peng BH, Adam A, Martinez A, Hein K, Winkelmann ER, Mahmoud Y, Zhou X, Shan C, Rossi S, Weaver S, Barrett ADT, Sun SC, Zhang W, Shi PY, Wu P, Wang T. Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathog 2020;16:e1008538. [PMID: 32544190 DOI: 10.1371/journal.ppat.1008538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
482 Sin WX, Li P, Yeong JP, Chin KC. Activation and regulation of interferon-β in immune responses. Immunol Res 2012;53:25-40. [PMID: 22411096 DOI: 10.1007/s12026-012-8293-7] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
483 Hasebe R, Suzuki T, Makino Y, Igarashi M, Yamanouchi S, Maeda A, Horiuchi M, Sawa H, Kimura T. Transcellular transport of West Nile virus-like particles across human endothelial cells depends on residues 156 and 159 of envelope protein. BMC Microbiol 2010;10:165. [PMID: 20529314 DOI: 10.1186/1471-2180-10-165] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
484 Ye J, Zhu B, Fu ZF, Chen H, Cao S. Immune evasion strategies of flaviviruses. Vaccine 2013;31:461-71. [PMID: 23153447 DOI: 10.1016/j.vaccine.2012.11.015] [Cited by in Crossref: 84] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
485 Melchjorsen J. Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013;5:470-527. [PMID: 23435233 DOI: 10.3390/v5020470] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
486 Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23:165-75. [PMID: 16111635 DOI: 10.1016/j.immuni.2005.06.008] [Cited by in Crossref: 775] [Cited by in F6Publishing: 718] [Article Influence: 48.4] [Reference Citation Analysis]
487 Garcia-Tapia D, Loiacono CM, Kleiboeker SB. Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2006;110:229-44. [PMID: 16310859 DOI: 10.1016/j.vetimm.2005.10.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 1.9] [Reference Citation Analysis]
488 Ngoi SM, Tovey MG, Vella AT. Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta. J Immunol 2008;181:7670-80. [PMID: 19017955 DOI: 10.4049/jimmunol.181.11.7670] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 3.6] [Reference Citation Analysis]
489 Schell JB, Crane CA, Smith MF Jr, Roberts MR. Differential ex vivo nitric oxide production by acutely isolated neonatal and adult microglia. J Neuroimmunol 2007;189:75-87. [PMID: 17698208 DOI: 10.1016/j.jneuroim.2007.07.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
490 Nazmi A, Mukherjee S, Kundu K, Dutta K, Mahadevan A, Shankar SK, Basu A. TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection. Neurobiol Dis 2014;69:235-47. [PMID: 24909816 DOI: 10.1016/j.nbd.2014.05.036] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 6.1] [Reference Citation Analysis]
491 Sasai M, Matsumoto M, Seya T. The Kinase Complex Responsible for IRF-3–Mediated IFN-β Production in Myeloid Dendritic Cells (mDC). The Journal of Biochemistry 2006;139:171-5. [DOI: 10.1093/jb/mvj025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
492 Loo YM, Gale M Jr. Influenza: fatal immunity and the 1918 virus. Nature 2007;445:267-8. [PMID: 17230179 DOI: 10.1038/445267a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 3.0] [Reference Citation Analysis]
493 Counihan NA, Anderson DA. Specific IgA Enhances the Transcytosis and Excretion of Hepatitis A Virus. Sci Rep 2016;6:21855. [PMID: 26911447 DOI: 10.1038/srep21855] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
494 Sesti-Costa R, Françozo MCS, Silva GK, Proenca-Modena JL, Silva JS. TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells. PLoS One 2017;12:e0185819. [PMID: 28973047 DOI: 10.1371/journal.pone.0185819] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
495 Zhou S, Cerny AM, Bowen G, Chan M, Knipe DM, Kurt-Jones EA, Finberg RW. Discovery of a novel TLR2 signaling inhibitor with anti-viral activity. Antiviral Res 2010;87:295-306. [PMID: 20603154 DOI: 10.1016/j.antiviral.2010.06.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
496 Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Bokodi G, Vásárhelyi B, Korponay-Szabó IR, Tulassay T, Arató A. Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45:187-193. [PMID: 17667714 DOI: 10.1097/mpg.0b013e318064514a] [Cited by in Crossref: 61] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
497 Yachou Y, El Idrissi A, Belapasov V, Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci 2020;41:2657-69. [PMID: 32725449 DOI: 10.1007/s10072-020-04575-3] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 57.0] [Reference Citation Analysis]
498 Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. Int Rev Cell Mol Biol 2019;345:35-136. [PMID: 30904196 DOI: 10.1016/bs.ircmb.2018.08.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
499 Stone AEL, Green R, Wilkins C, Hemann EA, Gale M Jr. RIG-I-like receptors direct inflammatory macrophage polarization against West Nile virus infection. Nat Commun 2019;10:3649. [PMID: 31409781 DOI: 10.1038/s41467-019-11250-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
500 Coffey TJ, Werling D. Therapeutic targeting of the innate immune system in domestic animals. Cell Tissue Res 2011;343:251-61. [DOI: 10.1007/s00441-010-1054-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
501 Wang T. Role of γδ T cells in West Nile virus-induced encephalitis: friend or foe? J Neuroimmunol 2011;240-241:22-7. [PMID: 22078709 DOI: 10.1016/j.jneuroim.2011.10.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
502 Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnæs-Hansen F, Ulhøi BP, Holm TH, Mogensen TH, Owens T, Nyengaard JR, Thomsen AR, Paludan SR. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest 2012;122:1368-76. [PMID: 22426207 DOI: 10.1172/JCI60893] [Cited by in Crossref: 120] [Cited by in F6Publishing: 79] [Article Influence: 13.3] [Reference Citation Analysis]
503 Drummond ES, Muhling J, Martins RN, Wijaya LK, Ehlert EM, Harvey AR. Pathology associated with AAV mediated expression of beta amyloid or C100 in adult mouse hippocampus and cerebellum. PLoS One 2013;8:e59166. [PMID: 23516609 DOI: 10.1371/journal.pone.0059166] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
504 Suh HS, Brosnan CF, Lee SC. Toll-like receptors in CNS viral infections. Curr Top Microbiol Immunol 2009;336:63-81. [PMID: 19688328 DOI: 10.1007/978-3-642-00549-7_4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 1.6] [Reference Citation Analysis]
505 Tobler LH, Cameron MJ, Lanteri MC, Prince HE, Danesh A, Persad D, Lanciotti RS, Norris PJ, Kelvin DJ, Busch MP. Interferon and interferon-induced chemokine expression is associated with control of acute viremia in West Nile virus-infected blood donors. J Infect Dis 2008;198:979-83. [PMID: 18729779 DOI: 10.1086/591466] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
506 Rintahaka J, Wiik D, Kovanen PE, Alenius H, Matikainen S. Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J Immunol 2008;180:1749-57. [PMID: 18209072 DOI: 10.4049/jimmunol.180.3.1749] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 5.8] [Reference Citation Analysis]
507 Chang TH, Liao CL, Lin YL. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect. 2006;8:157-171. [PMID: 16182584 DOI: 10.1016/j.micinf.2005.06.014] [Cited by in Crossref: 170] [Cited by in F6Publishing: 167] [Article Influence: 10.6] [Reference Citation Analysis]
508 Saxena V, Welte T, Bao X, Xie G, Wang J, Higgs S, Tesh RB, Wang T. A hamster-derived West Nile virus strain is highly attenuated and induces a differential proinflammatory cytokine response in two murine cell lines. Virus Res 2012;167:179-87. [PMID: 22580088 DOI: 10.1016/j.virusres.2012.04.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
509 Yamamoto M, Guo DH, Hernandez CM, Stranahan AM. Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance. J Neurosci 2019;39:4179-92. [PMID: 30886019 DOI: 10.1523/JNEUROSCI.2506-18.2019] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
510 Li LJ, Zhang SJ, Liu P, Wang YQ, Chen ZL, Wang YJ, Zhou JB, Guo YJ, Zhao L. Corilagin Interferes With Toll-Like Receptor 3-Mediated Immune Response in Herpes Simplex Encephalitis. Front Mol Neurosci 2019;12:83. [PMID: 31080403 DOI: 10.3389/fnmol.2019.00083] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
511 Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016;13:131. [PMID: 27473856 DOI: 10.1186/s12985-016-0590-7] [Cited by in Crossref: 108] [Cited by in F6Publishing: 96] [Article Influence: 21.6] [Reference Citation Analysis]
512 Hanke ML, Kielian T. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 2011;121:367-87. [PMID: 21745188 DOI: 10.1042/CS20110164] [Cited by in Crossref: 332] [Cited by in F6Publishing: 148] [Article Influence: 33.2] [Reference Citation Analysis]
513 Kitazawa H, Villena J. Modulation of Respiratory TLR3-Anti-Viral Response by Probiotic Microorganisms: Lessons Learned from Lactobacillus rhamnosus CRL1505. Front Immunol 2014;5:201. [PMID: 24860569 DOI: 10.3389/fimmu.2014.00201] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
514 Schäfer A, Brooke CB, Whitmore AC, Johnston RE. The role of the blood-brain barrier during Venezuelan equine encephalitis virus infection. J Virol 2011;85:10682-90. [PMID: 21849461 DOI: 10.1128/JVI.05032-11] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
515 Clé M, Eldin P, Briant L, Lannuzel A, Simonin Y, Van de Perre P, Cabié A, Salinas S. Neurocognitive impacts of arbovirus infections. J Neuroinflammation 2020;17:233. [PMID: 32778106 DOI: 10.1186/s12974-020-01904-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
516 Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019;332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 34.5] [Reference Citation Analysis]
517 Luo H, Winkelmann E, Xie G, Fang R, Peng BH, Li L, Lazear HM, Paessler S, Diamond MS, Gale M Jr, Barrett AD, Wang T. MAVS Is Essential for Primary CD4+ T Cell Immunity but Not for Recall T Cell Responses following an Attenuated West Nile Virus Infection. J Virol 2017;91:e02097-16. [PMID: 28077630 DOI: 10.1128/JVI.02097-16] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
518 Quicke KM, Suthar MS. The innate immune playbook for restricting West Nile virus infection. Viruses 2013;5:2643-58. [PMID: 24178712 DOI: 10.3390/v5112643] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
519 Amsen D, de Visser KE, Town T. Approaches to determine expression of inflammatory cytokines. Methods Mol Biol 2009;511:107-42. [PMID: 19347295 DOI: 10.1007/978-1-59745-447-6_5] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 5.0] [Reference Citation Analysis]
520 Kim SY, Shin S, Kwon M, Youn D, Sung NJ, Kim NH, Park SA, Youn HS. Suppression of the TRIF-dependent signaling pathway of TLRs by epoxomicin. Arch Pharm (Weinheim) 2021;354:e2100130. [PMID: 34060134 DOI: 10.1002/ardp.202100130] [Reference Citation Analysis]
521 Yu FS, Hazlett LD. Toll-like receptors and the eye. Invest Ophthalmol Vis Sci 2006;47:1255-63. [PMID: 16565355 DOI: 10.1167/iovs.05-0956] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 3.3] [Reference Citation Analysis]
522 Town T, Bai F, Wang T, Kaplan AT, Qian F, Montgomery RR, Anderson JF, Flavell RA, Fikrig E. Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity. 2009;30:242-253. [PMID: 19200759 DOI: 10.1016/j.immuni.2008.11.012] [Cited by in Crossref: 147] [Cited by in F6Publishing: 146] [Article Influence: 12.3] [Reference Citation Analysis]
523 Gowen BB, Hoopes JD, Wong M, Jung K, Isakson KC, Alexopoulou L, Flavell RA, Sidwell RW. TLR3 Deletion Limits Mortality and Disease Severity due to Phlebovirus Infection. J Immunol 2006;177:6301-7. [DOI: 10.4049/jimmunol.177.9.6301] [Cited by in Crossref: 94] [Cited by in F6Publishing: 89] [Article Influence: 6.3] [Reference Citation Analysis]
524 Kumar M, Belcaid M, Nerurkar VR. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis. Sci Rep 2016;6:26350. [PMID: 27211830 DOI: 10.1038/srep26350] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
525 Loeb M, Eskandarian S, Rupp M, Fishman N, Gasink L, Patterson J, Bramson J, Hudson TJ, Lemire M. Genetic variants and susceptibility to neurological complications following West Nile virus infection. J Infect Dis 2011;204:1031-7. [PMID: 21881118 DOI: 10.1093/infdis/jir493] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
526 Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol 2012;2:168. [PMID: 23316484 DOI: 10.3389/fcimb.2012.00168] [Cited by in Crossref: 36] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
527 Pérez-Regidor L, Zarioh M, Ortega L, Martín-Santamaría S. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators. Int J Mol Sci 2016;17:E1508. [PMID: 27618029 DOI: 10.3390/ijms17091508] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
528 Gupta SK, Deb R, Dey S, Chellappa MM. Toll-like receptor-based adjuvants: enhancing the immune response to vaccines against infectious diseases of chicken. Expert Rev Vaccines 2014;13:909-25. [PMID: 24855906 DOI: 10.1586/14760584.2014.920236] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
529 Manet C, Roth C, Tawfik A, Cantaert T, Sakuntabhai A, Montagutelli X. Host genetic control of mosquito-borne Flavivirus infections. Mamm Genome 2018;29:384-407. [PMID: 30167843 DOI: 10.1007/s00335-018-9775-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
530 Banks WA. Drug transport into the central nervous system: using newer findings about the blood–brain barriers. Drug Deliv and Transl Res 2012;2:152-9. [DOI: 10.1007/s13346-012-0058-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
531 Deleidi M, Hallett PJ, Koprich JB, Chung CY, Isacson O. The Toll-like receptor-3 agonist polyinosinic:polycytidylic acid triggers nigrostriatal dopaminergic degeneration. J Neurosci 2010;30:16091-101. [PMID: 21123556 DOI: 10.1523/JNEUROSCI.2400-10.2010] [Cited by in Crossref: 73] [Cited by in F6Publishing: 41] [Article Influence: 7.3] [Reference Citation Analysis]
532 Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol 2009;4:462-75. [PMID: 19669892 DOI: 10.1007/s11481-009-9166-2] [Cited by in Crossref: 124] [Cited by in F6Publishing: 122] [Article Influence: 10.3] [Reference Citation Analysis]
533 Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 2008;8:911-22. [PMID: 18989317 DOI: 10.1038/nri2436] [Cited by in Crossref: 452] [Cited by in F6Publishing: 431] [Article Influence: 34.8] [Reference Citation Analysis]
534 Fernández-Paredes L, de Diego RP, de Andrés C, Sánchez-Ramón S. Close Encounters of the First Kind: Innate Sensors and Multiple Sclerosis. Mol Neurobiol 2017;54:101-14. [PMID: 26732593 DOI: 10.1007/s12035-015-9665-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
535 Diamond MS. Development of effective therapies against West Nile virus infection. Expert Rev Anti Infect Ther 2005;3:931-44. [PMID: 16307506 DOI: 10.1586/14787210.3.6.931] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
536 Ryman KD, Gardner CL, Meier KC, Biron CA, Johnston RE, Klimstra WB. Early restriction of alphavirus replication and dissemination contributes to age-dependent attenuation of systemic hyperinflammatory disease. J Gen Virol 2007;88:518-29. [PMID: 17251570 DOI: 10.1099/vir.0.82359-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
537 Wang N, Brix S, Larsen JM, Thysen AH, Rasmussen MA, Workman CT, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL. Innate IL-23/Type 17 immune responses mediate the effect of the 17q21 locus on childhood asthma. Clin Exp Allergy 2021;51:892-901. [PMID: 33987892 DOI: 10.1111/cea.13900] [Reference Citation Analysis]
538 Fang H, Welte T, Zheng X, Chang GJ, Holbrook MR, Soong L, Wang T. gammadelta T cells promote the maturation of dendritic cells during West Nile virus infection. FEMS Immunol Med Microbiol 2010;59:71-80. [PMID: 20337718 DOI: 10.1111/j.1574-695X.2010.00663.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
539 Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21:317-337. [PMID: 19246554 DOI: 10.1093/intimm/dxp017] [Cited by in Crossref: 980] [Cited by in F6Publishing: 869] [Article Influence: 81.7] [Reference Citation Analysis]
540 Noçon AL, Ip JP, Terry R, Lim SL, Getts DR, Müller M, Hofer MJ, King NJ, Campbell IL. The bacteriostatic protein lipocalin 2 is induced in the central nervous system of mice with west Nile virus encephalitis. J Virol 2014;88:679-89. [PMID: 24173226 DOI: 10.1128/JVI.02094-13] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
541 Démoulins T, Baron ML, Kettaf N, Abdallah A, Sharif-Askari E, Sékaly RP. Poly (I:C) induced immune response in lymphoid tissues involves three sequential waves of type I IFN expression. Virology 2009;386:225-36. [PMID: 19232663 DOI: 10.1016/j.virol.2009.01.024] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
542 Cario E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 2005;54:1182-93. [PMID: 15840688 DOI: 10.1136/gut.2004.062794] [Cited by in Crossref: 223] [Cited by in F6Publishing: 194] [Article Influence: 13.9] [Reference Citation Analysis]
543 Liu D, Chen Q, Zhu H, Gong L, Huang Y, Li S, Yue C, Wu K, Wu Y, Zhang W, Huang G, Zhang L, Pu S, Wang D. Association of Respiratory Syncytial Virus Toll-Like Receptor 3-Mediated Immune Response with COPD Exacerbation Frequency. Inflammation 2018;41:654-66. [PMID: 29264743 DOI: 10.1007/s10753-017-0720-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
544 Kip E, Staal J, Tima HG, Verstrepen L, Romano M, Lemeire K, Suin V, Hamouda A, Baens M, Libert C, Kalai M, Van Gucht S, Beyaert R. Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018;92:e00720-18. [PMID: 30158289 DOI: 10.1128/JVI.00720-18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
545 Velandia-romero ML, Acosta-losada O, Castellanos JE. In vivo infection by a neuroinvasive neurovirulent dengue virus. J Neurovirol 2012;18:374-87. [DOI: 10.1007/s13365-012-0117-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
546 De Miranda J, Yaddanapudi K, Hornig M, Lipkin WI. Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5. FASEB J 2009;23:1064-71. [PMID: 19036857 DOI: 10.1096/fj.08-121434] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
547 Nazmi A, Dutta K, Hazra B, Basu A. Role of pattern recognition receptors in flavivirus infections. Virus Res 2014;185:32-40. [PMID: 24657789 DOI: 10.1016/j.virusres.2014.03.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
548 Uematsu S, Akira S. Toll-like receptors and innate immunity. J Mol Med (Berl). 2006;84:712-725. [PMID: 16924467 DOI: 10.1007/s00109-006-0084-y] [Cited by in Crossref: 282] [Cited by in F6Publishing: 265] [Article Influence: 20.1] [Reference Citation Analysis]
549 Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 2014;5:e01476-14. [PMID: 25161189 DOI: 10.1128/mBio.01476-14] [Cited by in Crossref: 103] [Cited by in F6Publishing: 70] [Article Influence: 14.7] [Reference Citation Analysis]
550 Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol. 2005;79:13350-13361. [PMID: 16227257 DOI: 10.1128/jvi.79.21.13350-13361.2005] [Cited by in Crossref: 311] [Cited by in F6Publishing: 227] [Article Influence: 19.4] [Reference Citation Analysis]
551 Loots AK, Cardoso-vermaak E, Venter EH, Mitchell E, Kotzé A, Dalton DL. The role of toll-like receptor polymorphisms in susceptibility to canine distemper virus. Mammalian Biology 2018;88:94-9. [DOI: 10.1016/j.mambio.2017.11.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
552 Okahira S, Nishikawa F, Nishikawa S, Akazawa T, Seya T, Matsumoto M. Interferon-beta induction through toll-like receptor 3 depends on double-stranded RNA structure. DNA Cell Biol 2005;24:614-23. [PMID: 16225392 DOI: 10.1089/dna.2005.24.614] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
553 Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 2011;34:269-81. [PMID: 21419501 DOI: 10.1016/j.tins.2011.02.005] [Cited by in Crossref: 311] [Cited by in F6Publishing: 293] [Article Influence: 31.1] [Reference Citation Analysis]
554 Banks WA. Mouse models of neurological disorders: a view from the blood-brain barrier. Biochim Biophys Acta 2010;1802:881-8. [PMID: 19879356 DOI: 10.1016/j.bbadis.2009.10.011] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
555 Galiana-Arnoux D, Imler JL. Toll-like receptors and innate antiviral immunity. Tissue Antigens 2006;67:267-76. [PMID: 16634862 DOI: 10.1111/j.1399-0039.2006.00583.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
556 Machain-Williams C, Reagan K, Wang T, Zeidner NS, Blair CD. Immunization with Culex tarsalis mosquito salivary gland extract modulates West Nile virus infection and disease in mice. Viral Immunol 2013;26:84-92. [PMID: 23362833 DOI: 10.1089/vim.2012.0051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
557 Scholle F, Mason PW. West Nile virus replication interferes with both poly(I:C)-induced interferon gene transcription and response to interferon treatment. Virology 2005;342:77-87. [PMID: 16111732 DOI: 10.1016/j.virol.2005.07.021] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 3.5] [Reference Citation Analysis]
558 Lee H, Park C, Cho IH, Kim HY, Jo EK, Lee S, Kho HS, Choi SY, Oh SB, Park K, Kim JS, Lee SJ. Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia 2007;55:712-22. [PMID: 17348024 DOI: 10.1002/glia.20493] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
559 Guo F, Mead J, Aliya N, Wang L, Cuconati A, Wei L, Li K, Block TM, Guo JT, Chang J. RO 90-7501 enhances TLR3 and RLR agonist induced antiviral response. PLoS One 2012;7:e42583. [PMID: 23056170 DOI: 10.1371/journal.pone.0042583] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
560 Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017;46:891-909. [PMID: 28636958 DOI: 10.1016/j.immuni.2017.06.012] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 17.5] [Reference Citation Analysis]
561 Kramer LD, Li J, Shi PY. West Nile virus. Lancet Neurol. 2007;6:171-181. [PMID: 17239804 DOI: 10.1016/s1474-4422(07)70030-3] [Cited by in Crossref: 212] [Cited by in F6Publishing: 102] [Article Influence: 16.3] [Reference Citation Analysis]
562 Swanson P, Mcgavern D. Portals of Viral Entry into the Central Nervous System. In: Dorovini-zis K, editor. The Blood-Brain Barrier in Health and Disease, Volume Two. CRC Press; 2015. pp. 23-47. [DOI: 10.1201/b19299-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
563 Luo H, Winkelmann ER, Zhu S, Ru W, Mays E, Silvas JA, Vollmer LL, Gao J, Peng BH, Bopp NE, Cromer C, Shan C, Xie G, Li G, Tesh R, Popov VL, Shi PY, Sun SC, Wu P, Klein RS, Tang SJ, Zhang W, Aguilar PV, Wang T. Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest 2018;128:4980-91. [PMID: 30247157 DOI: 10.1172/JCI99902] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
564 Abraham S, Nagaraj AS, Basak S, Manjunath R. Japanese encephalitis virus utilizes the canonical pathway to activate NF-kappaB but it utilizes the type I interferon pathway to induce major histocompatibility complex class I expression in mouse embryonic fibroblasts. J Virol 2010;84:5485-93. [PMID: 20357096 DOI: 10.1128/JVI.02250-09] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
565 Bourdon M, Manet C, Montagutelli X. Host genetic susceptibility to viral infections: the role of type I interferon induction. Genes Immun 2020;21:365-79. [PMID: 33219336 DOI: 10.1038/s41435-020-00116-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
566 Mansfield KL, Johnson N, Cosby SL, Solomon T, Fooks AR. Transcriptional upregulation of SOCS 1 and suppressors of cytokine signaling 3 mRNA in the absence of suppressors of cytokine signaling 2 mRNA after infection with West Nile virus or tick-borne encephalitis virus. Vector Borne Zoonotic Dis 2010;10:649-53. [PMID: 20854017 DOI: 10.1089/vbz.2009.0259] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
567 Naveca FG, Pontes GS, Chang AY, Silva GAVD, Nascimento VAD, Monteiro DCDS, Silva MSD, Abdalla LF, Santos JHA, Almeida TAP, Mejía MDCC, Mesquita TGR, Encarnação HVS, Gomes MS, Amaral LR, Campi-Azevedo AC, Coelho-Dos-Reis JG, Antonelli LRDV, Teixeira-Carvalho A, Martins-Filho OA, Ramasawmy R. Analysis of the immunological biomarker profile during acute Zika virus infection reveals the overexpression of CXCL10, a chemokine linked to neuronal damage. Mem Inst Oswaldo Cruz 2018;113:e170542. [PMID: 29768624 DOI: 10.1590/0074-02760170542] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
568 Zegenhagen L, Kurhade C, Koniszewski N, Överby AK, Kröger A. Brain heterogeneity leads to differential innate immune responses and modulates pathogenesis of viral infections. Cytokine Growth Factor Rev 2016;30:95-101. [PMID: 27009077 DOI: 10.1016/j.cytogfr.2016.03.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
569 Suthar MS, Gale M Jr, Owen DM. Evasion and disruption of innate immune signalling by hepatitis C and West Nile viruses. Cell Microbiol 2009;11:880-8. [PMID: 19341437 DOI: 10.1111/j.1462-5822.2009.01311.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
570 Yakass MB, Franco D, Quaye O. Suppressors of Cytokine Signaling and Protein Inhibitors of Activated Signal Transducer and Activator of Transcriptions As Therapeutic Targets in Flavivirus Infections. J Interferon Cytokine Res 2020;40:1-18. [PMID: 31436502 DOI: 10.1089/jir.2019.0097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
571 Hayashi M, Aoshi T, Ozasa K, Kusakabe T, Momota M, Haseda Y, Kobari S, Kuroda E, Kobiyama K, Coban C, Ishii KJ. RNA is an Adjuvanticity Mediator for the Lipid-Based Mucosal Adjuvant, Endocine. Sci Rep 2016;6:29165. [PMID: 27374884 DOI: 10.1038/srep29165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
572 Miner JJ, Daniels BP, Shrestha B, Proenca-Modena JL, Lew ED, Lazear HM, Gorman MJ, Lemke G, Klein RS, Diamond MS. The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nat Med 2015;21:1464-72. [PMID: 26523970 DOI: 10.1038/nm.3974] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 13.0] [Reference Citation Analysis]
573 Paun A, Pitha PM. The innate antiviral response: new insights into a continuing story. Adv Virus Res 2007;69:1-66. [PMID: 17222691 DOI: 10.1016/S0065-3527(06)69001-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 0.8] [Reference Citation Analysis]
574 Xia J, Winkelmann ER, Gorder SR, Mason PW, Milligan GN. TLR3- and MyD88-dependent signaling differentially influences the development of West Nile virus-specific B cell responses in mice following immunization with RepliVAX WN, a single-cycle flavivirus vaccine candidate. J Virol 2013;87:12090-101. [PMID: 23986602 DOI: 10.1128/JVI.01469-13] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
575 Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol 2005;79:7466-77. [PMID: 15919902 DOI: 10.1128/JVI.79.12.7466-7477.2005] [Cited by in Crossref: 119] [Cited by in F6Publishing: 82] [Article Influence: 7.4] [Reference Citation Analysis]
576 Yoneyama M, Fujita T. Recognition of viral nucleic acids in innate immunity: Virus-recognition by PRRs. Rev Med Virol 2010;20:4-22. [DOI: 10.1002/rmv.633] [Cited by in Crossref: 212] [Cited by in F6Publishing: 199] [Article Influence: 17.7] [Reference Citation Analysis]
577 Kawamura T. Viral Infection. In: Kabashima K, editor. Immunology of the Skin. Tokyo: Springer Japan; 2016. pp. 295-324. [DOI: 10.1007/978-4-431-55855-2_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
578 Ebihara N, Chen L, Tokura T, Ushio H, Iwatsu M, Murakami A. Distinct Functions between Toll-Like Receptors 3 and 9 in Retinal Pigment Epithelial Cells. Ophthalmic Res 2007;39:155-63. [DOI: 10.1159/000103235] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
579 Khoo JJ, Forster S, Mansell A. Toll-like receptors as interferon-regulated genes and their role in disease. J Interferon Cytokine Res. 2011;31:13-25. [PMID: 21198355 DOI: 10.1089/jir.2010.0095] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
580 Hamill P, Brown K, Jenssen H, Hancock RE. Novel anti-infectives: is host defence the answer? Curr Opin Biotechnol 2008;19:628-36. [PMID: 19000763 DOI: 10.1016/j.copbio.2008.10.006] [Cited by in Crossref: 61] [Cited by in F6Publishing: 51] [Article Influence: 4.7] [Reference Citation Analysis]
581 Sharma R, Shultz SR, Robinson MJ, Belli A, Hibbs ML, O'Brien TJ, Semple BD. Infections after a traumatic brain injury: The complex interplay between the immune and neurological systems. Brain Behav Immun 2019;79:63-74. [PMID: 31029794 DOI: 10.1016/j.bbi.2019.04.034] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
582 Hansmann F, Herder V, Kalkuhl A, Haist V, Zhang N, Schaudien D, Deschl U, Baumgärtner W, Ulrich R. Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler's murine encephalomyelitis. Acta Neuropathol 2012;124:127-42. [PMID: 22271152 DOI: 10.1007/s00401-012-0942-3] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
583 Arjona A, Wang P, Montgomery RR, Fikrig E. Innate immune control of West Nile virus infection. Cell Microbiol 2011;13:1648-58. [PMID: 21790942 DOI: 10.1111/j.1462-5822.2011.01649.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
584 Sahoo M, Del Barrio L, Miller MA, Re F. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species. PLoS Pathog 2014;10:e1004327. [PMID: 25166912 DOI: 10.1371/journal.ppat.1004327] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
585 Diamond MS, Klein RS. West Nile virus: crossing the blood-brain barrier. Nat Med. 2004;10:1294-1295. [PMID: 15580248 DOI: 10.1038/nm1204-1294] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 3.8] [Reference Citation Analysis]
586 Fontes-Garfias CR, Shan C, Luo H, Muruato AE, Medeiros DBA, Mays E, Xie X, Zou J, Roundy CM, Wakamiya M, Rossi SL, Wang T, Weaver SC, Shi PY. Functional Analysis of Glycosylation of Zika Virus Envelope Protein. Cell Rep 2017;21:1180-90. [PMID: 29091758 DOI: 10.1016/j.celrep.2017.10.016] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 27.3] [Reference Citation Analysis]
587 Suthar MS, Diamond MS, Gale Jr M. West Nile virus infection and immunity. Nat Rev Microbiol 2013;11:115-28. [DOI: 10.1038/nrmicro2950] [Cited by in Crossref: 266] [Cited by in F6Publishing: 223] [Article Influence: 33.3] [Reference Citation Analysis]
588 Finlay BB, Mcfadden G. Anti-Immunology: Evasion of the Host Immune System by Bacterial and Viral Pathogens. Cell 2006;124:767-82. [DOI: 10.1016/j.cell.2006.01.034] [Cited by in Crossref: 546] [Cited by in F6Publishing: 474] [Article Influence: 36.4] [Reference Citation Analysis]
589 Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637-650. [PMID: 21616434 DOI: 10.1016/j.immuni.2011.05.006] [Cited by in Crossref: 2169] [Cited by in F6Publishing: 1964] [Article Influence: 216.9] [Reference Citation Analysis]
590 Bai F, Town T, Pradhan D, Cox J, Ashish, Ledizet M, Anderson JF, Flavell RA, Krueger JK, Koski RA, Fikrig E. Antiviral peptides targeting the west nile virus envelope protein. J Virol 2007;81:2047-55. [PMID: 17151121 DOI: 10.1128/JVI.01840-06] [Cited by in Crossref: 71] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
591 Shiryaev SA, Strongin AY. Structural and functional parameters of the flaviviral protease: a promising antiviral drug target. Future Virol 2010;5:593-606. [PMID: 21076642 DOI: 10.2217/fvl.10.39] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
592 Lee HJ, Kong PJ, Lee SH, Kwon OY, Chun WJ, Kim SS. Differences between lipopolysaccharide and double-stranded RNA in innate immune responses of BV2 microglial cells. Int J Neurosci 2007;117:885-94. [PMID: 17613102 DOI: 10.1080/00207450600592156] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
593 Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lebon P, Héron B, Vallée L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova JL. TLR3 deficiency in patients with herpes simplex encephalitis. Science 2007;317:1522-7. [PMID: 17872438 DOI: 10.1126/science.1139522] [Cited by in Crossref: 767] [Cited by in F6Publishing: 667] [Article Influence: 54.8] [Reference Citation Analysis]
594 Hayes EB, Sejvar JJ, Zaki SR, Lanciotti RS, Bode AV, Campbell GL. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis 2005;11:1174-9. [PMID: 16102303 DOI: 10.3201/eid1108.050289b] [Cited by in Crossref: 296] [Cited by in F6Publishing: 235] [Article Influence: 18.5] [Reference Citation Analysis]
595 Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity. 2007;27:370-383. [PMID: 17892846 DOI: 10.1016/j.immuni.2007.08.012] [Cited by in Crossref: 482] [Cited by in F6Publishing: 460] [Article Influence: 34.4] [Reference Citation Analysis]
596 Petersen LR. West Nile Virus: From Africa to Europe, America, and Beyond. In: Sing A, editor. Zoonoses - Infections Affecting Humans and Animals. Dordrecht: Springer Netherlands; 2015. pp. 937-75. [DOI: 10.1007/978-94-017-9457-2_38] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
597 Habarugira G, Suen WW, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H. West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and "One Health" Implications. Pathogens 2020;9:E589. [PMID: 32707644 DOI: 10.3390/pathogens9070589] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
598 Skevaki C, Pararas M, Kostelidou K, Tsakris A, Routsias JG. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clin Exp Immunol. 2015;180:165-177. [PMID: 25560985 DOI: 10.1111/cei.12578] [Cited by in Crossref: 77] [Cited by in F6Publishing: 59] [Article Influence: 12.8] [Reference Citation Analysis]
599 Sanghavi SK, Reinhart TA. Increased expression of TLR3 in lymph nodes during simian immunodeficiency virus infection: implications for inflammation and immunodeficiency. J Immunol 2005;175:5314-23. [PMID: 16210637 DOI: 10.4049/jimmunol.175.8.5314] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 3.0] [Reference Citation Analysis]
600 Zhang SY, Jouanguy E, Sancho-Shimizu V, von Bernuth H, Yang K, Abel L, Picard C, Puel A, Casanova JL. Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses. Immunol Rev 2007;220:225-36. [PMID: 17979850 DOI: 10.1111/j.1600-065X.2007.00564.x] [Cited by in Crossref: 115] [Cited by in F6Publishing: 52] [Article Influence: 8.8] [Reference Citation Analysis]
601 Ojha CR, Rodriguez M, Karuppan MKM, Lapierre J, Kashanchi F, El-Hage N. Toll-like receptor 3 regulates Zika virus infection and associated host inflammatory response in primary human astrocytes. PLoS One 2019;14:e0208543. [PMID: 30735502 DOI: 10.1371/journal.pone.0208543] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
602 Wang Q, Miller DJ, Bowman ER, Nagarkar DR, Schneider D, Zhao Y, Linn MJ, Goldsmith AM, Bentley JK, Sajjan US, Hershenson MB. MDA5 and TLR3 initiate pro-inflammatory signaling pathways leading to rhinovirus-induced airways inflammation and hyperresponsiveness. PLoS Pathog 2011;7:e1002070. [PMID: 21637773 DOI: 10.1371/journal.ppat.1002070] [Cited by in Crossref: 95] [Cited by in F6Publishing: 89] [Article Influence: 9.5] [Reference Citation Analysis]
603 Young VA, Rall GF. Making it to the synapse: measles virus spread in and among neurons. Curr Top Microbiol Immunol 2009;330:3-30. [PMID: 19203102 DOI: 10.1007/978-3-540-70617-5_1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 35] [Article Influence: 1.5] [Reference Citation Analysis]
604 Constant O, Barthelemy J, Bolloré K, Tuaillon E, Gosselet F, Chable-Bessia C, Merida P, Muriaux D, Van de Perre P, Salinas S, Simonin Y. SARS-CoV-2 Poorly Replicates in Cells of the Human Blood-Brain Barrier Without Associated Deleterious Effects. Front Immunol 2021;12:697329. [PMID: 34386007 DOI: 10.3389/fimmu.2021.697329] [Reference Citation Analysis]
605 Alker A. West Nile virus-associated acute flaccid paralysis. BMJ Case Rep 2015;2015:bcr2014206480. [PMID: 25935909 DOI: 10.1136/bcr-2014-206480] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
606 Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark GR. Interferons at age 50: past, current and future impact on biomedicine. Nat Rev Drug Discov 2007;6:975-90. [PMID: 18049472 DOI: 10.1038/nrd2422] [Cited by in Crossref: 746] [Cited by in F6Publishing: 690] [Article Influence: 53.3] [Reference Citation Analysis]
607 Zhu G, Xu Y, Cen X, Nandakumar KS, Liu S, Cheng K. Targeting pattern-recognition receptors to discover new small molecule immune modulators. European Journal of Medicinal Chemistry 2018;144:82-92. [DOI: 10.1016/j.ejmech.2017.12.026] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
608 Mandl JN, Barry AP, Vanderford TH, Kozyr N, Chavan R, Klucking S, Barrat FJ, Coffman RL, Staprans SI, Feinberg MB. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 2008;14:1077-87. [DOI: 10.1038/nm.1871] [Cited by in Crossref: 298] [Cited by in F6Publishing: 275] [Article Influence: 22.9] [Reference Citation Analysis]
609 Shibamiya A, Hersemeyer K, Schmidt Wöll T, Sedding D, Daniel JM, Bauer S, Koyama T, Preissner KT, Kanse SM. A key role for Toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood 2009;113:714-22. [PMID: 18971420 DOI: 10.1182/blood-2008-02-137901] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 3.4] [Reference Citation Analysis]
610 Ishii KJ, Coban C, Akira S. Manifold mechanisms of Toll-like receptor-ligand recognition. J Clin Immunol 2005;25:511-21. [PMID: 16380815 DOI: 10.1007/s10875-005-7829-1] [Cited by in Crossref: 74] [Cited by in F6Publishing: 67] [Article Influence: 6.2] [Reference Citation Analysis]
611 Zhang SY, Herman M, Ciancanelli MJ, Pérez de Diego R, Sancho-Shimizu V, Abel L, Casanova JL. TLR3 immunity to infection in mice and humans. Curr Opin Immunol. 2013;25:19-33. [PMID: 23290562 DOI: 10.1016/j.coi.2012.11.001] [Cited by in Crossref: 100] [Cited by in F6Publishing: 91] [Article Influence: 12.5] [Reference Citation Analysis]
612 Kumar H, Kawai T, Akira S. Pathogen recognition in the innate immune response. Biochemical Journal 2009;420:1-16. [DOI: 10.1042/bj20090272] [Cited by in Crossref: 384] [Cited by in F6Publishing: 166] [Article Influence: 32.0] [Reference Citation Analysis]
613 Kuribayashi S, Sakoda Y, Kawasaki T, Tanaka T, Yamamoto N, Okamatsu M, Isoda N, Tsuda Y, Sunden Y, Umemura T, Nakajima N, Hasegawa H, Kida H. Excessive cytokine response to rapid proliferation of highly pathogenic avian influenza viruses leads to fatal systemic capillary leakage in chickens. PLoS One 2013;8:e68375. [PMID: 23874602 DOI: 10.1371/journal.pone.0068375] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
614 Le Goffic R, Pothlichet J, Vitour D, Fujita T, Meurs E, Chignard M, Si-Tahar M. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells. J Immunol 2007;178:3368-72. [PMID: 17339430 DOI: 10.4049/jimmunol.178.6.3368] [Cited by in Crossref: 277] [Cited by in F6Publishing: 263] [Article Influence: 19.8] [Reference Citation Analysis]
615 Zhang J, Huang Y, Li L, Dong J, Liao M, Sun M. Transcriptome Analysis Reveals the Neuro-Immune Interactions in Duck Tembusu Virus-Infected Brain. Int J Mol Sci 2020;21:E2402. [PMID: 32244328 DOI: 10.3390/ijms21072402] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
616 Schäfer A, Whitmore AC, Konopka JL, Johnston RE. Replicon particles of Venezuelan equine encephalitis virus as a reductionist murine model for encephalitis. J Virol 2009;83:4275-86. [PMID: 19225006 DOI: 10.1128/JVI.02383-08] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
617 Chi H, Flavell RA. Innate recognition of non-self nucleic acids. Genome Biol 2008;9:211. [PMID: 18341708 DOI: 10.1186/gb-2008-9-3-211] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
618 Mustafá YM, Meuren LM, Coelho SVA, de Arruda LB. Pathways Exploited by Flaviviruses to Counteract the Blood-Brain Barrier and Invade the Central Nervous System. Front Microbiol 2019;10:525. [PMID: 30984122 DOI: 10.3389/fmicb.2019.00525] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 20.5] [Reference Citation Analysis]
619 Hsieh V, Jasanoff A. Bioengineered probes for molecular magnetic resonance imaging in the nervous system. ACS Chem Neurosci 2012;3:593-602. [PMID: 22896803 DOI: 10.1021/cn300059r] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
620 Georgel P, Bahram S. Immunité innée antivirale : Rôle des mécanismes Toll -dépendants et Toll -indépendants. Med Sci (Paris) 2006;22:961-8. [DOI: 10.1051/medsci/20062211961] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
621 Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol. 2012;86:2900-2910. [PMID: 22258243 DOI: 10.1128/jvi.05738-11] [Cited by in Crossref: 342] [Cited by in F6Publishing: 208] [Article Influence: 38.0] [Reference Citation Analysis]
622 Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA. Pattern recognition receptors and the innate immune response to viral infection. Viruses. 2011;3:920-940. [PMID: 21994762 DOI: 10.3390/v3060920] [Cited by in Crossref: 414] [Cited by in F6Publishing: 366] [Article Influence: 41.4] [Reference Citation Analysis]
623 Sharma A, Maheshwari RK. Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain. Journal of General Virology 2009;90:1836-47. [DOI: 10.1099/vir.0.010280-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
624 Wang P, Dai J, Bai F, Kong KF, Wong SJ, Montgomery RR, Madri JA, Fikrig E. Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 2008;82:8978-85. [PMID: 18632868 DOI: 10.1128/JVI.00314-08] [Cited by in Crossref: 116] [Cited by in F6Publishing: 76] [Article Influence: 8.9] [Reference Citation Analysis]
625 Ghita L, Spanier J, Chhatbar C, Mulenge F, Pavlou A, Larsen PK, Waltl I, Lueder Y, Kohls M, Jung K, Best SM, Förster R, Stangel M, Schreiner D, Kalinke U. MyD88 signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Sci Immunol 2021;6:eabc9165. [PMID: 34172587 DOI: 10.1126/sciimmunol.abc9165] [Reference Citation Analysis]
626 De Filette M, Ulbert S, Diamond M, Sanders NN. Recent progress in West Nile virus diagnosis and vaccination. Vet Res 2012;43:16. [PMID: 22380523 DOI: 10.1186/1297-9716-43-16] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 11.0] [Reference Citation Analysis]
627 Rivieccio MA, Suh HS, Zhao Y, Zhao ML, Chin KC, Lee SC, Brosnan CF. TLR3 ligation activates an antiviral response in human fetal astrocytes: a role for viperin/cig5. J Immunol 2006;177:4735-41. [PMID: 16982913 DOI: 10.4049/jimmunol.177.7.4735] [Cited by in Crossref: 106] [Cited by in F6Publishing: 105] [Article Influence: 7.1] [Reference Citation Analysis]
628 Adib-Conquy M, Scott-Algara D, Cavaillon JM, Souza-Fonseca-Guimaraes F. TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol. 2014;92:256-262. [PMID: 24366517 DOI: 10.1038/icb.2013.99] [Cited by in Crossref: 108] [Cited by in F6Publishing: 99] [Article Influence: 13.5] [Reference Citation Analysis]
629 Wang K, Deubel V. Mice with different susceptibility to Japanese encephalitis virus infection show selective neutralizing antibody response and myeloid cell infectivity. PLoS One 2011;6:e24744. [PMID: 21949747 DOI: 10.1371/journal.pone.0024744] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
630 Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 2008;205:2609-21. [PMID: 18838547 DOI: 10.1084/jem.20081370] [Cited by in Crossref: 323] [Cited by in F6Publishing: 312] [Article Influence: 24.8] [Reference Citation Analysis]
631 Calvert AE, Dixon KL, Delorey MJ, Blair CD, Roehrig JT. Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain. Vaccine 2014;32:258-64. [PMID: 24252694 DOI: 10.1016/j.vaccine.2013.11.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
632 Magor KE, Miranzo Navarro D, Barber MR, Petkau K, Fleming-Canepa X, Blyth GA, Blaine AH. Defense genes missing from the flight division. Dev Comp Immunol 2013;41:377-88. [PMID: 23624185 DOI: 10.1016/j.dci.2013.04.010] [Cited by in Crossref: 83] [Cited by in F6Publishing: 72] [Article Influence: 10.4] [Reference Citation Analysis]
633 Grygorczuk S, Parczewski M, Świerzbińska R, Czupryna P, Moniuszko A, Dunaj J, Kondrusik M, Pancewicz S. The increased concentration of macrophage migration inhibitory factor in serum and cerebrospinal fluid of patients with tick-borne encephalitis. J Neuroinflammation 2017;14:126. [PMID: 28646884 DOI: 10.1186/s12974-017-0898-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
634 Hsieh JT, Rathore APS, Soundarajan G, St John AL. Japanese encephalitis virus neuropenetrance is driven by mast cell chymase. Nat Commun 2019;10:706. [PMID: 30742008 DOI: 10.1038/s41467-019-08641-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
635 Al-Salleeh F, Petro TM. TLR3 and TLR7 are involved in expression of IL-23 subunits while TLR3 but not TLR7 is involved in expression of IFN-beta by Theiler's virus-infected RAW264.7 cells. Microbes Infect 2007;9:1384-92. [PMID: 17897860 DOI: 10.1016/j.micinf.2007.07.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
636 Kim JH, Hossain FM, Patil AM, Choi JY, Kim SB, Uyangaa E, Park SY, Lee JH, Kim B, Kim K, Eo SK. Ablation of CD11c(hi) dendritic cells exacerbates Japanese encephalitis by regulating blood-brain barrier permeability and altering tight junction/adhesion molecules. Comp Immunol Microbiol Infect Dis 2016;48:22-32. [PMID: 27638116 DOI: 10.1016/j.cimid.2016.07.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
637 Zhao Z, Date T, Li Y, Kato T, Miyamoto M, Yasui K, Wakita T. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 2005;86:2209-20. [PMID: 16033968 DOI: 10.1099/vir.0.80638-0] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 4.3] [Reference Citation Analysis]
638 Kang SJ. The bloodline of CD8α(+) dendritic cells. Mol Cells 2012;34:219-29. [PMID: 22767247 DOI: 10.1007/s10059-012-0058-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
639 Honda K, Takaoka A, Taniguchi T. Type I Inteferon Gene Induction by the Interferon Regulatory Factor Family of Transcription Factors. Immunity 2006;25:349-60. [DOI: 10.1016/j.immuni.2006.08.009] [Cited by in Crossref: 855] [Cited by in F6Publishing: 793] [Article Influence: 57.0] [Reference Citation Analysis]
640 Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol 2010;10:514-26. [PMID: 20577268 DOI: 10.1038/nri2802] [Cited by in Crossref: 275] [Cited by in F6Publishing: 233] [Article Influence: 25.0] [Reference Citation Analysis]
641 Hou L, Wang T, Sun J. γδ T cells in infection and autoimmunity. Int Immunopharmacol 2015;28:887-91. [PMID: 25864620 DOI: 10.1016/j.intimp.2015.03.038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
642 Chang CH, Lai LC, Cheng HC, Chen KR, Syue YZ, Lu HC, Lin WY, Chen SH, Huang HS, Shiau AL, Lei HY, Qin J, Ling P. TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. J Biol Chem 2011;286:7043-51. [PMID: 21189260 DOI: 10.1074/jbc.M110.164632] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
643 Anders H. Innate pathogen recognition in the kidney: Toll-like receptors, NOD-like receptors, and RIG-like helicases. Kidney International 2007;72:1051-6. [DOI: 10.1038/sj.ki.5002436] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
644 Lanteri MC, O'Brien KM, Purtha WE, Cameron MJ, Lund JM, Owen RE, Heitman JW, Custer B, Hirschkorn DF, Tobler LH, Kiely N, Prince HE, Ndhlovu LC, Nixon DF, Kamel HT, Kelvin DJ, Busch MP, Rudensky AY, Diamond MS, Norris PJ. Tregs control the development of symptomatic West Nile virus infection in humans and mice. J Clin Invest 2009;119:3266-77. [PMID: 19855131 DOI: 10.1172/JCI39387] [Cited by in Crossref: 40] [Cited by in F6Publishing: 122] [Article Influence: 3.3] [Reference Citation Analysis]
645 Ko A, Lee EW, Yeh JY, Yang MR, Oh W, Moon JS, Song J. MKRN1 induces degradation of West Nile virus capsid protein by functioning as an E3 ligase. J Virol 2010;84:426-36. [PMID: 19846531 DOI: 10.1128/JVI.00725-09] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
646 Lewis SD, Butchi NB, Khaleduzzaman M, Morgan TW, Du M, Pourciau S, Baker DG, Akira S, Peterson KE. Toll-like receptor 7 is not necessary for retroviral neuropathogenesis but does contribute to virus-induced neuroinflammation. J Neurovirol 2008;14:492-502. [PMID: 19016073 DOI: 10.1080/13550280802345723] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
647 McFarland AJ, Yousuf MS, Shiers S, Price TJ. Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Rep 2021;6:e885. [PMID: 33458558 DOI: 10.1097/PR9.0000000000000885] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
648 Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peterson SN, Monack DM, Barton GM. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011;144:675-88. [PMID: 21376231 DOI: 10.1016/j.cell.2011.01.031] [Cited by in Crossref: 155] [Cited by in F6Publishing: 140] [Article Influence: 15.5] [Reference Citation Analysis]
649 Furr SR, Marriott I. Viral CNS infections: role of glial pattern recognition receptors in neuroinflammation. Front Microbiol 2012;3:201. [PMID: 22723794 DOI: 10.3389/fmicb.2012.00201] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 4.1] [Reference Citation Analysis]
650 Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205:2319-2337. [PMID: 18779347 DOI: 10.1084/jem.20080421] [Cited by in Crossref: 216] [Cited by in F6Publishing: 220] [Article Influence: 16.6] [Reference Citation Analysis]
651 Abe Y, Fujii K, Nagata N, Takeuchi O, Akira S, Oshiumi H, Matsumoto M, Seya T, Koike S. The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J Virol 2012;86:185-94. [PMID: 22072781 DOI: 10.1128/JVI.05245-11] [Cited by in Crossref: 68] [Cited by in F6Publishing: 48] [Article Influence: 6.8] [Reference Citation Analysis]
652 Sullivan C, Postlethwait JH, Lage CR, Millard PJ, Kim CH. Evidence for Evolving Toll-IL-1 Receptor-Containing Adaptor Molecule Function in Vertebrates. J Immunol 2007;178:4517-27. [DOI: 10.4049/jimmunol.178.7.4517] [Cited by in Crossref: 68] [Cited by in F6Publishing: 67] [Article Influence: 4.9] [Reference Citation Analysis]
653 Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med. 2005;202:1087-1098. [PMID: 16230476 DOI: 10.1084/jem.20042530] [Cited by in Crossref: 262] [Cited by in F6Publishing: 253] [Article Influence: 17.5] [Reference Citation Analysis]
654 Sooryanarain H, Sapkal GN, Gore MM. Pathogenic and vaccine strains of Japanese encephalitis virus elicit different levels of human macrophage effector functions. Arch Virol 2012;157:1905-18. [PMID: 22729616 DOI: 10.1007/s00705-012-1386-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
655 Peng BH, Wang T. West Nile Virus Induced Cell Death in the Central Nervous System. Pathogens 2019;8:E215. [PMID: 31683807 DOI: 10.3390/pathogens8040215] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
656 Scherbik SV, Paranjape JM, Stockman BM, Silverman RH, Brinton MA. RNase L plays a role in the antiviral response to West Nile virus. J Virol 2006;80:2987-99. [PMID: 16501108 DOI: 10.1128/JVI.80.6.2987-2999.2006] [Cited by in Crossref: 106] [Cited by in F6Publishing: 76] [Article Influence: 7.1] [Reference Citation Analysis]
657 Kawai T, Akira S. Toll-like Receptor and RIG-1-like Receptor Signaling. Annals of the New York Academy of Sciences 2008;1143:1-20. [DOI: 10.1196/annals.1443.020] [Cited by in Crossref: 621] [Cited by in F6Publishing: 598] [Article Influence: 47.8] [Reference Citation Analysis]
658 Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe 2013;13:379-93. [PMID: 23601101 DOI: 10.1016/j.chom.2013.03.010] [Cited by in Crossref: 269] [Cited by in F6Publishing: 228] [Article Influence: 38.4] [Reference Citation Analysis]
659 Beckham JD, Tyler KL. Clinical Manifestations of Neurological Disease. West Nile Encephalitis Virus Infection. New York: Springer; 2009. pp. 69-95. [DOI: 10.1007/978-0-387-79840-0_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
660 Balah A, Akool el-S, Bachmann M, Pfeilschifter J, Mühl H. The dsRNA-mimetic poly (I:C) and IL-18 synergize for IFNgamma and TNFalpha expression. Biochem Biophys Res Commun 2009;389:628-33. [PMID: 19761760 DOI: 10.1016/j.bbrc.2009.09.040] [Reference Citation Analysis]
661 Uematsu S, Akira S. Toll-like receptors and Type I interferons. J Biol Chem. 2007;282:15319-15323. [PMID: 17395581 DOI: 10.1074/jbc.r700009200] [Cited by in Crossref: 317] [Cited by in F6Publishing: 177] [Article Influence: 22.6] [Reference Citation Analysis]
662 Xu Z, Waeckerlin R, Urbanowski MD, van Marle G, Hobman TC. West Nile virus infection causes endocytosis of a specific subset of tight junction membrane proteins. PLoS One 2012;7:e37886. [PMID: 22655077 DOI: 10.1371/journal.pone.0037886] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
663 Vijay-Kumar M, Aitken JD, Kumar A, Neish AS, Uematsu S, Akira S, Gewirtz AT. Toll-like receptor 5-deficient mice have dysregulated intestinal gene expression and nonspecific resistance to Salmonella-induced typhoid-like disease. Infect Immun 2008;76:1276-81. [PMID: 18195036 DOI: 10.1128/IAI.01491-07] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
664 Yamashita M, Chattopadhyay S, Fensterl V, Zhang Y, Sen GC. A TRIF-independent branch of TLR3 signaling. J Immunol 2012;188:2825-33. [PMID: 22323545 DOI: 10.4049/jimmunol.1103220] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
665 Tatematsu M, Nishikawa F, Seya T, Matsumoto M. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun 2013;4:1833. [PMID: 23673618 DOI: 10.1038/ncomms2857] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 9.0] [Reference Citation Analysis]
666 Clé M, Desmetz C, Barthelemy J, Martin MF, Constant O, Maarifi G, Foulongne V, Bolloré K, Glasson Y, De Bock F, Blaquiere M, Dehouck L, Pirot N, Tuaillon E, Nisole S, Najioullah F, Van de Perre P, Cabié A, Marchi N, Gosselet F, Simonin Y, Salinas S. Zika Virus Infection Promotes Local Inflammation, Cell Adhesion Molecule Upregulation, and Leukocyte Recruitment at the Blood-Brain Barrier. mBio 2020;11:e01183-20. [PMID: 32753493 DOI: 10.1128/mBio.01183-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
667 Mehlhop E, Diamond MS. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. J Exp Med 2006;203:1371-81. [PMID: 16651386 DOI: 10.1084/jem.20052388] [Cited by in Crossref: 131] [Cited by in F6Publishing: 125] [Article Influence: 8.7] [Reference Citation Analysis]
668 Schneider BS, Soong L, Girard YA, Campbell G, Mason P, Higgs S. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol 2006;19:74-82. [PMID: 16553552 DOI: 10.1089/vim.2006.19.74] [Cited by in Crossref: 93] [Cited by in F6Publishing: 78] [Article Influence: 6.2] [Reference Citation Analysis]
669 Le Goffic R, Balloy V, Lagranderie M, Alexopoulou L, Escriou N, Flavell R, Chignard M, Si-Tahar M. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2006;2:e53. [PMID: 16789835 DOI: 10.1371/journal.ppat.0020053] [Cited by in Crossref: 367] [Cited by in F6Publishing: 349] [Article Influence: 24.5] [Reference Citation Analysis]
670 Pang IK, Iwasaki A. Control of antiviral immunity by pattern recognition and the microbiome. Immunol Rev 2012;245:209-26. [PMID: 22168422 DOI: 10.1111/j.1600-065X.2011.01073.x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 31] [Article Influence: 6.9] [Reference Citation Analysis]
671 Carneiro LC, Bedford C, Jacca S, Rosamilia A, de Lima VF, Donofrio G, Sheldon IM, Cronin JG. Coordinated Role of Toll-Like Receptor-3 and Retinoic Acid-Inducible Gene-I in the Innate Response of Bovine Endometrial Cells to Virus. Front Immunol 2017;8:996. [PMID: 28878771 DOI: 10.3389/fimmu.2017.00996] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
672 Chhabra R, Kuchipudi SV, Chantrey J, Ganapathy K. Pathogenicity and tissue tropism of infectious bronchitis virus is associated with elevated apoptosis and innate immune responses. Virology 2016;488:232-41. [PMID: 26655241 DOI: 10.1016/j.virol.2015.11.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
673 Miguel JC, Chen J, Van Alstine WG, Johnson RW. Expression of inflammatory cytokines and Toll-like receptors in the brain and respiratory tract of pigs infected with porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2010;135:314-9. [PMID: 20189253 DOI: 10.1016/j.vetimm.2010.01.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
674 Daffis S, Samuel MA, Suthar MS, Gale M, Diamond MS. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008;82:10349-10358. [PMID: 18715906 DOI: 10.1128/jvi.00935-08] [Cited by in Crossref: 241] [Cited by in F6Publishing: 171] [Article Influence: 18.5] [Reference Citation Analysis]
675 Bowie AG. Translational mini-review series on Toll-like receptors: recent advances in understanding the role of Toll-like receptors in anti-viral immunity. Clin Exp Immunol 2007;147:217-26. [PMID: 17223961 DOI: 10.1111/j.1365-2249.2006.03301.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.0] [Reference Citation Analysis]
676 Hou J, Baker LA, Zhou L, Klein RS. Viral interactions with the blood-brain barrier: old dog, new tricks. Tissue Barriers 2016;4:e1142492. [PMID: 27141421 DOI: 10.1080/21688370.2016.1142492] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [