BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C, Leyva A. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 2014;5:4617. [PMID: 25099865 DOI: 10.1038/ncomms5617] [Cited by in Crossref: 97] [Cited by in F6Publishing: 80] [Article Influence: 12.1] [Reference Citation Analysis]
Number Citing Articles
1 Kumar S, Trivedi PK. Genomics of Arsenic Stress Response in Plants. In: Rajpal VR, Sehgal D, Kumar A, Raina S, editors. Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Cham: Springer International Publishing; 2019. pp. 231-48. [DOI: 10.1007/978-3-319-91956-0_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Selim S, Abuelsoud W, Al-Sanea MM, AbdElgawad H. Elevated CO2 differently suppresses the arsenic oxide nanoparticles-induced stress in C3 (Hordeum vulgare) and C4 (Zea maize) plants via altered homeostasis in metabolites specifically proline and anthocyanin metabolism. Plant Physiol Biochem 2021;166:235-45. [PMID: 34126591 DOI: 10.1016/j.plaphy.2021.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol Plant 2021:S1674-2052(21)00406-8. [PMID: 34619329 DOI: 10.1016/j.molp.2021.09.016] [Reference Citation Analysis]
4 Bianucci E, Furlan A, Hernández LE, Castro S. Insights into the Effect of a Natural Arsenate Dose on Growth, Nodulation and Redox Metabolism of Soybean Plants. Pedosphere 2019;29:527-33. [DOI: 10.1016/s1002-0160(19)60816-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Wang P, Zhang W, Mao C, Xu G, Zhao F. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. EXBOTJ 2016;67:6051-9. [DOI: 10.1093/jxb/erw362] [Cited by in Crossref: 79] [Cited by in F6Publishing: 63] [Article Influence: 13.2] [Reference Citation Analysis]
6 Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A. An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum. Sci Rep 2018;8:6979. [PMID: 29725058 DOI: 10.1038/s41598-018-25306-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 5.8] [Reference Citation Analysis]
7 Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao FJ, Wu Z. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 2017;215:1090-101. [PMID: 28407265 DOI: 10.1111/nph.14572] [Cited by in Crossref: 82] [Cited by in F6Publishing: 66] [Article Influence: 16.4] [Reference Citation Analysis]
8 Terrón-camero LC, Peláez-vico MÁ, Del-val C, Sandalio LM, Romero-puertas MC, Brouquisse R. Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production. Journal of Experimental Botany 2019;70:4477-88. [DOI: 10.1093/jxb/erz184] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 14.7] [Reference Citation Analysis]
9 Tang Z, Chen Y, Miller AJ, Zhao F. The C-type ATP-Binding Cassette Transporter OsABCC7 Is Involved in the Root-to-Shoot Translocation of Arsenic in Rice. Plant and Cell Physiology 2019;60:1525-35. [DOI: 10.1093/pcp/pcz054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
10 Nishida S, Duan G, Ohkama-ohtsu N, Uraguchi S, Fujiwara T. Enhanced arsenic sensitivity with excess phytochelatin accumulation in shoots of a SULTR1;2 knockout mutant of Arabidopsis thaliana (L.) Heynh. Soil Science and Plant Nutrition 2016;62:367-72. [DOI: 10.1080/00380768.2016.1150790] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
11 Zeeshan M, Hu YX, Afridi MS, Ahmad B, Ahmad S, Muhammad I, Hale B, Iqbal A, Farooq S, Wu HY, Zhou XB. Interplay of ZnONPs and/or SeNPs induces arsenic tolerance in soybean by regulation of antioxidants pool, WRKY genes, and expression of arsenic transporters. Environmental and Experimental Botany 2022;195:104783. [DOI: 10.1016/j.envexpbot.2022.104783] [Reference Citation Analysis]
12 Moseler A, Selles B, Rouhier N, Couturier J. Novel insights into the diversity of the sulfurtransferase family in photosynthetic organisms with emphasis on oak. New Phytol 2020;226:967-77. [PMID: 31032955 DOI: 10.1111/nph.15870] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
13 Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Mol Plant 2022;15:104-24. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Reference Citation Analysis]
14 Fischer S, Sánchez-Bermejo E, Xu X, Flis P, Ramakrishna P, Guerinot ML, Zhao FJ, Salt DE. Targeted expression of the arsenate reductase HAC1 identifies cell type specificity of arsenic metabolism and transport in plant roots. J Exp Bot 2021;72:415-25. [PMID: 33038235 DOI: 10.1093/jxb/eraa465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang P, Chen X, Xu X, Lu C, Zhang W, Zhao FJ. ARSENATE INDUCED CHLOROSIS 1/ TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLASTS 132 Protects Chloroplasts from Arsenic Toxicity. Plant Physiol 2018;178:1568-83. [PMID: 30309965 DOI: 10.1104/pp.18.01042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
16 Shukla T, Kumar S, Khare R, Tripathi RD, Trivedi PK. Natural variations in expression of regulatory and detoxification related genes under limiting phosphate and arsenate stress in Arabidopsis thaliana. Front Plant Sci 2015;6:898. [PMID: 26557133 DOI: 10.3389/fpls.2015.00898] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
17 Akman M, Kleine R, van Tienderen PH, Schranz EM. Identification of the Submergence Tolerance QTL Come Quick Drowning1 (CQD1) in Arabidopsis thaliana. Journal of Heredity 2017;108:308-17. [DOI: 10.1093/jhered/esx014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
18 Shukla T, Khare R, Kumar S, Lakhwani D, Sharma D, Asif MH, Trivedi PK. Differential transcriptome modulation leads to variation in arsenic stress response in Arabidopsis thaliana accessions. Journal of Hazardous Materials 2018;351:1-10. [DOI: 10.1016/j.jhazmat.2018.02.031] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
19 Bianucci E, Furlan A, Tordable MDC, Hernández LE, Carpena-ruiz RO, Castro S. Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: Identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Chemosphere 2017;181:551-61. [DOI: 10.1016/j.chemosphere.2017.04.104] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]
20 Wang C, Na G, Bermejo ES, Chen Y, Banks JA, Salt DE, Zhao FJ. Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 2018;217:206-18. [PMID: 28857170 DOI: 10.1111/nph.14761] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 6.6] [Reference Citation Analysis]
21 Fischer S, Spielau T, Clemens S. Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance. Sci Rep 2017;7:3693. [PMID: 28623252 DOI: 10.1038/s41598-017-03540-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
22 Zhang J, Hamza A, Xie Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. Environ Pollut 2021;290:117987. [PMID: 34425370 DOI: 10.1016/j.envpol.2021.117987] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018;19:E2450. [PMID: 30126242 DOI: 10.3390/ijms19082450] [Cited by in Crossref: 57] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
24 Podar D, Maathuis FJM. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell Environ 2021. [PMID: 34622470 DOI: 10.1111/pce.14188] [Reference Citation Analysis]
25 Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KH, Zhou W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany 2016;132:42-52. [DOI: 10.1016/j.envexpbot.2016.08.004] [Cited by in Crossref: 120] [Cited by in F6Publishing: 75] [Article Influence: 20.0] [Reference Citation Analysis]
26 Clemens S, Ort D. Safer food through plant science: reducing toxic element accumulation in crops. Journal of Experimental Botany 2019;70:5537-57. [DOI: 10.1093/jxb/erz366] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
27 Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q, Li C. Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiol 2021;185:1166-81. [PMID: 33793921 DOI: 10.1093/plphys/kiaa072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S, Xu G, Liu Y, Chen Y, Ma LQ. Knocking Out OsPT4 Gene Decreases Arsenate Uptake by Rice Plants and Inorganic Arsenic Accumulation in Rice Grains. Environ Sci Technol 2017;51:12131-8. [DOI: 10.1021/acs.est.7b03028] [Cited by in Crossref: 53] [Cited by in F6Publishing: 42] [Article Influence: 10.6] [Reference Citation Analysis]
29 Huang XY, Salt DE. Plant Ionomics: From Elemental Profiling to Environmental Adaptation. Mol Plant 2016;9:787-97. [PMID: 27212388 DOI: 10.1016/j.molp.2016.05.003] [Cited by in Crossref: 85] [Cited by in F6Publishing: 62] [Article Influence: 14.2] [Reference Citation Analysis]
30 Li X, Sun D, Feng H, Chen J, Chen Y, Li H, Cao Y, Ma LQ. Efficient arsenate reduction in As-hyperaccumulator Pteris vittata are mediated by novel arsenate reductases PvHAC1 and PvHAC2. Journal of Hazardous Materials 2020;399:122895. [DOI: 10.1016/j.jhazmat.2020.122895] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
31 Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front Plant Sci 2015;6:1143. [PMID: 26904030 DOI: 10.3389/fpls.2015.01143] [Cited by in Crossref: 305] [Cited by in F6Publishing: 223] [Article Influence: 50.8] [Reference Citation Analysis]
32 Han Y, Liu X, Rathinasabapathi B, Li H, Chen Y, Ma LQ. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata. Environmental Pollution 2017;227:569-77. [DOI: 10.1016/j.envpol.2017.05.001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 9.0] [Reference Citation Analysis]
33 Kofroňová M, Mašková P, Lipavská H. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. Planta 2018;248:19-35. [DOI: 10.1007/s00425-018-2906-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
34 Planer-friedrich B, Kühnlenz T, Halder D, Lohmayer R, Wilson N, Rafferty C, Clemens S. Thioarsenate Toxicity and Tolerance in the Model System Arabidopsis thaliana. Environ Sci Technol 2017;51:7187-96. [DOI: 10.1021/acs.est.6b06028] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
35 Wang W, Ding G, White PJ, Wang M, Zou J, Xu F, Hammond JP, Shi L. Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies. Ann Bot 2020;126:119-40. [PMID: 32221530 DOI: 10.1093/aob/mcaa055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
36 Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao FJ. OsHAC1;1 and OsHAC1;2 Function as Arsenate Reductases and Regulate Arsenic Accumulation. Plant Physiol 2016;172:1708-19. [PMID: 27702843 DOI: 10.1104/pp.16.01332] [Cited by in Crossref: 106] [Cited by in F6Publishing: 83] [Article Influence: 17.7] [Reference Citation Analysis]
37 Sharma SS, Kumar V, Dietz KJ. Emerging Trends in Metalloid-Dependent Signaling in Plants. Trends Plant Sci 2021;26:452-71. [PMID: 33257259 DOI: 10.1016/j.tplants.2020.11.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Khare R, Kumar S, Shukla T, Ranjan A, Trivedi PK. Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition. J Hazard Mater 2017;337:198-207. [PMID: 28525880 DOI: 10.1016/j.jhazmat.2017.05.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
39 Tiwari S, Sarangi BK. Transgenics for Arsenic and Chromium Phytoremediation. Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids. Elsevier; 2019. pp. 167-85. [DOI: 10.1016/b978-0-12-814389-6.00009-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Pita-barbosa A, Ricachenevsky FK, Flis PM. One “OMICS” to integrate them all: ionomics as a result of plant genetics, physiology and evolution. Theor Exp Plant Physiol 2019;31:71-89. [DOI: 10.1007/s40626-019-00144-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Singh R, Misra AN, Sharma P. Differential responses of thiol metabolism and genes involved in arsenic detoxification in tolerant and sensitive genotypes of bioenergy crop Ricinus communis. Protoplasma 2021;258:391-401. [PMID: 33130947 DOI: 10.1007/s00709-020-01577-y] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 2014;12:e1002009. [PMID: 25464340 DOI: 10.1371/journal.pbio.1002009] [Cited by in Crossref: 139] [Cited by in F6Publishing: 121] [Article Influence: 17.4] [Reference Citation Analysis]
43 Tang Z, Kang Y, Wang P, Zhao F. Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in Arabidopsis thaliana. Plant Soil 2016;401:243-57. [DOI: 10.1007/s11104-015-2739-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
44 Vázquez-núñez E, Peña-castro JM, Fernández-luqueño F, Cejudo E, de la Rosa-alvarez MG, García-castañeda MC. A Review on Genetically Modified Plants Designed to Phytoremediate Polluted Soils: Biochemical Responses and International Regulation. Pedosphere 2018;28:697-712. [DOI: 10.1016/s1002-0160(18)60039-6] [Cited by in Crossref: 12] [Article Influence: 3.0] [Reference Citation Analysis]
45 Zhao F, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 2020;446:1-21. [DOI: 10.1007/s11104-019-04374-6] [Cited by in Crossref: 73] [Cited by in F6Publishing: 46] [Article Influence: 24.3] [Reference Citation Analysis]
46 Li N, Wang J, Song W. Arsenic Uptake and Translocation in Plants. Plant Cell Physiol 2016;57:4-13. [DOI: 10.1093/pcp/pcv143] [Cited by in Crossref: 107] [Cited by in F6Publishing: 76] [Article Influence: 15.3] [Reference Citation Analysis]
47 Zhang J, Martinoia E, Lee Y. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. Plant Cell Physiol 2018;59:1317-25. [PMID: 29361141 DOI: 10.1093/pcp/pcy006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
48 Wager A, Li X. Exploiting natural variation for accelerating discoveries in plant specialized metabolism. Phytochem Rev 2018;17:17-36. [DOI: 10.1007/s11101-017-9524-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Kolya H, Hashitsume K, Kang CW. Recent Advances in Colorimetric Detection of Arsenic Using Metal-Based Nanoparticles. Toxics 2021;9:143. [PMID: 34204502 DOI: 10.3390/toxics9060143] [Reference Citation Analysis]
50 Navarro C, Mateo-Elizalde C, Mohan TC, Sánchez-Bermejo E, Urrutia O, Fernández-Muñiz MN, García-Mina JM, Muñoz R, Paz-Ares J, Castrillo G, Leyva A. Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis. Mol Plant 2021:S1674-2052(21)00181-7. [PMID: 34048950 DOI: 10.1016/j.molp.2021.05.020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Dong Y, Gupta S, Sievers R, Wargent JJ, Wheeler D, Putterill J, Macknight R, Gechev T, Mueller-Roeber B, Dijkwel PP. Genome draft of the Arabidopsis relative Pachycladon cheesemanii reveals novel strategies to tolerate New Zealand's high ultraviolet B radiation environment. BMC Genomics 2019;20:838. [PMID: 31718535 DOI: 10.1186/s12864-019-6084-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 2017;581-582:209-20. [PMID: 28043702 DOI: 10.1016/j.scitotenv.2016.12.111] [Cited by in Crossref: 108] [Cited by in F6Publishing: 75] [Article Influence: 18.0] [Reference Citation Analysis]
53 Chen JX, Cao Y, Yan X, Chen Y, Ma LQ. Novel PvACR3;2 and PvACR3;3 genes from arsenic-hyperaccumulator Pteris vittata and their roles in manipulating plant arsenic accumulation. J Hazard Mater 2021;415:125647. [PMID: 33740714 DOI: 10.1016/j.jhazmat.2021.125647] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. J Exp Bot 2019;70:4139-54. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
55 Sun D, Feng H, Li X, Ai H, Sun S, Chen Y, Xu G, Rathinasabapathi B, Cao Y, Ma LQ. Expression of New Pteris vittata Phosphate Transporter PvPht1;4 Reduces Arsenic Translocation from the Roots to Shoots in Tobacco Plants. Environ Sci Technol 2020;54:1045-53. [DOI: 10.1021/acs.est.9b05486] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
56 Mishra S, Alfeld M, Sobotka R, Andresen E, Falkenberg G, Küpper H. Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J Exp Bot 2016;67:4639-46. [PMID: 27340233 DOI: 10.1093/jxb/erw238] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 8.2] [Reference Citation Analysis]
57 Awasthi S, Chauhan R, Srivastava S, Tripathi RD. The Journey of Arsenic from Soil to Grain in Rice. Front Plant Sci 2017;8:1007. [PMID: 28676805 DOI: 10.3389/fpls.2017.01007] [Cited by in Crossref: 114] [Cited by in F6Publishing: 80] [Article Influence: 22.8] [Reference Citation Analysis]
58 Drzewiecka K, Gąsecka M, Rutkowski P, Magdziak Z, Goliński P, Mleczek M. Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. J Plant Physiol 2018;220:34-42. [PMID: 29145070 DOI: 10.1016/j.jplph.2017.09.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
59 Kumari P, Rastogi A, Shukla A, Srivastava S, Yadav S. Prospects of genetic engineering utilizing potential genes for regulating arsenic accumulation in plants. Chemosphere 2018;211:397-406. [DOI: 10.1016/j.chemosphere.2018.07.152] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
60 Uraguchi S, Sone Y, Ohta Y, Ohkama-Ohtsu N, Hofmann C, Hess N, Nakamura R, Takanezawa Y, Clemens S, Kiyono M. Identification of C-terminal Regions in Arabidopsis thaliana Phytochelatin Synthase 1 Specifically Involved in Activation by Arsenite. Plant Cell Physiol 2018;59:500-9. [PMID: 29281059 DOI: 10.1093/pcp/pcx204] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
61 Allevato E, Stazi SR, Marabottini R, D'Annibale A. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. Ecotoxicol Environ Saf 2019;185:109701. [PMID: 31562999 DOI: 10.1016/j.ecoenv.2019.109701] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
62 Chen Y, Hua C, Jia M, Fu J, Liu X, Han Y, Liu Y, Rathinasabapathi B, Cao Y, Ma LQ. Heterologous Expression of Pteris vittata Arsenite Antiporter PvACR3;1 Reduces Arsenic Accumulation in Plant Shoots. Environ Sci Technol 2017;51:10387-95. [DOI: 10.1021/acs.est.7b03369] [Cited by in Crossref: 38] [Cited by in F6Publishing: 23] [Article Influence: 7.6] [Reference Citation Analysis]
63 Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiology and Biochemistry 2016;104:266-77. [DOI: 10.1016/j.plaphy.2016.03.034] [Cited by in Crossref: 63] [Cited by in F6Publishing: 42] [Article Influence: 10.5] [Reference Citation Analysis]
64 Kobayashi Y, Sadhukhan A, Tazib T, Nakano Y, Kusunoki K, Kamara M, Chaffai R, Iuchi S, Sahoo L, Kobayashi M, Hoekenga OA, Koyama H. Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant Cell Environ 2016;39:918-34. [PMID: 26667381 DOI: 10.1111/pce.12691] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
65 Cesaro P, Cattaneo C, Bona E, Berta G, Cavaletto M. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci Rep 2015;5:14525. [PMID: 26412036 DOI: 10.1038/srep14525] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.1] [Reference Citation Analysis]
66 Kandhol N, Singh VP, Herrera-estrella L, Tran LP, Tripathi DK. Arsenite: the umpire of arsenate perception and responses in plants. Trends in Plant Science 2022. [DOI: 10.1016/j.tplants.2022.02.005] [Reference Citation Analysis]
67 Zvobgo G, Lwalaba JLW, Sagonda T, Mapodzeke JM, Muhammad N, Shamsi IH, Zhang G. Alleviation of arsenic toxicity by phosphate is associated with its regulation of detoxification, defense, and transport gene expression in barley. Journal of Integrative Agriculture 2019;18:381-94. [DOI: 10.1016/s2095-3119(18)61955-0] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
68 Zhang J, Hwang JU, Song WY, Martinoia E, Lee Y. Identification of amino acid residues important for the arsenic resistance function of Arabidopsis ABCC1. FEBS Lett 2017;591:656-66. [PMID: 28130831 DOI: 10.1002/1873-3468.12576] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
69 Souri Z, Karimi N, Sandalio LM. Arsenic Hyperaccumulation Strategies: An Overview. Front Cell Dev Biol 2017;5:67. [PMID: 28770198 DOI: 10.3389/fcell.2017.00067] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
70 Chen Y, Moore KL, Miller AJ, McGrath SP, Ma JF, Zhao FJ. The role of nodes in arsenic storage and distribution in rice. J Exp Bot 2015;66:3717-24. [PMID: 25922485 DOI: 10.1093/jxb/erv164] [Cited by in Crossref: 54] [Cited by in F6Publishing: 41] [Article Influence: 7.7] [Reference Citation Analysis]
71 Nahar K, Rhaman MS, Parvin K, Bardhan K, Marques DN, García-caparrós P, Hasanuzzaman M. Arsenic-Induced Oxidative Stress and Antioxidant Defense in Plants. Stresses 2022;2:179-209. [DOI: 10.3390/stresses2020013] [Reference Citation Analysis]
72 Wang C, Zheng L, Tang Z, Sun S, Ma JF, Huang XY, Zhao FJ. OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. J Exp Bot 2020;71:3678-89. [PMID: 32129444 DOI: 10.1093/jxb/eraa113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
73 Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 2019;125:365-85. [PMID: 30743144 DOI: 10.1016/j.envint.2019.01.067] [Cited by in Crossref: 360] [Cited by in F6Publishing: 227] [Article Influence: 120.0] [Reference Citation Analysis]
74 Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020;21:2551-71. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
75 Kolya H, Kuila T, Kim NH, Lee JH. Colorimetric/naked eye detection of arsenic ions in aqueous medium by mango flower extract: A facile and novel approach. Applied Surface Science 2020;513:145760. [DOI: 10.1016/j.apsusc.2020.145760] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
76 Yang J, Gao M, Hu H, Ding X, Lin H, Wang L, Xu J, Mao C, Zhao F, Wu Z. OsCLT1, a CRT‐like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 2016;211:658-70. [DOI: 10.1111/nph.13908] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 8.2] [Reference Citation Analysis]
77 Salt DE. Would the real arsenate reductase please stand up? New Phytol 2017;215:926-8. [PMID: 28695678 DOI: 10.1111/nph.14691] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
78 Tang Z, Zhao F. The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Critical Reviews in Environmental Science and Technology. [DOI: 10.1080/10643389.2020.1795053] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
79 Peralta JM, Travaglia CN, Romero-puertas MC, Furlan A, Castro S, Bianucci E. Unraveling the impact of arsenic on the redox response of peanut plants inoculated with two different Bradyrhizobium sp. strains. Chemosphere 2020;259:127410. [DOI: 10.1016/j.chemosphere.2020.127410] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
80 Ortúzar M, Trujillo ME, Román-Ponce B, Carro L. Micromonospora metallophores: A plant growth promotion trait useful for bacterial-assisted phytoremediation? Sci Total Environ 2020;739:139850. [PMID: 32554115 DOI: 10.1016/j.scitotenv.2020.139850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
81 Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK. Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 2015;74:221-30. [PMID: 25454239 DOI: 10.1016/j.envint.2014.10.019] [Cited by in Crossref: 139] [Cited by in F6Publishing: 94] [Article Influence: 17.4] [Reference Citation Analysis]
82 Pita-barbosa A, Williams T, Loureiro M. Effects of short-term arsenic exposure in Arabidopsis thaliana: tolerance versus toxicity responses. Biologia plant 2019;63:43-53. [DOI: 10.32615/bp.2019.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
83 Mohan TC, Castrillo G, Navarro C, Zarco-Fernández S, Ramireddy E, Mateo C, Zamarreño AM, Paz-Ares J, Muñoz R, García-Mina JM, Hernández LE, Schmülling T, Leyva A. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation. Plant Physiol 2016;171:1418-26. [PMID: 27208271 DOI: 10.1104/pp.16.00372] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
84 Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 2020;63:635-74. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Cited by in Crossref: 110] [Cited by in F6Publishing: 72] [Article Influence: 55.0] [Reference Citation Analysis]
85 Wu J, Liang J, Björn LO, Li J, Shu W, Wang Y. Phosphorus-arsenic interaction in the 'soil-plant-microbe' system and its influence on arsenic pollution. Sci Total Environ 2021;802:149796. [PMID: 34464787 DOI: 10.1016/j.scitotenv.2021.149796] [Reference Citation Analysis]
86 Zan Y, Shen X, Forsberg SK, Carlborg Ö. Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions. G3 (Bethesda) 2016;6:2319-28. [PMID: 27226169 DOI: 10.1534/g3.116.030874] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
87 Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Front Plant Sci 2017;8:268. [PMID: 28298917 DOI: 10.3389/fpls.2017.00268] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 8.2] [Reference Citation Analysis]
88 Chen Y, Wang HY, Chen YF. The transcription factor MYB40 is a central regulator in arsenic resistance in Arabidopsis. Plant Commun 2021;2:100234. [PMID: 34778748 DOI: 10.1016/j.xplc.2021.100234] [Reference Citation Analysis]
89 Xie M, Tian Z, Yang X, Liu B, Yang J, Lin H. The role of OsNLA1 in regulating arsenate uptake and tolerance in rice. Journal of Plant Physiology 2019;236:15-22. [DOI: 10.1016/j.jplph.2019.02.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
90 Li M, Wang P, Wang J, Chen X, Zhao D, Yin D, Luo J, Juhasz AL, Li H, Ma LQ. Arsenic Concentrations, Speciation, and Localization in 141 Cultivated Market Mushrooms: Implications for Arsenic Exposure to Humans. Environ Sci Technol 2019;53:503-11. [DOI: 10.1021/acs.est.8b05206] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 4.8] [Reference Citation Analysis]
91 Zhao Z, Zhang H, Fu Z, Chen H, Lin Y, Yan P, Li W, Xie H, Guo Z, Zhang X, Tang J. Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method. Plant Biotechnol J 2018;16:1085-93. [PMID: 29055111 DOI: 10.1111/pbi.12853] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]