BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jung SM, Lee J, Park J, Oh YS, Lee SK, Park JS, Lee YS, Kim JH, Lee JY, Bae Y, Koo S, Kim S, Park SH. Smad6 inhibits non-canonical TGF-β1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nat Commun 2013;4. [DOI: 10.1038/ncomms3562] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 8.9] [Reference Citation Analysis]
Number Citing Articles
1 Benn A, Hiepen C, Osterland M, Schütte C, Zwijsen A, Knaus P. Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence. FASEB J 2017;31:4720-33. [PMID: 28733457 DOI: 10.1096/fj.201700193RR] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
2 Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway. Biophys J 2015;109:1214-26. [PMID: 26276688 DOI: 10.1016/j.bpj.2015.06.048] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
3 Zhang YE. Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harb Perspect Biol 2017;9:a022129. [PMID: 27864313 DOI: 10.1101/cshperspect.a022129] [Cited by in Crossref: 252] [Cited by in F6Publishing: 233] [Article Influence: 63.0] [Reference Citation Analysis]
4 Tang M, Pei G, Su D, Wang C, Feng X, Srivastava M, Chen Z, Zhao Z, Chen J. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res 2021;49:7476-91. [PMID: 34197614 DOI: 10.1093/nar/gkab540] [Reference Citation Analysis]
5 Herhaus L, Sapkota GP. The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Cell Signal 2014;26:2186-92. [PMID: 25007997 DOI: 10.1016/j.cellsig.2014.06.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
6 Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL; Mibava Leducq Consortium. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Front Physiol 2017;8:400. [PMID: 28659821 DOI: 10.3389/fphys.2017.00400] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
7 Feng J, Guo J, Wang JP, Chai BF. MiR-32-5p aggravates intestinal epithelial cell injury in pediatric enteritis induced by Helicobacter pylori. World J Gastroenterol 2019;25:6222-37. [PMID: 31749593 DOI: 10.3748/wjg.v25.i41.6222] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xu P, Lin X, Feng XH. Posttranslational Regulation of Smads. Cold Spring Harb Perspect Biol 2016;8:a022087. [PMID: 27908935 DOI: 10.1101/cshperspect.a022087] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
9 Lee JY, Seo D, You J, Chung S, Park JS, Lee JH, Jung SM, Lee YS, Park SH. The deubiquitinating enzyme, ubiquitin-specific peptidase 50, regulates inflammasome activation by targeting the ASC adaptor protein. FEBS Lett 2017;591:479-90. [PMID: 28094437 DOI: 10.1002/1873-3468.12558] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
10 Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2020;501:222-8. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
11 Liu SS, Lv XX, Liu C, Qi J, Li YX, Wei XP, Li K, Hua F, Cui B, Zhang XW, Yu JJ, Yu JM, Wang F, Shang S, Zhao CX, Hou XY, Yao ZG, Li PP, Li X, Huang B, Hu ZW. Targeting Degradation of the Transcription Factor C/EBPβ Reduces Lung Fibrosis by Restoring Activity of the Ubiquitin-Editing Enzyme A20 in Macrophages. Immunity 2019;51:522-534.e7. [PMID: 31471107 DOI: 10.1016/j.immuni.2019.06.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
12 Cao Y, Yang Z, Chen Y, Jiang S, Wu Z, Ding B, Yang Y, Jin Z, Tang H. An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy. Front Cell Dev Biol 2021;9:630401. [PMID: 34124032 DOI: 10.3389/fcell.2021.630401] [Reference Citation Analysis]
13 Sinha A, Iyengar PV, Ten Dijke P. E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. Int J Mol Sci 2021;22:E476. [PMID: 33418880 DOI: 10.3390/ijms22020476] [Reference Citation Analysis]
14 Kim JH, Seo D, Kim SJ, Choi DW, Park JS, Ha J, Choi J, Lee JH, Jung SM, Seo KW, Lee EW, Lee YS, Cheong H, Choi CY, Park SH. The deubiquitinating enzyme USP20 stabilizes ULK1 and promotes autophagy initiation. EMBO Rep 2018;19:e44378. [PMID: 29487085 DOI: 10.15252/embr.201744378] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
15 Liu S, de Boeck M, van Dam H, ten Dijke P. Regulation of the TGF-β pathway by deubiquitinases in cancer. The International Journal of Biochemistry & Cell Biology 2016;76:135-45. [DOI: 10.1016/j.biocel.2016.05.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
16 Zhang T, Wu J, Ungvijanpunya N, Jackson-Weaver O, Gou Y, Feng J, Ho TV, Shen Y, Liu J, Richard S, Jin J, Hajishengallis G, Chai Y, Xu J. Smad6 Methylation Represses NFκB Activation and Periodontal Inflammation. J Dent Res 2018;97:810-9. [PMID: 29420098 DOI: 10.1177/0022034518755688] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
17 Li Q. Inhibitory SMADs: potential regulators of ovarian function. Biol Reprod 2015;92:50. [PMID: 25550343 DOI: 10.1095/biolreprod.114.125203] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
18 Tzavlaki K, Moustakas A. TGF-β Signaling. Biomolecules 2020;10:E487. [PMID: 32210029 DOI: 10.3390/biom10030487] [Cited by in Crossref: 51] [Cited by in F6Publishing: 34] [Article Influence: 51.0] [Reference Citation Analysis]
19 Mooney EC, Sahingur SE. The Ubiquitin System and A20: Implications in Health and Disease. J Dent Res 2021;100:10-20. [PMID: 32853526 DOI: 10.1177/0022034520949486] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Bianchi E, Boekelheide K, Sigman M, Lamb DJ, Hall SJ, Hwang K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS One 2016;11:e0153968. [PMID: 27082244 DOI: 10.1371/journal.pone.0153968] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
21 Du C, Pan P, Jiang Y, Zhang Q, Bao J, Liu C. Microarray data analysis to identify crucial genes regulated by CEBPB in human SNB19 glioma cells. World J Surg Oncol 2016;14:258. [PMID: 27716259 DOI: 10.1186/s12957-016-0997-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
22 Chen Z, Lu X, Jia D, Jing Y, Chen D, Wang Q, Zhao F, Li J, Yao M, Cong W, He X. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death Dis 2018;9:59. [PMID: 29352111 DOI: 10.1038/s41419-017-0090-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
23 Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019;12:eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Cited by in Crossref: 195] [Cited by in F6Publishing: 156] [Article Influence: 97.5] [Reference Citation Analysis]
24 Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017;9:a022137. [PMID: 27836834 DOI: 10.1101/cshperspect.a022137] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
25 Le Goff C, Rogers C, Le Goff W, Pinto G, Bonnet D, Chrabieh M, Alibeu O, Nistchke P, Munnich A, Picard C, Cormier-Daire V. Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome. Am J Hum Genet 2016;99:407-13. [PMID: 27426734 DOI: 10.1016/j.ajhg.2016.06.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
26 Zhang Z, Wang L, Wang Q, Zhang M, Wang B, Jiang K, Ye Y, Wang S, Shen Z. Molecular Characterization and Clinical Relevance of RNA Binding Proteins in Colorectal Cancer. Front Genet 2020;11:580149. [PMID: 33193701 DOI: 10.3389/fgene.2020.580149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 da Silva CG, Cervantes JR, Studer P, Ferran C. A20-An Omnipotent Protein in the Liver: Prometheus Myth Resolved? In: Ferran C, editor. The Multiple Therapeutic Targets of A20. New York: Springer; 2014. pp. 117-39. [DOI: 10.1007/978-1-4939-0398-6_8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
28 Lin H, Dong B, Qi L, Wei Y, Zhang Y, Cai X, Zhang Q, Li J, Li L. Inhibitory Smads suppress pancreatic stellate cell activation through negative feedback in chronic pancreatitis. Ann Transl Med 2021;9:384. [PMID: 33842605 DOI: 10.21037/atm-20-4282] [Reference Citation Analysis]
29 Wu X, Karin M. Emerging roles of Lys63-linked polyubiquitylation in immune responses. Immunol Rev 2015;266:161-74. [PMID: 26085214 DOI: 10.1111/imr.12310] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
30 Wu R, Shen D, Sohun H, Ge D, Chen X, Wang X, Chen R, Wu Y, Zeng J, Rong X, Su X, Chu M. miR‑186, a serum microRNA, induces endothelial cell apoptosis by targeting SMAD6 in Kawasaki disease. Int J Mol Med 2018;41:1899-908. [PMID: 29344637 DOI: 10.3892/ijmm.2018.3397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
31 Yi P, Xu X, Yao J, Qiu B. Effect of DNA methylation on gene transcription is associated with the distribution of methylation sites across the genome in osteoarthritis. Exp Ther Med 2021;22:719. [PMID: 34007328 DOI: 10.3892/etm.2021.10151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Lee YS, Park JS, Jung SM, Kim SD, Kim JH, Lee JY, Jung KC, Mamura M, Lee S, Kim SJ, Bae YS, Park SH. Inhibition of lethal inflammatory responses through the targeting of membrane-associated Toll-like receptor 4 signaling complexes with a Smad6-derived peptide. EMBO Mol Med. 2015;7:577-592. [PMID: 25766838 DOI: 10.15252/emmm.201404653] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
33 Liang X, Zeng J, Wang L, Shen L, Ma X, Li S, Wu Y, Ma L, Ci X, Guo Q, Jia M, Shen H, Sun Y, Liu Z, Liu S, Li W, Yu H, Chen C, Jia J. Histone demethylase RBP2 promotes malignant progression of gastric cancer through TGF-β1-(p-Smad3)-RBP2-E-cadherin-Smad3 feedback circuit. Oncotarget 2015;6:17661-74. [PMID: 25974964 DOI: 10.18632/oncotarget.3756] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
34 Wang W, Rigueur D, Lyons KM. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020;137:115439. [PMID: 32442550 DOI: 10.1016/j.bone.2020.115439] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Uchida K, Takano S, Matsumoto T, Nagura N, Inoue G, Itakura M, Miyagi M, Aikawa J, Iwase D, Minatani A, Fujimaki H, Takaso M. Transforming growth factor activating kinase 1 regulates extracellular matrix degrading enzymes and pain-related molecule expression following tumor necrosis factor-α stimulation of synovial cells: an in vitro study. BMC Musculoskelet Disord 2017;18:283. [PMID: 28668088 DOI: 10.1186/s12891-017-1648-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
36 Jiao J, Zhang R, Li Z, Yin Y, Fang X, Ding X, Cai Y, Yang S, Mu H, Zong D, Chen Y, Zhang Y, Zou J, Shao J, Huang Z. Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition. Nat Commun 2018;9:2504. [PMID: 29950561 DOI: 10.1038/s41467-018-04936-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
37 Zhang D, Li X, Hu Y, Jiang H, Wu Y, Ding Y, Yu K, He H, Xu J, Sun L, Qian F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochemical Pharmacology 2018;154:183-92. [DOI: 10.1016/j.bcp.2018.05.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
38 Liu M, Ge R, Liu W, Liu Q, Xia X, Lai M, Liang L, Li C, Song L, Zhen B, Qin J, Ding C. Differential proteomics profiling identifies LDPs and biological functions in high-fat diet-induced fatty livers. J Lipid Res 2017;58:681-94. [PMID: 28179399 DOI: 10.1194/jlr.M071407] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
39 Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015;74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 8.7] [Reference Citation Analysis]
40 Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017;9:a022137. [PMID: 27836834 DOI: 10.1101/cshperspect.a022137] [Cited by in Crossref: 171] [Cited by in F6Publishing: 147] [Article Influence: 42.8] [Reference Citation Analysis]
41 G'Sell RT, Gaffney PM, Powell DW. A20-Binding Inhibitor of NF-κB Activation 1 is a Physiologic Inhibitor of NF-κB: A Molecular Switch for Inflammation and Autoimmunity. Arthritis Rheumatol 2015;67:2292-302. [PMID: 26097105 DOI: 10.1002/art.39245] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
42 Hsu AC, Dua K, Starkey MR, Haw TJ, Nair PM, Nichol K, Zammit N, Grey ST, Baines KJ, Foster PS, Hansbro PM, Wark PA. MicroRNA-125a and -b inhibit A20 and MAVS to promote inflammation and impair antiviral response in COPD. JCI Insight 2017;2:e90443. [PMID: 28405612 DOI: 10.1172/jci.insight.90443] [Cited by in Crossref: 59] [Cited by in F6Publishing: 53] [Article Influence: 14.8] [Reference Citation Analysis]
43 Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Mitani Y, Maruyama K, Tanaka T. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension. Front Pharmacol 2016;7:142. [PMID: 27375481 DOI: 10.3389/fphar.2016.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
44 Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. Curr Pharmacol Rep 2018;4:64-90. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 8.8] [Reference Citation Analysis]
45 Seet LF, Toh LZ, Finger SN, Chu SW, Stefanovic B, Wong TT. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis. J Mol Med (Berl) 2016;94:321-34. [PMID: 26507880 DOI: 10.1007/s00109-015-1358-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
46 Contreras O, Rossi FMV, Theret M. Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors-time for new definitions. Skelet Muscle 2021;11:16. [PMID: 34210364 DOI: 10.1186/s13395-021-00265-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Li H, Zhu H, Liu Y, He F, Xie P, Zhang L. Itch promotes the neddylation of JunB and regulates JunB-dependent transcription. Cell Signal 2016;28:1186-95. [PMID: 27245101 DOI: 10.1016/j.cellsig.2016.05.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
48 Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev 2015;266:72-92. [PMID: 26085208 DOI: 10.1111/imr.12302] [Cited by in Crossref: 162] [Cited by in F6Publishing: 133] [Article Influence: 32.4] [Reference Citation Analysis]
49 Zhou X, Liu Z, Cheng X, Zheng Y, Zeng F, He Y. Socs1 and Socs3 degrades Traf6 via polyubiquitination in LPS-induced acute necrotizing pancreatitis. Cell Death Dis 2015;6:e2012. [PMID: 26633718 DOI: 10.1038/cddis.2015.342] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
50 Wang B, Yuan F, Kong X, Hu LD, Cai YD. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network. Comput Math Methods Med 2015;2015:715639. [PMID: 26543496 DOI: 10.1155/2015/715639] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
51 Ji Y, Dou YN, Zhao QW, Zhang JZ, Yang Y, Wang T, Xia YF, Dai Y, Wei ZF. Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway. Acta Pharmacol Sin 2016;37:794-804. [PMID: 27133302 DOI: 10.1038/aps.2016.36] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 8.4] [Reference Citation Analysis]
52 Shin D, Na W, Lee JH, Kim G, Baek J, Park SH, Choi CY, Lee S. Site-specific monoubiquitination downregulates Rab5 by disrupting effector binding and guanine nucleotide conversion. Elife 2017;6:e29154. [PMID: 28968219 DOI: 10.7554/eLife.29154] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
53 Azpilikueta A, Bolaños E, Lang V, Labiano S, Aznar MA, Etxeberria I, Teijeira A, Rodriguez-Ruiz ME, Perez-Gracia JL, Jure-Kunkel M, Zapata JM, Rodriguez MS, Melero I. Deubiquitinases A20 and CYLD modulate costimulatory signaling via CD137 (4-1BB). Oncoimmunology 2017;7:e1368605. [PMID: 29296520 DOI: 10.1080/2162402X.2017.1368605] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
54 Miyazawa K, Miyazono K. Regulation of TGF-β Family Signaling by Inhibitory Smads. Cold Spring Harb Perspect Biol 2017;9:a022095. [PMID: 27920040 DOI: 10.1101/cshperspect.a022095] [Cited by in Crossref: 163] [Cited by in F6Publishing: 150] [Article Influence: 40.8] [Reference Citation Analysis]
55 Chen Y, Fan Y, Guo DY, Xu B, Shi XY, Li JT, Duan LF. Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells. Biomed Pharmacother 2020;129:110413. [PMID: 32570119 DOI: 10.1016/j.biopha.2020.110413] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
56 Qiu G, Sun W, Jin M, Lin J, Lu P, Jin W. The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacology & Therapeutics 2017;172:127-38. [DOI: 10.1016/j.pharmthera.2016.12.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
57 Wang H, Che J, Cui K, Zhuang W, Li H, Sun J, Chen J, Wang C. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo. Phytomedicine 2021;88:153609. [PMID: 34126414 DOI: 10.1016/j.phymed.2021.153609] [Reference Citation Analysis]
58 Wang T, Xu X, Xu Q, Ren J, Shen S, Fan C, Hou Y. miR-19a promotes colitis-associated colorectal cancer by regulating tumor necrosis factor alpha-induced protein 3-NF-κB feedback loops. Oncogene 2017;36:3240-51. [PMID: 27991929 DOI: 10.1038/onc.2016.468] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
59 Lee J, Jung SM, Yang K, Bae E, Ahn SG, Park JS, Seo D, Kim M, Ha J, Lee J, Kim J, Kim JH, Ooshima A, Park J, Shin D, Lee YS, Lee S, van Loo G, Jeong J, Kim S, Park SH. A20 promotes metastasis of aggressive basal-like breast cancers through multi-monoubiquitylation of Snail1. Nat Cell Biol 2017;19:1260-73. [DOI: 10.1038/ncb3609] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
60 Tang Y, Tao Y, Wang L, Yang L, Jing Y, Jiang X, Lei L, Yang Z, Wang X, Peng M, Xiao Q, Ren J, Zhang L. NPM1 mutant maintains ULK1 protein stability via TRAF6‐dependent ubiquitination to promote autophagic cell survival in leukemia. FASEB j 2021;35. [DOI: 10.1096/fj.201903183rrr] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Dong Z, Tai W, Lei W, Wang Y, Li Z, Zhang T. IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells. BMC Cell Biol 2016;17:7. [PMID: 26932661 DOI: 10.1186/s12860-016-0084-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
62 Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019;76:653-65. [PMID: 30349992 DOI: 10.1007/s00018-018-2949-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
63 Aashaq S, Batool A, Mir SA, Beigh MA, Andrabi KI, Shah ZA. TGF-β signaling: A recap of SMAD-independent and SMAD-dependent pathways. J Cell Physiol 2021. [PMID: 34286853 DOI: 10.1002/jcp.30529] [Reference Citation Analysis]
64 Iyengar PV. Regulation of Ubiquitin Enzymes in the TGF-β Pathway. Int J Mol Sci 2017;18:E877. [PMID: 28425962 DOI: 10.3390/ijms18040877] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
65 Wang X, Li Y, Li X, Yan L, Guan H, Han R, Han Y, Gui J, Xu X, Dong Y, Liu H. Expression, purification, and evaluation of in vivo anti-fibrotic activity for soluble truncated TGF-β receptor II as a cleavable His-SUMO fusion protein. World J Microbiol Biotechnol 2018;34:181. [PMID: 30474742 DOI: 10.1007/s11274-018-2565-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
66 Guo YC, Zhang SW, Yuan Q. Deubiquitinating Enzymes and Bone Remodeling. Stem Cells Int 2018;2018:3712083. [PMID: 30123285 DOI: 10.1155/2018/3712083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
67 Zhang J, Zhang L, Cui H, Zhang X, Zhang G, Yang X, Yang S, Zhang Z, Wang J, Hu K, Shi J, Ke X, Fu L. High expression levels of SMAD3 and SMAD7 at diagnosis predict poor prognosis in acute myeloid leukemia patients undergoing chemotherapy. Cancer Gene Ther 2019;26:119-27. [DOI: 10.1038/s41417-018-0044-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]