BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hao Y, Samuels Y, Li Q, Krokowski D, Guan BJ, Wang C, Jin Z, Dong B, Cao B, Feng X, Xiang M, Xu C, Fink S, Meropol NJ, Xu Y, Conlon RA, Markowitz S, Kinzler KW, Velculescu VE, Brunengraber H, Willis JE, LaFramboise T, Hatzoglou M, Zhang GF, Vogelstein B, Wang Z. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun. 2016;7:11971. [PMID: 27321283 DOI: 10.1038/ncomms11971] [Cited by in Crossref: 97] [Cited by in F6Publishing: 99] [Article Influence: 16.2] [Reference Citation Analysis]
Number Citing Articles
1 Kim M, Gwak J, Hwang S, Yang S, Jeong SM. Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism. Oncogene 2019;38:4729-38. [PMID: 30765862 DOI: 10.1038/s41388-019-0751-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
2 Chen Y, Zhao Y, Bajor DL, Wang Z, Selfridge JE. A facile and sensitive method of quantifying glutaminase binding to its inhibitor CB-839 in tissues. J Genet Genomics 2020;47:389-95. [PMID: 33004309 DOI: 10.1016/j.jgg.2020.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Tan FH, Bai Y, Saintigny P, Darido C. mTOR Signalling in Head and Neck Cancer: Heads Up. Cells 2019;8:E333. [PMID: 30970654 DOI: 10.3390/cells8040333] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 6.7] [Reference Citation Analysis]
4 Liu Z, Wang L, Guo C, Liu L, Jiao D, Sun Z, Wu K, Zhao Y, Han X. TTN/OBSCN 'Double-Hit' predicts favourable prognosis, 'immune-hot' subtype and potentially better immunotherapeutic efficacy in colorectal cancer. J Cell Mol Med 2021;25:3239-51. [PMID: 33624434 DOI: 10.1111/jcmm.16393] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021;11:112. [PMID: 33669382 DOI: 10.3390/metabo11020112] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Koundouros N, Poulogiannis G. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer. Front Oncol 2018;8:160. [PMID: 29868481 DOI: 10.3389/fonc.2018.00160] [Cited by in Crossref: 110] [Cited by in F6Publishing: 105] [Article Influence: 27.5] [Reference Citation Analysis]
7 Rashmi R, Jayachandran K, Zhang J, Menon V, Muhammad N, Zahner M, Ruiz F, Zhang S, Cho K, Wang Y, Huang X, Huang Y, McCormick ML, Rogers BE, Spitz DR, Patti GJ, Schwarz JK. Glutaminase Inhibitors Induce Thiol-Mediated Oxidative Stress and Radiosensitization in Treatment-Resistant Cervical Cancers. Mol Cancer Ther 2020;19:2465-75. [PMID: 33087507 DOI: 10.1158/1535-7163.MCT-20-0271] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021;12:768861. [PMID: 34887764 DOI: 10.3389/fphar.2021.768861] [Reference Citation Analysis]
9 Balcells C, Foguet C, Tarragó-celada J, de Atauri P, Marin S, Cascante M. Tracing metabolic fluxes using mass spectrometry: Stable isotope-resolved metabolomics in health and disease. TrAC Trends in Analytical Chemistry 2019;120:115371. [DOI: 10.1016/j.trac.2018.12.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
10 Răchieriu C, Eniu DT, Moiş E, Graur F, Socaciu C, Socaciu MA, Hajjar NA. Lipidomic Signatures for Colorectal Cancer Diagnosis and Progression Using UPLC-QTOF-ESI+MS. Biomolecules 2021;11:417. [PMID: 33799830 DOI: 10.3390/biom11030417] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Rebane-Klemm E, Truu L, Reinsalu L, Puurand M, Shevchuk I, Chekulayev V, Timohhina N, Tepp K, Bogovskaja J, Afanasjev V, Suurmaa K, Valvere V, Kaambre T. Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers (Basel) 2020;12:E815. [PMID: 32231083 DOI: 10.3390/cancers12040815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Boku S, Watanabe M, Sukeno M, Yaoi T, Hirota K, Iizuka-Ohashi M, Itoh K, Sakai T. Deactivation of Glutaminolysis Sensitizes PIK3CA-Mutated Colorectal Cancer Cells to Aspirin-Induced Growth Inhibition. Cancers (Basel) 2020;12:E1097. [PMID: 32365457 DOI: 10.3390/cancers12051097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Rossiter NJ, Huggler KS, Adelmann CH, Keys HR, Soens RW, Sabatini DM, Cantor JR. CRISPR screens in physiologic medium reveal conditionally essential genes in human cells. Cell Metab 2021;33:1248-1263.e9. [PMID: 33651980 DOI: 10.1016/j.cmet.2021.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019;18:29. [PMID: 30684960 DOI: 10.1186/s12944-019-0977-8] [Cited by in Crossref: 77] [Cited by in F6Publishing: 73] [Article Influence: 25.7] [Reference Citation Analysis]
15 Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer 2017;3:169-80. [PMID: 28393116 DOI: 10.1016/j.trecan.2017.01.005] [Cited by in Crossref: 190] [Cited by in F6Publishing: 182] [Article Influence: 47.5] [Reference Citation Analysis]
16 Ilic N, Birsoy K, Aguirre AJ, Kory N, Pacold ME, Singh S, Moody SE, DeAngelo JD, Spardy NA, Freinkman E, Weir BA, Tsherniak A, Cowley GS, Root DE, Asara JM, Vazquez F, Widlund HR, Sabatini DM, Hahn WC. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase. Proc Natl Acad Sci U S A 2017;114:E3434-43. [PMID: 28396387 DOI: 10.1073/pnas.1617922114] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
17 Amoroso F, Glass K, Singh R, Liberal F, Steele RE, Maguire S, Tarapore R, Allen JE, Van Schaeybroeck S, Butterworth KT, Prise K, O'Sullivan JM, Jain S, Waugh DJ, Mills IG. Modulating the unfolded protein response with ONC201 to impact on radiation response in prostate cancer cells. Sci Rep 2021;11:4252. [PMID: 33608585 DOI: 10.1038/s41598-021-83215-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 2017;36:1302-15. [PMID: 28420743 DOI: 10.15252/embj.201696151] [Cited by in Crossref: 205] [Cited by in F6Publishing: 208] [Article Influence: 41.0] [Reference Citation Analysis]
19 Li FZ, Zang WQ. Knockdown of lncRNAXLOC_001659 inhibits proliferation and invasion of esophageal squamous cell carcinoma cells. World J Gastroenterol 2019; 25(42): 6299-6310 [PMID: 31754291 DOI: 10.3748/wjg.v25.i42.6299] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
20 Cruz-Gregorio A, Martínez-Ramírez I, Pedraza-Chaverri J, Lizano M. Reprogramming of Energy Metabolism in Response to Radiotherapy in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019;11:E182. [PMID: 30764513 DOI: 10.3390/cancers11020182] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
21 Persaud L, Mighty J, Zhong X, Francis A, Mendez M, Muharam H, Redenti SM, Das D, Aktas BH, Sauane M. IL-24 Promotes Apoptosis through cAMP-Dependent PKA Pathways in Human Breast Cancer Cells. Int J Mol Sci 2018;19:E3561. [PMID: 30424508 DOI: 10.3390/ijms19113561] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
22 Jin F, Yang R, Wei Y, Wang D, Zhu Y, Wang X, Lu Y, Wang Y, Zen K, Li L. HIF-1α-induced miR-23a∼27a∼24 cluster promotes colorectal cancer progression via reprogramming metabolism. Cancer Lett 2019;440-441:211-22. [PMID: 30393198 DOI: 10.1016/j.canlet.2018.10.025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
23 Wang X, Min S, Liu H, Wu N, Liu X, Wang T, Li W, Shen Y, Wang H, Qian Z, Xu H, Zhao C, Chen Y. Nf1 loss promotes Kras-driven lung adenocarcinoma and results in Psat1-mediated glutamate dependence. EMBO Mol Med 2019;11:e9856. [PMID: 31036704 DOI: 10.15252/emmm.201809856] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
24 Juliana CA, Yang J, Cannon CE, Good AL, Haemmerle MW, Stoffers DA. A PDX1-ATF transcriptional complex governs β cell survival during stress. Mol Metab 2018;17:39-48. [PMID: 30174228 DOI: 10.1016/j.molmet.2018.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
25 Ishak Gabra MB, Yang Y, Lowman XH, Reid MA, Tran TQ, Kong M. IKKβ activates p53 to promote cancer cell adaptation to glutamine deprivation. Oncogenesis 2018;7:93. [PMID: 30478303 DOI: 10.1038/s41389-018-0104-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
26 Ling HH, Pan YP, Fan CW, Tseng WK, Huang JS, Wu TH, Chou WC, Wang CH, Yeh KY, Chang PH. Clinical Significance of Serum Glutamine Level in Patients with Colorectal Cancer. Nutrients 2019;11:E898. [PMID: 31010101 DOI: 10.3390/nu11040898] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med 2020;52:1496-516. [PMID: 32943735 DOI: 10.1038/s12276-020-00504-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
28 Hoerner CR, Chen VJ, Fan AC. The 'Achilles Heel' of Metabolism in Renal Cell Carcinoma: Glutaminase Inhibition as a Rational Treatment Strategy. Kidney Cancer 2019;3:15-29. [PMID: 30854496 DOI: 10.3233/KCA-180043] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 8.7] [Reference Citation Analysis]
29 Wang Y, Zhang H, Lin M, Wang Y. Association of FGFR2 and PI3KCA genetic variants with the risk of breast cancer in a Chinese population. Cancer Manag Res 2018;10:1305-11. [PMID: 29872343 DOI: 10.2147/CMAR.S164084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
30 Vernieri C, Casola S, Foiani M, Pietrantonio F, de Braud F, Longo V. Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discov 2016;6:1315-33. [PMID: 27872127 DOI: 10.1158/2159-8290.CD-16-0615] [Cited by in Crossref: 88] [Cited by in F6Publishing: 51] [Article Influence: 14.7] [Reference Citation Analysis]
31 Ning W, Li H, Meng F, Cheng J, Song X, Zhang G, Wang W, Wu S, Fang J, Ma K, Yang J, Pei D, Dong F. Identification of differential metabolic characteristics between tumor and normal tissue from colorectal cancer patients by gas chromatography-mass spectrometry. Biomed Chromatogr 2017;31. [PMID: 28475217 DOI: 10.1002/bmc.3999] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
32 El-Ansari R, Craze ML, Alfarsi L, Soria D, Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA, Green AR. The combined expression of solute carriers is associated with a poor prognosis in highly proliferative ER+ breast cancer. Breast Cancer Res Treat 2019;175:27-38. [PMID: 30671766 DOI: 10.1007/s10549-018-05111-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
33 Hodakoski C, Hopkins BD, Zhang G, Su T, Cheng Z, Morris R, Rhee KY, Goncalves MD, Cantley LC. Rac-Mediated Macropinocytosis of Extracellular Protein Promotes Glucose Independence in Non-Small Cell Lung Cancer. Cancers (Basel) 2019;11:E37. [PMID: 30609754 DOI: 10.3390/cancers11010037] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
34 Jiang W, He T, Liu S, Zheng Y, Xiang L, Pei X, Wang Z, Yang H. The PIK3CA E542K and E545K mutations promote glycolysis and proliferation via induction of the β-catenin/SIRT3 signaling pathway in cervical cancer. J Hematol Oncol 2018;11:139. [PMID: 30547809 DOI: 10.1186/s13045-018-0674-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
35 Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020;10:E697. [PMID: 32365821 DOI: 10.3390/biom10050697] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
36 Baytas O, Davidson SM, DeBerardinis RJ, Morrow EM. Mitochondrial enzyme GPT2 regulates metabolic mechanisms required for neuron growth and motor function in vivo. Hum Mol Genet 2021:ddab269. [PMID: 34519342 DOI: 10.1093/hmg/ddab269] [Reference Citation Analysis]
37 Chai AWY, Yee PS, Price S, Yee SM, Lee HM, Tiong VK, Gonçalves E, Behan FM, Bateson J, Gilbert J, Tan AC, McDermott U, Garnett MJ, Cheong SC. Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway. Elife 2020;9:e57761. [PMID: 32990596 DOI: 10.7554/eLife.57761] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
38 Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021;99:1667-80. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Reference Citation Analysis]
39 Nakashima Y, Miyagi-Shiohira C, Noguchi H, Omasa T. Atorvastatin Inhibits the HIF1α-PPAR Axis, Which Is Essential for Maintaining the Function of Human Induced Pluripotent Stem Cells. Mol Ther 2018;26:1715-34. [PMID: 29929789 DOI: 10.1016/j.ymthe.2018.06.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
40 Sinkala M, Mulder N, Patrick Martin D. Metabolic gene alterations impact the clinical aggressiveness and drug responses of 32 human cancers. Commun Biol 2019;2:414. [PMID: 31754644 DOI: 10.1038/s42003-019-0666-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
41 Natarajan SK, Venneti S. Glutamine Metabolism in Brain Tumors. Cancers (Basel) 2019;11:E1628. [PMID: 31652923 DOI: 10.3390/cancers11111628] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
42 Salzillo TC, Mawoneke V, Weygand J, Shetty A, Gumin J, Zacharias NM, Gammon ST, Piwnica-Worms D, Fuller GN, Logothetis CJ, Lang FF, Bhattacharya PK. Measuring the Metabolic Evolution of Glioblastoma throughout Tumor Development, Regression, and Recurrence with Hyperpolarized Magnetic Resonance. Cells 2021;10:2621. [PMID: 34685601 DOI: 10.3390/cells10102621] [Reference Citation Analysis]
43 Li J, Ma X, Chakravarti D, Shalapour S, DePinho RA. Genetic and biological hallmarks of colorectal cancer. Genes Dev 2021;35:787-820. [PMID: 34074695 DOI: 10.1101/gad.348226.120] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Feng X, Hao Y, Wang Z. Targeting glutamine metabolism in PIK3CA mutant colorectal cancers. Genes Dis 2016;3:241-3. [PMID: 30258894 DOI: 10.1016/j.gendis.2016.09.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
45 Still ER, Yuneva MO. Hopefully devoted to Q: targeting glutamine addiction in cancer. Br J Cancer 2017;116:1375-81. [PMID: 28441384 DOI: 10.1038/bjc.2017.113] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
46 Mitra D, Vega-Rubin-de-Celis S, Royla N, Bernhardt S, Wilhelm H, Tarade N, Poschet G, Buettner M, Binenbaum I, Borgoni S, Vetter M, Kantelhardt EJ, Thomssen C, Chatziioannou A, Hell R, Kempa S, Müller-Decker K, Wiemann S. Abrogating GPT2 in triple-negative breast cancer inhibits tumor growth and promotes autophagy. Int J Cancer 2021;148:1993-2009. [PMID: 33368291 DOI: 10.1002/ijc.33456] [Reference Citation Analysis]
47 Lau CE, Tredwell GD, Ellis JK, Lam EW, Keun HC. Metabolomic characterisation of the effects of oncogenic PIK3CA transformation in a breast epithelial cell line. Sci Rep 2017;7:46079. [PMID: 28393905 DOI: 10.1038/srep46079] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
48 Sarfraz I, Rasul A, Hussain G, Hussain SM, Ahmad M, Nageen B, Jabeen F, Selamoglu Z, Ali M. Malic enzyme 2 as a potential therapeutic drug target for cancer. IUBMB Life 2018;70:1076-83. [PMID: 30160039 DOI: 10.1002/iub.1930] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
49 Yang CW, Chang HY, Lee YZ, Hsu HY, Lee SJ. The cardenolide ouabain suppresses coronaviral replication via augmenting a Na+/K+-ATPase-dependent PI3K_PDK1 axis signaling. Toxicol Appl Pharmacol 2018;356:90-7. [PMID: 30053394 DOI: 10.1016/j.taap.2018.07.028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
50 Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol 2019;59:125-32. [PMID: 31323288 DOI: 10.1016/j.semcancer.2019.07.009] [Cited by in Crossref: 105] [Cited by in F6Publishing: 120] [Article Influence: 35.0] [Reference Citation Analysis]
51 Brown RE, Short SP, Williams CS. Colorectal Cancer and Metabolism. Curr Colorectal Cancer Rep 2018;14:226-41. [PMID: 31406492 DOI: 10.1007/s11888-018-0420-y] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 9.5] [Reference Citation Analysis]
52 Raskov H, Søby JH, Troelsen J, Bojesen RD, Gögenur I. Driver Gene Mutations and Epigenetics in Colorectal Cancer. Ann Surg 2020;271:75-85. [PMID: 31188207 DOI: 10.1097/SLA.0000000000003393] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
53 Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2020;100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
54 Zhao Y, Feng X, Chen Y, Selfridge JE, Gorityala S, Du Z, Wang JM, Hao Y, Cioffi G, Conlon RA, Barnholtz-Sloan JS, Saltzman J, Krishnamurthi SS, Vinayak S, Veigl M, Xu Y, Bajor DL, Markowitz SD, Meropol NJ, Eads JR, Wang Z. 5-Fluorouracil Enhances the Antitumor Activity of the Glutaminase Inhibitor CB-839 against PIK3CA-Mutant Colorectal Cancers. Cancer Res 2020;80:4815-27. [PMID: 32907836 DOI: 10.1158/0008-5472.CAN-20-0600] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
55 Hu T, Shukla SK, Vernucci E, He C, Wang D, King RJ, Jha K, Siddhanta K, Mullen NJ, Attri KS, Murthy D, Chaika NV, Thakur R, Mulder SE, Pacheco CG, Fu X, High RR, Yu F, Lazenby A, Steegborn C, Lan P, Mehla K, Rotili D, Chaudhary S, Valente S, Tafani M, Mai A, Auwerx J, Verdin E, Tuveson D, Singh PK. Metabolic Rewiring by Loss of Sirt5 Promotes Kras-Induced Pancreatic Cancer Progression. Gastroenterology 2021:S0016-5085(21)03159-0. [PMID: 34245764 DOI: 10.1053/j.gastro.2021.06.045] [Reference Citation Analysis]
56 Gonzalez-Villarreal CA, Quiroz-Reyes AG, Islas JF, Garza-Treviño EN. Colorectal Cancer Stem Cells in the Progression to Liver Metastasis. Front Oncol 2020;10:1511. [PMID: 32974184 DOI: 10.3389/fonc.2020.01511] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
57 Cao Y, Lin SH, Wang Y, Chin YE, Kang L, Mi J. Glutamic Pyruvate Transaminase GPT2 Promotes Tumorigenesis of Breast Cancer Cells by Activating Sonic Hedgehog Signaling. Theranostics 2017;7:3021-33. [PMID: 28839461 DOI: 10.7150/thno.18992] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
58 Karageorgis G, Reckzeh ES, Ceballos J, Schwalfenberg M, Sievers S, Ostermann C, Pahl A, Ziegler S, Waldmann H. Chromopynones are pseudo natural product glucose uptake inhibitors targeting glucose transporters GLUT-1 and -3. Nature Chem 2018;10:1103-11. [DOI: 10.1038/s41557-018-0132-6] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 12.8] [Reference Citation Analysis]
59 McCann C, Kerr EM. Metabolic Reprogramming: A Friend or Foe to Cancer Therapy? Cancers (Basel) 2021;13:3351. [PMID: 34283054 DOI: 10.3390/cancers13133351] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Guo W, Tan H, Li S, Wang N, Feng Y. Glutamic-Pyruvic Transaminase 1 Facilitates Alternative Fuels for Hepatocellular Carcinoma Growth—A Small Molecule Inhibitor, Berberine. Cancers 2020;12:1854. [DOI: 10.3390/cancers12071854] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
61 Zhao Y, Zhao X, Chen V, Feng Y, Wang L, Croniger C, Conlon RA, Markowitz S, Fearon E, Puchowicz M, Brunengraber H, Hao Y, Wang Z. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci Rep 2019;9:19180. [PMID: 31844152 DOI: 10.1038/s41598-019-55718-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
62 Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y, Liao HP, Wang HL, Hu LD, Kong X, Ding J, Meng LH. PI3Kα inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8+T cells and promoting fatty acid metabolism. J Immunother Cancer 2021;9:e003093. [PMID: 34373258 DOI: 10.1136/jitc-2021-003093] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Zeng P, Sun S, Li R, Xiao ZX, Chen H. HER2 Upregulates ATF4 to Promote Cell Migration via Activation of ZEB1 and Downregulation of E-Cadherin. Int J Mol Sci 2019;20:E2223. [PMID: 31064130 DOI: 10.3390/ijms20092223] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
64 Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, Dong Q, Bruns CJ, Zhao Y. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front Oncol 2020;10:589508. [PMID: 33194749 DOI: 10.3389/fonc.2020.589508] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13(8): 758-771 [PMID: 34457185 DOI: 10.4251/wjgo.v13.i8.758] [Reference Citation Analysis]
66 Greene KS, Lukey MJ, Wang X, Blank B, Druso JE, Lin MJ, Stalnecker CA, Zhang C, Negrón Abril Y, Erickson JW, Wilson KF, Lin H, Weiss RS, Cerione RA. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci U S A 2019:201911954. [PMID: 31843902 DOI: 10.1073/pnas.1911954116] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
67 Journo S, Goldberg AK, Sokol ES, Zinger L, Pasmanik-Chor M, Sarvin B, Simkin D, Fuchs S, Shlomi T, Wolf I, Rubinek T. Genomic alterations drive metastases formation in pancreatic ductal adenocarcinoma cancer: deciphering the role of CDKN2A and CDKN2B in mediating liver tropism. Oncogene 2022. [PMID: 35064215 DOI: 10.1038/s41388-022-02184-2] [Reference Citation Analysis]
68 Babbar M, Huang Y, An J, Landas SK, Sheikh MS. CHTM1, a novel metabolic marker deregulated in human malignancies. Oncogene 2018;37:2052-66. [PMID: 29371680 DOI: 10.1038/s41388-017-0051-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
69 Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, Zou TH, Sun DF, Gao QY, Chen YX, Fang JY. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun 2018;9:545. [PMID: 29416026 DOI: 10.1038/s41467-018-02951-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 13.5] [Reference Citation Analysis]
70 Ouyang Q, Kavanaugh BC, Joesch-Cohen L, Dubois B, Wu Q, Schmidt M, Baytas O, Pastore SF, Harripaul R, Mishra S, Hussain A, Kim KH, Holler-Managan YF, Ayub M, Mir A, Vincent JB, Liu JS, Morrow EM. GPT2 mutations in autosomal recessive developmental disability: extending the clinical phenotype and population prevalence estimates. Hum Genet 2019;138:1183-200. [PMID: 31471722 DOI: 10.1007/s00439-019-02057-x] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Kato Y, Kunimasa K, Sugimoto Y, Tomida A. BCR-ABL tyrosine kinase inhibition induces metabolic vulnerability by preventing the integrated stress response in K562 cells. Biochem Biophys Res Commun 2018;504:721-6. [PMID: 30217442 DOI: 10.1016/j.bbrc.2018.09.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
72 Dugnani E, Pasquale V, Bordignon C, Canu A, Piemonti L, Monti P. Integrating T cell metabolism in cancer immunotherapy. Cancer Letters 2017;411:12-8. [DOI: 10.1016/j.canlet.2017.09.039] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
73 Ping Y, Xu C, Xu L, Liao G, Zhou Y, Deng C, Lan Y, Yu F, Shi J, Wang L, Xiao Y, Li X. Prioritizing Gene Cascading Paths to Model Colorectal Cancer Through Engineered Organoids. Front Bioeng Biotechnol 2020;8:12. [PMID: 32117908 DOI: 10.3389/fbioe.2020.00012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
74 Sormendi S, Wielockx B. Hypoxia Pathway Proteins As Central Mediators of Metabolism in the Tumor Cells and Their Microenvironment. Front Immunol 2018;9:40. [PMID: 29434587 DOI: 10.3389/fimmu.2018.00040] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 13.3] [Reference Citation Analysis]
75 Zhao Y, Pu C, Jiao D, Zhu J, Guo X, Liu Z. Essential amino acid metabolism-related molecular classification in triple-negative breast cancer. Epigenomics 2021;13:1247-68. [PMID: 34448400 DOI: 10.2217/epi-2021-0210] [Reference Citation Analysis]
76 Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci 2021;22:6262. [PMID: 34200820 DOI: 10.3390/ijms22126262] [Reference Citation Analysis]
77 Hao X, Ren Y, Feng M, Wang Q, Wang Y. Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomed Pharmacother 2021;141:111798. [PMID: 34120068 DOI: 10.1016/j.biopha.2021.111798] [Reference Citation Analysis]
78 Bian X, Qian Y, Tan B, Li K, Hong X, Wong CC, Fu L, Zhang J, Li N, Wu JL. In-depth mapping carboxylic acid metabolome reveals the potential biomarkers in colorectal cancer through characteristic fragment ions and metabolic flux. Anal Chim Acta 2020;1128:62-71. [PMID: 32825913 DOI: 10.1016/j.aca.2020.06.064] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
79 Soo HC, Chung FF, Lim KH, Yap VA, Bradshaw TD, Hii LW, Tan SH, See SJ, Tan YF, Leong CO, Mai CW. Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway. PLoS One 2017;12:e0170551. [PMID: 28107519 DOI: 10.1371/journal.pone.0170551] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
80 Lukey MJ, Katt WP, Cerione RA. Targeting amino acid metabolism for cancer therapy. Drug Discov Today 2017;22:796-804. [PMID: 27988359 DOI: 10.1016/j.drudis.2016.12.003] [Cited by in Crossref: 101] [Cited by in F6Publishing: 90] [Article Influence: 16.8] [Reference Citation Analysis]
81 Arcucci S, Ramos-delgado F, Cayron C, Therville N, Gratacap M, Basset C, Thibault B, Guillermet-guibert J. Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochemical Journal 2021;478:1199-225. [DOI: 10.1042/bcj20210004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
82 Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV. Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clin Cancer Res 2017;23:5639-47. [PMID: 28611197 DOI: 10.1158/1078-0432.CCR-17-1115] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 9.2] [Reference Citation Analysis]
83 Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer.Br J Cancer. 2020;122:4-22. [PMID: 31819192 DOI: 10.1038/s41416-019-0650-z] [Cited by in Crossref: 144] [Cited by in F6Publishing: 135] [Article Influence: 48.0] [Reference Citation Analysis]
84 McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016;15:817-828. [PMID: 28337112 DOI: 10.17179/excli2016-800] [Cited by in F6Publishing: 61] [Reference Citation Analysis]
85 Neitzel C, Demuth P, Wittmann S, Fahrer J. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers (Basel) 2020;12:E1731. [PMID: 32610612 DOI: 10.3390/cancers12071731] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
86 Reckzeh ES, Waldmann H. Small-Molecule Inhibition of Glucose Transporters GLUT-1-4. Chembiochem 2020;21:45-52. [PMID: 31553512 DOI: 10.1002/cbic.201900544] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
87 Siddiqui JK, Baskin E, Liu M, Cantemir-Stone CZ, Zhang B, Bonneville R, McElroy JP, Coombes KR, Mathé EA. IntLIM: integration using linear models of metabolomics and gene expression data. BMC Bioinformatics 2018;19:81. [PMID: 29506475 DOI: 10.1186/s12859-018-2085-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
88 Davis RJ, Gönen M, Margineantu DH, Handeli S, Swanger J, Hoellerbauer P, Paddison PJ, Gu H, Raftery D, Grim JE, Hockenbery DM, Margolin AA, Clurman BE. Pan-cancer transcriptional signatures predictive of oncogenic mutations reveal that Fbw7 regulates cancer cell oxidative metabolism. Proc Natl Acad Sci U S A 2018;115:5462-7. [PMID: 29735700 DOI: 10.1073/pnas.1718338115] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
89 Feist M, Schwarzfischer P, Heinrich P, Sun X, Kemper J, von Bonin F, Perez-Rubio P, Taruttis F, Rehberg T, Dettmer K, Gronwald W, Reinders J, Engelmann JC, Dudek J, Klapper W, Trümper L, Spang R, Oefner PJ, Kube D. Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression. Nat Commun 2018;9:1514. [PMID: 29666362 DOI: 10.1038/s41467-018-03803-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
90 Zhu Y, Gu L, Lin X, Liu C, Lu B, Cui K, Zhou F, Zhao Q, Prochownik EV, Fan C, Li Y. Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol Cell 2020;77:138-149.e5. [PMID: 31735643 DOI: 10.1016/j.molcel.2019.10.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
91 Bonjoch L, Mur P, Arnau-Collell C, Vargas-Parra G, Shamloo B, Franch-Expósito S, Pineda M, Capellà G, Erman B, Castellví-Bel S. Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Mol Aspects Med 2019;69:27-40. [PMID: 30935834 DOI: 10.1016/j.mam.2019.03.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
92 Dowling CM, Zhang H, Chonghaile TN, Wong KK. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021;1875:188462. [PMID: 33130228 DOI: 10.1016/j.bbcan.2020.188462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Sansa A, Venegas MDP, Valero C, Pardo L, Avilés-Jurado FX, Terra X, Quer M, León X. The aspartate aminotransaminase/alanine aminotransaminase (De Ritis) ratio predicts sensitivity to radiotherapy in head and neck carcinoma patients. Head Neck 2021;43:2091-100. [PMID: 33675096 DOI: 10.1002/hed.26673] [Reference Citation Analysis]
94 Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol Metab 2017;28:794-806. [PMID: 28797581 DOI: 10.1016/j.tem.2017.07.003] [Cited by in Crossref: 143] [Cited by in F6Publishing: 132] [Article Influence: 28.6] [Reference Citation Analysis]
95 Toda K, Nishikawa G, Iwamoto M, Itatani Y, Takahashi R, Sakai Y, Kawada K. Clinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer. Int J Mol Sci 2017;18:E1632. [PMID: 28749408 DOI: 10.3390/ijms18081632] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]
96 Gwinn DM, Lee AG, Briones-Martin-Del-Campo M, Conn CS, Simpson DR, Scott AI, Le A, Cowan TM, Ruggero D, Sweet-Cordero EA. Oncogenic KRAS Regulates Amino Acid Homeostasis and Asparagine Biosynthesis via ATF4 and Alters Sensitivity to L-Asparaginase. Cancer Cell 2018;33:91-107.e6. [PMID: 29316436 DOI: 10.1016/j.ccell.2017.12.003] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 20.3] [Reference Citation Analysis]
97 De Vitto H, Bode AM, Dong Z. The PGC-1/ERR network and its role in precision oncology. NPJ Precis Oncol 2019;3:9. [PMID: 30911677 DOI: 10.1038/s41698-019-0081-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
98 Bernfeld E, Foster DA. Glutamine as an Essential Amino Acid for KRas-Driven Cancer Cells. Trends Endocrinol Metab 2019;30:357-68. [PMID: 31040047 DOI: 10.1016/j.tem.2019.03.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
99 Dang CV. c-MYC mRNA tail tale about glutamine control of transcription. EMBO J 2017;36:1806-8. [PMID: 28507224 DOI: 10.15252/embj.201796999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
100 Lisec J, Kobelt D, Walther W, Mokrizkij M, Grötzinger C, Jaeger C, Baum K, Simon M, Wolf J, Beindorff N, Brenner W, Stein U. Systematic Identification of MACC1-Driven Metabolic Networks in Colorectal Cancer. Cancers (Basel) 2021;13:978. [PMID: 33652667 DOI: 10.3390/cancers13050978] [Reference Citation Analysis]
101 Wang R, Xiang W, Xu Y, Han L, Li Q, Dai W, Cai G. Enhanced glutamine utilization mediated by SLC1A5 and GPT2 is an essential metabolic feature of colorectal signet ring cell carcinoma with therapeutic potential. Ann Transl Med. 2020;8:302. [PMID: 32355746 DOI: 10.21037/atm.2020.03.31] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
102 Miller MS, Maheshwari S, McRobb FM, Kinzler KW, Amzel LM, Vogelstein B, Gabelli SB. Identification of allosteric binding sites for PI3Kα oncogenic mutant specific inhibitor design. Bioorg Med Chem 2017;25:1481-6. [PMID: 28129991 DOI: 10.1016/j.bmc.2017.01.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]