BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chagin VO, Casas-Delucchi CS, Reinhart M, Schermelleh L, Markaki Y, Maiser A, Bolius JJ, Bensimon A, Fillies M, Domaing P, Rozanov YM, Leonhardt H, Cardoso MC. 4D Visualization of replication foci in mammalian cells corresponding to individual replicons. Nat Commun 2016;7:11231. [PMID: 27052570 DOI: 10.1038/ncomms11231] [Cited by in Crossref: 78] [Cited by in F6Publishing: 65] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Fang P, De Souza C, Minn K, Chien J. Genome-scale CRISPR knockout screen identifies TIGAR as a modifier of PARP inhibitor sensitivity. Commun Biol 2019;2:335. [PMID: 31508509 DOI: 10.1038/s42003-019-0580-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
2 Pérez-Garrastachu M, Arluzea J, Andrade R, Díez-Torre A, Urtizberea M, Silió M, Aréchaga J. Nucleoporins redistribute inside the nucleus after cell cycle arrest induced by histone deacetylases inhibition. Nucleus 2017;8:515-33. [PMID: 28696859 DOI: 10.1080/19491034.2017.1320001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
3 Thacker U, Pauzaite T, Tollitt J, Twardowska M, Harrison C, Dowle A, Coverley D, Copeland NA. Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1. Sci Rep 2020;10:18103. [PMID: 33093612 DOI: 10.1038/s41598-020-75160-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kumagai A, Dunphy WG. Binding of the Treslin-MTBP Complex to Specific Regions of the Human Genome Promotes the Initiation of DNA Replication. Cell Rep 2020;32:108178. [PMID: 32966791 DOI: 10.1016/j.celrep.2020.108178] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
5 Nakamura N. History of radiation genetics: light and darkness. International Journal of Radiation Biology 2019;95:999-1014. [DOI: 10.1080/09553002.2019.1572251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
6 Maeshima K, Tamura S, Hansen JC, Itoh Y. Fluid-like chromatin: Toward understanding the real chromatin organization present in the cell. Curr Opin Cell Biol 2020;64:77-89. [PMID: 32283330 DOI: 10.1016/j.ceb.2020.02.016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
7 Schmid VJ, Cremer M, Cremer T. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. Methods 2017;123:33-46. [PMID: 28323041 DOI: 10.1016/j.ymeth.2017.03.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
8 [DOI: 10.1101/566638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
9 Yuan Z, Li H. Molecular mechanisms of eukaryotic origin initiation, replication fork progression, and chromatin maintenance. Biochem J 2020;477:3499-525. [PMID: 32970141 DOI: 10.1042/BCJ20200065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Maya‐mendoza A, Jackson DA. Labeling DNA Replication Foci to Visualize Chromosome Territories In Vivo. Current Protocols in Cell Biology 2017;75. [DOI: 10.1002/cpcb.19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
11 Yuan Z, Georgescu R, Santos RLA, Zhang D, Bai L, Yao NY, Zhao G, O'Donnell ME, Li H. Ctf4 organizes sister replisomes and Pol α into a replication factory. Elife 2019;8:e47405. [PMID: 31589141 DOI: 10.7554/eLife.47405] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
12 Li H, Yao NY, O'Donnell ME. Anatomy of a twin DNA replication factory. Biochem Soc Trans 2020;48:2769-78. [PMID: 33300972 DOI: 10.1042/BST20200640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhao PA, Rivera-mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. In: Masai H, Foiani M, editors. DNA Replication. Singapore: Springer; 2017. pp. 229-57. [DOI: 10.1007/978-981-10-6955-0_11] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
14 Kraus F, Miron E, Demmerle J, Chitiashvili T, Budco A, Alle Q, Matsuda A, Leonhardt H, Schermelleh L, Markaki Y. Quantitative 3D structured illumination microscopy of nuclear structures. Nat Protoc 2017;12:1011-28. [DOI: 10.1038/nprot.2017.020] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
15 Wittig KA, Sansam CG, Noble TD, Goins D, Sansam CL. The CRL4DTL E3 ligase induces degradation of the DNA replication initiation factor TICRR/TRESLIN specifically during S phase. Nucleic Acids Res 2021;49:10507-23. [PMID: 34534348 DOI: 10.1093/nar/gkab805] [Reference Citation Analysis]
16 Moiseeva TN, Yin Y, Calderon MJ, Qian C, Schamus-Haynes S, Sugitani N, Osmanbeyoglu HU, Rothenberg E, Watkins SC, Bakkenist CJ. An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc Natl Acad Sci U S A 2019;116:13374-83. [PMID: 31209037 DOI: 10.1073/pnas.1903418116] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 17.3] [Reference Citation Analysis]
17 Hiratani I, Takahashi S. DNA Replication Timing Enters the Single-Cell Era. Genes (Basel) 2019;10:E221. [PMID: 30884743 DOI: 10.3390/genes10030221] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
18 Natale F, Scholl A, Rapp A, Yu W, Rausch C, Cardoso MC. DNA replication and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive elements. Epigenetics Chromatin 2018;11:61. [PMID: 30352618 DOI: 10.1186/s13072-018-0226-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
19 Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019;10:231-53. [PMID: 31744372 DOI: 10.1080/19491034.2019.1688932] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
20 Heintzmann R, Huser T. Super-Resolution Structured Illumination Microscopy. Chem Rev 2017;117:13890-908. [DOI: 10.1021/acs.chemrev.7b00218] [Cited by in Crossref: 142] [Cited by in F6Publishing: 93] [Article Influence: 28.4] [Reference Citation Analysis]
21 Wang W, Klein KN, Proesmans K, Yang H, Marchal C, Zhu X, Borrman T, Hastie A, Weng Z, Bechhoefer J, Chen CL, Gilbert DM, Rhind N. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol Cell 2021;81:2975-2988.e6. [PMID: 34157308 DOI: 10.1016/j.molcel.2021.05.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC. Super-resolution microscopy demystified. Nat Cell Biol 2019;21:72-84. [DOI: 10.1038/s41556-018-0251-8] [Cited by in Crossref: 323] [Cited by in F6Publishing: 237] [Article Influence: 107.7] [Reference Citation Analysis]
23 Lemmens B, Hegarat N, Akopyan K, Sala-Gaston J, Bartek J, Hochegger H, Lindqvist A. DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation. Mol Cell 2018;71:117-128.e3. [PMID: 30008317 DOI: 10.1016/j.molcel.2018.05.026] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 12.3] [Reference Citation Analysis]
24 Shaban HA, Barth R, Bystricky K. Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res 2018;46:e77. [PMID: 29718294 DOI: 10.1093/nar/gky269] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 15.7] [Reference Citation Analysis]
25 Deng W, Bates JA, Wei H, Bartoschek MD, Conradt B, Leonhardt H. Tunable light and drug induced depletion of target proteins. Nat Commun 2020;11:304. [PMID: 31949141 DOI: 10.1038/s41467-019-14160-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
26 Rausch C, Weber P, Prorok P, Hörl D, Maiser A, Lehmkuhl A, Chagin VO, Casas-Delucchi CS, Leonhardt H, Cardoso MC. Developmental differences in genome replication program and origin activation. Nucleic Acids Res 2020;48:12751-77. [PMID: 33264404 DOI: 10.1093/nar/gkaa1124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Moiseeva TN, Bakkenist CJ. Dormant origin signaling during unperturbed replication. DNA Repair (Amst) 2019;81:102655. [PMID: 31311769 DOI: 10.1016/j.dnarep.2019.102655] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
28 Juhász S, Elbakry A, Mathes A, Löbrich M. ATRX Promotes DNA Repair Synthesis and Sister Chromatid Exchange during Homologous Recombination. Mol Cell 2018;71:11-24.e7. [PMID: 29937341 DOI: 10.1016/j.molcel.2018.05.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 12.8] [Reference Citation Analysis]
29 Schneider AFL, Benz LS, Lehmann M, Hackenberger CPR. Cell-Permeable Nanobodies Allow Dual-Color Super-Resolution Microscopy in Untransfected Living Cells. Angew Chem Int Ed Engl 2021. [PMID: 34288299 DOI: 10.1002/anie.202103068] [Reference Citation Analysis]
30 Técher H, Koundrioukoff S, Nicolas A, Debatisse M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017;18:535-50. [DOI: 10.1038/nrg.2017.46] [Cited by in Crossref: 127] [Cited by in F6Publishing: 107] [Article Influence: 25.4] [Reference Citation Analysis]
31 Löb D, Lengert N, Chagin VO, Reinhart M, Casas-Delucchi CS, Cardoso MC, Drossel B. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression. Nat Commun 2016;7:11207. [PMID: 27052359 DOI: 10.1038/ncomms11207] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
32 Li Y, Xue B, Zhang M, Zhang L, Hou Y, Qin Y, Long H, Su QP, Wang Y, Guan X, Jin Y, Cao Y, Li G, Sun Y. Transcription-coupled structural dynamics of topologically associating domains regulate replication origin efficiency. Genome Biol 2021;22:206. [PMID: 34253239 DOI: 10.1186/s13059-021-02424-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021;14:50. [PMID: 34717733 DOI: 10.1186/s13072-021-00424-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Reinhart M, Cardoso MC. A journey through the microscopic ages of DNA replication. Protoplasma 2017;254:1151-62. [PMID: 27943022 DOI: 10.1007/s00709-016-1058-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
35 Weiss LE, Naor T, Shechtman Y. Observing DNA in live cells. Biochem Soc Trans 2018;46:729-40. [PMID: 29871877 DOI: 10.1042/BST20170301] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
36 Pratto F, Brick K, Cheng G, Lam KG, Cloutier JM, Dahiya D, Wellard SR, Jordan PW, Camerini-Otero RD. Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 2021;184:4251-4267.e20. [PMID: 34260899 DOI: 10.1016/j.cell.2021.06.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Xiang W, Roberti MJ, Hériché JK, Huet S, Alexander S, Ellenberg J. Correlative live and super-resolution imaging reveals the dynamic structure of replication domains. J Cell Biol 2018;217:1973-84. [PMID: 29572382 DOI: 10.1083/jcb.201709074] [Cited by in Crossref: 45] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
38 Ganier O, Prorok P, Akerman I, Méchali M. Metazoan DNA replication origins. Curr Opin Cell Biol 2019;58:134-41. [PMID: 31200185 DOI: 10.1016/j.ceb.2019.03.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
39 Koussa NC, Smith DJ. Limiting DNA polymerase delta alters replication dynamics and leads to a dependence on checkpoint activation and recombination-mediated DNA repair. PLoS Genet 2021;17:e1009322. [PMID: 33493195 DOI: 10.1371/journal.pgen.1009322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Heinz KS, Casas-Delucchi CS, Török T, Cmarko D, Rapp A, Raska I, Cardoso MC. Peripheral re-localization of constitutive heterochromatin advances its replication timing and impairs maintenance of silencing marks. Nucleic Acids Res 2018;46:6112-28. [PMID: 29750270 DOI: 10.1093/nar/gky368] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
41 Spilger R, Lee JY, Chagin VO, Schermelleh L, Cardoso MC, Bartenschlager R, Rohr K. Deep probabilistic tracking of particles in fluorescence microscopy images. Med Image Anal 2021;72:102128. [PMID: 34229189 DOI: 10.1016/j.media.2021.102128] [Reference Citation Analysis]
42 Parker MW, Bell M, Mir M, Kao JA, Darzacq X, Botchan MR, Berger JM. A new class of disordered elements controls DNA replication through initiator self-assembly. Elife 2019;8:e48562. [PMID: 31560342 DOI: 10.7554/eLife.48562] [Cited by in Crossref: 40] [Cited by in F6Publishing: 24] [Article Influence: 13.3] [Reference Citation Analysis]
43 Poli J, Gasser SM, Papamichos-Chronakis M. The INO80 remodeller in transcription, replication and repair. Philos Trans R Soc Lond B Biol Sci 2017;372:20160290. [PMID: 28847827 DOI: 10.1098/rstb.2016.0290] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 11.0] [Reference Citation Analysis]
44 Clément C, Orsi GA, Gatto A, Boyarchuk E, Forest A, Hajj B, Miné-Hattab J, Garnier M, Gurard-Levin ZA, Quivy JP, Almouzni G. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat Commun 2018;9:3181. [PMID: 30093638 DOI: 10.1038/s41467-018-05697-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
45 Drosopoulos WC, Vierra DA, Kenworthy CA, Coleman RA, Schildkraut CL. Dynamic Assembly and Disassembly of the Human DNA Polymerase δ Holoenzyme on the Genome In Vivo. Cell Rep 2020;30:1329-1341.e5. [PMID: 32023453 DOI: 10.1016/j.celrep.2019.12.101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
46 Sarmento MJ, Oneto M, Pelicci S, Pesce L, Scipioni L, Faretta M, Furia L, Dellino GI, Pelicci PG, Bianchini P, Diaspro A, Lanzanò L. Exploiting the tunability of stimulated emission depletion microscopy for super-resolution imaging of nuclear structures. Nat Commun 2018;9:3415. [PMID: 30143630 DOI: 10.1038/s41467-018-05963-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
47 Gnan S, Flyamer IM, Klein KN, Castelli E, Rapp A, Maiser A, Chen N, Weber P, Enervald E, Cardoso MC, Bickmore WA, Gilbert DM, Buonomo SCB. Nuclear organisation and replication timing are coupled through RIF1-PP1 interaction. Nat Commun 2021;12:2910. [PMID: 34006872 DOI: 10.1038/s41467-021-22899-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Takebayashi SI, Ogata M, Okumura K. Anatomy of Mammalian Replication Domains. Genes (Basel) 2017;8:E110. [PMID: 28350365 DOI: 10.3390/genes8040110] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
49 Cainero I, Cerutti E, Faretta M, Dellino GI, Pelicci PG, Bianchini P, Vicidomini G, Diaspro A, Lanzanò L. Chromatin investigation in the nucleus using a phasor approach to structured illumination microscopy. Biophys J 2021;120:2566-76. [PMID: 33940021 DOI: 10.1016/j.bpj.2021.04.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Whelan DR, Lee WTC, Marks F, Kong YT, Yin Y, Rothenberg E. Super-resolution visualization of distinct stalled and broken replication fork structures. PLoS Genet 2020;16:e1009256. [PMID: 33370257 DOI: 10.1371/journal.pgen.1009256] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
51 Herce HD, Schumacher D, Schneider AFL, Ludwig AK, Mann FA, Fillies M, Kasper M, Reinke S, Krause E, Leonhardt H, Cardoso MC, Hackenberger CPR. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells. Nature Chem 2017;9:762-71. [DOI: 10.1038/nchem.2811] [Cited by in Crossref: 141] [Cited by in F6Publishing: 121] [Article Influence: 28.2] [Reference Citation Analysis]
52 Mamberti S, Cardoso MC. Are the processes of DNA replication and DNA repair reading a common structural chromatin unit? Nucleus 2020;11:66-82. [PMID: 32275847 DOI: 10.1080/19491034.2020.1744415] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Su QP, Zhao ZW, Meng L, Ding M, Zhang W, Li Y, Liu M, Li R, Gao YQ, Xie XS, Sun Y. Superresolution imaging reveals spatiotemporal propagation of human replication foci mediated by CTCF-organized chromatin structures. Proc Natl Acad Sci U S A 2020;117:15036-46. [PMID: 32541019 DOI: 10.1073/pnas.2001521117] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Doblas A, Shabani H, Saavedra G, Preza C. Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition. Opt Express 2018;26:30476. [DOI: 10.1364/oe.26.030476] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
55 Delpech F, Collien Y, Mahou P, Beaurepaire E, Myllykallio H, Lestini R. Snapshots of archaeal DNA replication and repair in living cells using super-resolution imaging. Nucleic Acids Res 2018;46:10757-70. [PMID: 30212908 DOI: 10.1093/nar/gky829] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
56 Eberle JP, Rapp A, Krufczik M, Eryilmaz M, Gunkel M, Erfle H, Hausmann M. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics. In: Erfle H, editor. Super-Resolution Microscopy. New York: Springer; 2017. pp. 1-13. [DOI: 10.1007/978-1-4939-7265-4_1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
57 Yin Y, Lee WTC, Gupta D, Xue H, Tonzi P, Borowiec JA, Huang TT, Modesti M, Rothenberg E. A basal-level activity of ATR links replication fork surveillance and stress response. Mol Cell 2021;81:4243-4257.e6. [PMID: 34473946 DOI: 10.1016/j.molcel.2021.08.009] [Reference Citation Analysis]
58 Maeshima K, Ide S, Babokhov M. Dynamic chromatin organization without the 30-nm fiber. Current Opinion in Cell Biology 2019;58:95-104. [DOI: 10.1016/j.ceb.2019.02.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 16.0] [Reference Citation Analysis]
59 Mamberti S, Pabba MK, Rapp A, Cardoso MC, Scholz M. The Chromatin Architectural Protein CTCF Is Critical for Cell Survival upon Irradiation-Induced DNA Damage. Int J Mol Sci 2022;23:3896. [PMID: 35409255 DOI: 10.3390/ijms23073896] [Reference Citation Analysis]
60 Kolesnikova TD, Pokholkova GV, Dovgan VV, Zhimulev IF, Schubert V. Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022. [PMID: 35226231 DOI: 10.1007/s10577-021-09679-w] [Reference Citation Analysis]
61 Triemer T, Messikommer A, Glasauer SMK, Alzeer J, Paulisch MH, Luedtke NW. Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc Natl Acad Sci U S A 2018;115:E1366-73. [PMID: 29378947 DOI: 10.1073/pnas.1714790115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
62 Moiseeva TN, Bakkenist CJ. Regulation of the initiation of DNA replication in human cells. DNA Repair (Amst) 2018;72:99-106. [PMID: 30266203 DOI: 10.1016/j.dnarep.2018.09.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
63 Muster B, Rapp A, Cardoso MC. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation. AIMS Genet 2017;4:47-68. [PMID: 31435503 DOI: 10.3934/genet.2017.1.47] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
64 Lebrec V, Poteau M, Morretton JP, Gavet O. Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Dev Cell 2022:S1534-5807(22)00079-X. [PMID: 35245445 DOI: 10.1016/j.devcel.2022.02.013] [Reference Citation Analysis]
65 Ahmed SM, Dröge P. Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. Int J Mol Sci 2020;21:E4504. [PMID: 32599919 DOI: 10.3390/ijms21124504] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
66 Geertsema HJ, Aimola G, Fabricius V, Fuerste JP, Kaufer BB, Ewers H. Left-handed DNA-PAINT for improved super-resolution imaging in the nucleus. Nat Biotechnol 2021;39:551-4. [PMID: 33398151 DOI: 10.1038/s41587-020-00753-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
67 Cremer C, Birk U. Spatially modulated illumination microscopy: application perspectives in nuclear nanostructure analysis. Philos Trans A Math Phys Eng Sci 2022;380:20210152. [PMID: 35152761 DOI: 10.1098/rsta.2021.0152] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Federico C, Bruno F, Ragusa D, Clements CS, Brancato D, Henry MP, Bridger JM, Tosi S, Saccone S. Chromosomal Rearrangements and Altered Nuclear Organization: Recent Mechanistic Models in Cancer. Cancers (Basel) 2021;13:5860. [PMID: 34831011 DOI: 10.3390/cancers13225860] [Reference Citation Analysis]
69 Miron E, Oldenkamp R, Brown JM, Pinto DMS, Xu CS, Faria AR, Shaban HA, Rhodes JDP, Innocent C, de Ornellas S, Hess HF, Buckle V, Schermelleh L. Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci Adv 2020;6:eaba8811. [PMID: 32967822 DOI: 10.1126/sciadv.aba8811] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
70 Schneider AFL, Kithil M, Cardoso MC, Lehmann M, Hackenberger CPR. Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives. Nat Chem 2021;13:530-9. [PMID: 33859390 DOI: 10.1038/s41557-021-00661-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
71 Arifulin EA, Musinova YR, Vassetzky YS, Sheval EV. Mobility of Nuclear Components and Genome Functioning. Biochemistry (Mosc) 2018;83:690-700. [PMID: 30195325 DOI: 10.1134/S0006297918060068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]