BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11:943-950. [PMID: 19597490 DOI: 10.1038/ncb1905] [Cited by in Crossref: 418] [Cited by in F6Publishing: 409] [Article Influence: 32.2] [Reference Citation Analysis]
Number Citing Articles
1 Gill JG, Langer EM, Lindsley RC, Cai M, Murphy TL, Kyba M, Murphy KM. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 2011;29:764-76. [PMID: 21394833 DOI: 10.1002/stem.628] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 5.6] [Reference Citation Analysis]
2 Vakili‐ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi‐majidi R, Jaafari MR, Mirzaei H. Tumor‐associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018;233:9223-36. [DOI: 10.1002/jcp.27027] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
3 Al-hattab DS, Safi HA, Nagalingam RS, Bagchi RA, Stecy MT, Czubryt MP. Scleraxis regulates Twist1 and Snai1 expression in the epithelial-to-mesenchymal transition. American Journal of Physiology-Heart and Circulatory Physiology 2018;315:H658-68. [DOI: 10.1152/ajpheart.00092.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
4 Jimenez C, Powers M, Parsa AT, Glastonbury C, Hagenkord JM, Tihan T. Sarcoma arising as a distinct nodule within glioblastoma: a morphological and molecular perspective on gliosarcoma. J Neurooncol 2011;105:317-23. [DOI: 10.1007/s11060-011-0593-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
5 Jiang Z, Lu L, Liu Y, Zhang S, Li S, Wang G, Wang P, Chen L. SMAD7 and SERPINE1 as novel dynamic network biomarkers detect and regulate the tipping point of TGF-beta induced EMT. Science Bulletin 2020;65:842-53. [DOI: 10.1016/j.scib.2020.01.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
6 Scherbakov AM, Andreeva OE, Shatskaya VA, Krasil'nikov MA. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem 2012;113:2147-55. [PMID: 22307688 DOI: 10.1002/jcb.24087] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
7 Xue HT, Wang HG, Huang XD, Shen P, Ji GZ. Loss of Smad4 expression inhibits epithelial-mesenchymal transition in SMMC-7721 cells. Shijie Huaren Xiaohua Zazhi 2012; 20(11): 923-929 [DOI: 10.11569/wcjd.v20.i11.923] [Reference Citation Analysis]
8 Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016;5:E63. [PMID: 27367735 DOI: 10.3390/jcm5070063] [Cited by in Crossref: 128] [Cited by in F6Publishing: 119] [Article Influence: 21.3] [Reference Citation Analysis]
9 Luo WR, Li SY, Cai LM, Yao KT. High expression of nuclear Snail, but not cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma. Ann Surg Oncol 2012;19:2971-9. [PMID: 22476819 DOI: 10.1245/s10434-012-2347-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
10 Wang X, Ren Y, Yang X, Xiong X, Han S, Ge Y, Pan W, Zhou L, Yuan Q, Yang M. miR-190a inhibits epithelial-mesenchymal transition of hepatoma cells via targeting the long non-coding RNA treRNA. FEBS Lett. 2015;589:4079-4087. [PMID: 26608035 DOI: 10.1016/j.febslet.2015.11.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
11 Vasioukhin V. Adherens junctions and cancer. Subcell Biochem. 2012;60:379-414. [PMID: 22674080 DOI: 10.1007/978-94-007-4186-7_16] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
12 Tang M, Shen H, Jin Y, Lin T, Cai Q, Pinard MA, Biswas S, Tran Q, Li G, Shenoy AK, Tongdee E, Lin S, Gu Y, Law BK, Zhou L, Mckenna R, Wu L, Lu J. The malignant brain tumor (MBT) domain protein SFMBT1 is an integral histone reader subunit of the LSD1 demethylase complex for chromatin association and epithelial-to-mesenchymal transition. J Biol Chem 2013;288:27680-91. [PMID: 23928305 DOI: 10.1074/jbc.M113.482349] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
13 Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216:1016-1026. [PMID: 30975895 DOI: 10.1084/jem.20181827] [Cited by in Crossref: 132] [Cited by in F6Publishing: 144] [Article Influence: 44.0] [Reference Citation Analysis]
14 Mahmood MQ, Walters EH, Shukla SD, Weston S, Muller HK, Ward C, Sohal SS. β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction. Sci Rep 2017;7:10832. [PMID: 28883453 DOI: 10.1038/s41598-017-11375-x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 6.4] [Reference Citation Analysis]
15 Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol 2018;106:1-8. [PMID: 29471141 DOI: 10.1016/j.vph.2018.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 9.5] [Reference Citation Analysis]
16 Musavi Shenas SMH, Mansoori B, Mohammadi A, Salehi S, Kaffash B, Talebi B, Babaloo Z, Shanehbandi D, Baradaran B. SiRNA-mediated silencing of Snail-1 induces apoptosis and alters micro RNA expression in human urinary bladder cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology 2016;45:969-74. [DOI: 10.1080/21691401.2016.1198361] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
17 Vincentz JW, Firulli BA, Lin A, Spicer DB, Howard MJ, Firulli AB. Twist1 controls a cell-specification switch governing cell fate decisions within the cardiac neural crest. PLoS Genet 2013;9:e1003405. [PMID: 23555309 DOI: 10.1371/journal.pgen.1003405] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
18 Yu ZW, Xu YQ, Zhang XJ, Pan JR, Xiang HX, Gu XH, Ji SB, Qian J. Mutual regulation between miR-21 and the TGFβ/Smad signaling pathway in human bronchial fibroblasts promotes airway remodeling. J Asthma 2019;56:341-9. [PMID: 29621415 DOI: 10.1080/02770903.2018.1455859] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Li Z, Wermuth PJ, Benn BS, Lisanti MP, Jimenez SA. Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am J Pathol 2013;182:325-31. [PMID: 23195429 DOI: 10.1016/j.ajpath.2012.10.022] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
20 Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178-96. [DOI: 10.1038/nrm3758] [Reference Citation Analysis]
21 Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021;38:139-61. [PMID: 33590419 DOI: 10.1007/s10585-021-10077-z] [Reference Citation Analysis]
22 Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020;10:509-47. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
23 Colella B, Faienza F, Di Bartolomeo S. EMT Regulation by Autophagy: A New Perspective in Glioblastoma Biology. Cancers (Basel) 2019;11:E312. [PMID: 30845654 DOI: 10.3390/cancers11030312] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 14.3] [Reference Citation Analysis]
24 Heldin CH, Vanlandewijck M, Moustakas A. Regulation of EMT by TGFβ in cancer. FEBS Lett. 2012;586:1959-1970. [PMID: 22710176 DOI: 10.1016/j.febslet.2012.02.037] [Cited by in Crossref: 320] [Cited by in F6Publishing: 314] [Article Influence: 32.0] [Reference Citation Analysis]
25 Bozhokin MS, Sopova YV, Kachkin DV, Rubel AA, Khotin MG. Mechanisms of TGFβ3 Action as a Therapeutic Agent for Promoting the Synthesis of Extracellular Matrix Proteins in Hyaline Cartilage. Biochemistry (Mosc) 2020;85:436-47. [PMID: 32569551 DOI: 10.1134/S0006297920040045] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Zaitceva V, Kopeina GS, Zhivotovsky B. Anastasis: Return Journey from Cell Death. Cancers (Basel) 2021;13:3671. [PMID: 34359573 DOI: 10.3390/cancers13153671] [Reference Citation Analysis]
27 Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol 2019;17:e3000557. [PMID: 31826007 DOI: 10.1371/journal.pbio.3000557] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
28 Ko H, Jeon H, Lee D, Choi H, Kang KS, Choi K. Sanguiin H6 suppresses TGF-β induction of the epithelial–mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorganic & Medicinal Chemistry Letters 2015;25:5508-13. [DOI: 10.1016/j.bmcl.2015.10.067] [Reference Citation Analysis]
29 Baulida J, Díaz VM, Herreros AG. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019;8:E757. [PMID: 31141910 DOI: 10.3390/jcm8060757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
30 Wang Y, Zhou BP. Epithelial-mesenchymal Transition---A Hallmark of Breast Cancer Metastasis. Cancer Hallm 2013;1:38-49. [PMID: 24611128 DOI: 10.1166/ch.2013.1004] [Cited by in Crossref: 91] [Cited by in F6Publishing: 81] [Article Influence: 10.1] [Reference Citation Analysis]
31 Liang X, Zhang XH, Han BC, Lei W, Qi QR, Wang TS, Gu XW, Yang ZM. Progesterone and heparin-binding epidermal growth factor-like growth factor regulate the expression of tight junction protein Claudin-3 during early pregnancy. Fertil Steril 2013;100:1410-8. [PMID: 23909989 DOI: 10.1016/j.fertnstert.2013.07.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
32 David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J. TGF-β Tumor Suppression through a Lethal EMT. Cell 2016;164:1015-30. [PMID: 26898331 DOI: 10.1016/j.cell.2016.01.009] [Cited by in Crossref: 306] [Cited by in F6Publishing: 288] [Article Influence: 51.0] [Reference Citation Analysis]
33 Guerrero-Martínez JA, Ceballos-Chávez M, Koehler F, Peiró S, Reyes JC. TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun 2020;11:6196. [PMID: 33273453 DOI: 10.1038/s41467-020-19877-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Takakura M, Takata E, Sasagawa T. A Novel Liquid Biopsy Strategy to Detect Small Amounts of Cancer Cells Using Cancer-Specific Replication Adenoviruses. J Clin Med 2020;9:E4044. [PMID: 33327605 DOI: 10.3390/jcm9124044] [Reference Citation Analysis]
35 Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z. MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 2017;796:190-206. [PMID: 27916556 DOI: 10.1016/j.ejphar.2016.12.003] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
36 Foubert E, De Craene B, Berx G. Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res. 2010;12:206. [PMID: 20594364 DOI: 10.1186/bcr2585] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 4.8] [Reference Citation Analysis]
37 Slabáková E, Pernicová Z, Slavíčková E, Staršíchová A, Kozubík A, Souček K. TGF-β1-induced EMT of non-transformed prostate hyperplasia cells is characterized by early induction of SNAI2/Slug. Prostate 2011;71:1332-43. [PMID: 21321977 DOI: 10.1002/pros.21350] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 5.2] [Reference Citation Analysis]
38 De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021;95:2279-97. [PMID: 34003341 DOI: 10.1007/s00204-021-03063-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
39 Liu S, Kumar SM, Martin JS, Yang R, Xu X. Snail1 mediates hypoxia-induced melanoma progression. Am J Pathol 2011;179:3020-31. [PMID: 21996677 DOI: 10.1016/j.ajpath.2011.08.038] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.2] [Reference Citation Analysis]
40 Moustakas A, Heldin C. Induction of epithelial–mesenchymal transition by transforming growth factor β. Seminars in Cancer Biology 2012;22:446-54. [DOI: 10.1016/j.semcancer.2012.04.002] [Cited by in Crossref: 93] [Cited by in F6Publishing: 89] [Article Influence: 9.3] [Reference Citation Analysis]
41 Tanja Mierke C; Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany. . AIMS Biophysics 2017;4:615-58. [DOI: 10.3934/biophy.2017.4.615] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, Lee SW, Yoon HG, Choi KC. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett 2013;335:205-13. [PMID: 23419524 DOI: 10.1016/j.canlet.2013.02.018] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 7.4] [Reference Citation Analysis]
43 Li D, Zhang J, Xi Y, Zhang L, Li W, Cui J, Xing R, Pan Y, Pan Z, Li F, Lu Y. Mitogen-activated protein kinase activator with WD40 repeats (MAWD) and MAWD-binding protein induce cell differentiation in gastric cancer. BMC Cancer 2015;15:637. [PMID: 26373288 DOI: 10.1186/s12885-015-1637-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
44 Xu Y, Wang X, Huang Y, Ma Y, Jin X, Wang H, Wang J. Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int J Mol Med 2018;42:2737-49. [PMID: 30226558 DOI: 10.3892/ijmm.2018.3855] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
45 Parvani JG, Taylor MA, Schiemann WP. Noncanonical TGF-β signaling during mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2011;16:127-46. [PMID: 21448580 DOI: 10.1007/s10911-011-9207-3] [Cited by in Crossref: 77] [Cited by in F6Publishing: 85] [Article Influence: 7.0] [Reference Citation Analysis]
46 Runkle EA, Mu D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett. 2013;337:41-48. [PMID: 23743355 DOI: 10.1016/j.canlet.2013.05.038] [Cited by in Crossref: 118] [Cited by in F6Publishing: 114] [Article Influence: 13.1] [Reference Citation Analysis]
47 Zhang X, Feng C, Li Y, Su C, Zhao S, Su S, Yu F, Li J. An investigation on nephrotoxicity of Aristolactam I induced epithelial-mesenchymal transition on HK-2 cells. Toxicon 2021;201:21-6. [PMID: 34391786 DOI: 10.1016/j.toxicon.2021.08.005] [Reference Citation Analysis]
48 Zhang Z, Dong Z, Lauxen IS, Filho MS, Nör JE. Endothelial cell-secreted EGF induces epithelial to mesenchymal transition and endows head and neck cancer cells with stem-like phenotype. Cancer Res. 2014;74:2869-2881. [PMID: 24686166 DOI: 10.1158/0008-5472.can-13-2032] [Cited by in Crossref: 71] [Cited by in F6Publishing: 48] [Article Influence: 8.9] [Reference Citation Analysis]
49 Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance. J Clin Med 2016;5:E17. [PMID: 26828526 DOI: 10.3390/jcm5020017] [Cited by in Crossref: 227] [Cited by in F6Publishing: 226] [Article Influence: 37.8] [Reference Citation Analysis]
50 Lennerz JK, Chapman WC, Brunt EM. Keratin 19 epithelial patterns in cirrhotic stroma parallel hepatocarcinogenesis. Am J Pathol. 2011;179:1015-1029. [PMID: 21704007 DOI: 10.1016/j.ajpath.2011.04.040] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
51 Ahmed S, Bradshaw AD, Gera S, Dewan MZ, Xu R. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. J Clin Med 2017;6:E5. [PMID: 28067794 DOI: 10.3390/jcm6010005] [Cited by in Crossref: 56] [Cited by in F6Publishing: 62] [Article Influence: 11.2] [Reference Citation Analysis]
52 Li SS, Chen DM, Chen LB, Wei H, Wang JL, Xiao J, Huang YH, Lian YF. GTSE1 promotes SNAIL1 degradation by facilitating its nuclear export in hepatocellular carcin oma cells. Mol Med Rep 2021;23:454. [PMID: 33880590 DOI: 10.3892/mmr.2021.12093] [Reference Citation Analysis]
53 Meng F, Li J, Yang X, Yuan X, Tang X. Role of Smad3 signaling in the epithelial‑mesenchymal transition of the lens epithelium following injury. Int J Mol Med 2018;42:851-60. [PMID: 29750298 DOI: 10.3892/ijmm.2018.3662] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
54 Zheng S, Lin Z, Liu Z, Liu Y, Wu W. Lipopolysaccharide Mediates the Destruction of Intercellular Tight Junction among Renal Tubular Epithelial Cells via RhoT1/SMAD-4/JAM-3 Pathway. Int J Med Sci 2018;15:595-602. [PMID: 29725250 DOI: 10.7150/ijms.23786] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
55 Huang W, Wu Y, Cheng D, He Z. Mechanism of epithelial‑mesenchymal transition inhibited by miR‑203 in non‑small cell lung cancer. Oncol Rep 2020;43:437-46. [PMID: 31894278 DOI: 10.3892/or.2019.7433] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
56 D'Inzeo S, Nicolussi A, Donini CF, Zani M, Mancini P, Nardi F, Coppa A. A novel human Smad4 mutation is involved in papillary thyroid carcinoma progression. Endocr Relat Cancer 2012;19:39-55. [PMID: 22109972 DOI: 10.1530/ERC-11-0233] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
57 Lewandowski SL, Janardhan HP, Trivedi CM. Histone Deacetylase 3 Coordinates Deacetylase-independent Epigenetic Silencing of Transforming Growth Factor-β1 (TGF-β1) to Orchestrate Second Heart Field Development. J Biol Chem 2015;290:27067-89. [PMID: 26420484 DOI: 10.1074/jbc.M115.684753] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
58 Giarnieri E, De Vitis C, Noto A, Roscilli G, Salerno G, Mariotta S, Ricci A, Bruno P, Russo G, Laurenzi A, Giovagnoli MR, Ciliberto G, Mancini R. EMT markers in lung adenocarcinoma pleural effusion spheroid cells. J Cell Physiol 2013;228:1720-6. [PMID: 23255165 DOI: 10.1002/jcp.24300] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
59 Ma R, Bonnefond S, Morshed SA, Latif R, Davies TF. Stemness is Derived from Thyroid Cancer Cells. Front Endocrinol (Lausanne) 2014;5:114. [PMID: 25076938 DOI: 10.3389/fendo.2014.00114] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
60 Masaki S, Masutani H, Yoshihara E, Yodoi J. Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-β signaling and promotes epithelial to mesenchymal transition. PLoS One 2012;7:e39900. [PMID: 22768160 DOI: 10.1371/journal.pone.0039900] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
61 An H, Stoops SL, Deane NG, Zhu J, Zi J, Weaver C, Waterson AG, Zijlstra A, Lindsley CW, Beauchamp RD. Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition. Oncotarget 2015;6:22934-48. [PMID: 26082441 DOI: 10.18632/oncotarget.4473] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
62 Liu Z, Li Q, Li K, Chen L, Li W, Hou M, Liu T, Yang J, Lindvall C, Björkholm M, Jia J, Xu D. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene 2013;32:4203-13. [PMID: 23045275 DOI: 10.1038/onc.2012.441] [Cited by in Crossref: 155] [Cited by in F6Publishing: 158] [Article Influence: 15.5] [Reference Citation Analysis]
63 Scherbakov AM, Stefanova LB, Sorokin DV, Semina SE, Berstein LM, Krasil’nikov MA. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack. Exp Cell Res. 2013;319:3150-3159. [PMID: 23973669 DOI: 10.1016/j.yexcr.2013.08.019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
64 Zhu X, Huang S, Zeng L, Ma J, Sun S, Zeng F, Kong F, Cheng X. HMOX-1 inhibits TGF-β-induced epithelial-mesenchymal transition in the MCF-7 breast cancer cell line. Int J Mol Med 2017;40:411-7. [PMID: 28627599 DOI: 10.3892/ijmm.2017.3027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
65 Izumchenko E, Chang X, Michailidi C, Kagohara L, Ravi R, Paz K, Brait M, Hoque MO, Ling S, Bedi A, Sidransky D. The TGFβ-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 2014;74:3995-4005. [PMID: 24830724 DOI: 10.1158/0008-5472.CAN-14-0110] [Cited by in Crossref: 84] [Cited by in F6Publishing: 51] [Article Influence: 10.5] [Reference Citation Analysis]
66 Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 2015;35:1-16. [PMID: 25068787 DOI: 10.1089/jir.2014.0026] [Cited by in Crossref: 214] [Cited by in F6Publishing: 196] [Article Influence: 26.8] [Reference Citation Analysis]
67 Cho ES, Kang HE, Kim NH, Yook JI. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch Pharm Res 2019;42:14-24. [PMID: 30649699 DOI: 10.1007/s12272-018-01108-7] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 14.7] [Reference Citation Analysis]
68 Scherbakov AM, Sorokin DV, Tatarskiy VV Jr, Prokhorov NS, Semina SE, Berstein LM, Krasil'nikov MA. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling. IUBMB Life 2016;68:281-92. [PMID: 26892736 DOI: 10.1002/iub.1481] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
69 Mali AV, Joshi AA, Hegde MV, Kadam SS. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition. Cancer Biol Med 2018;15:137-56. [PMID: 29951338 DOI: 10.20892/j.issn.2095-3941.2018.0012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
70 Luo Y, Huang K, Zheng J, Zhang J, Zhang L. TGF-β1 promotes cell migration in hepatocellular carcinoma by suppressing reelin expression. Gene 2019;688:19-25. [PMID: 30447345 DOI: 10.1016/j.gene.2018.11.033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
71 Li Y, Ma D, Wang Z, Hu X, Li S, Tian H, Wang M, Shu Y, Yang J. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Pharmacological Research 2018;131:102-11. [DOI: 10.1016/j.phrs.2018.03.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
72 Nuessle JM, Giehl K, Herzog R, Stracke S, Menke A. TGFβ1 suppresses vascular smooth muscle cell motility by expression of N-cadherin. Biol Chem 2011;392:461-74. [PMID: 21375457 DOI: 10.1515/BC.2011.053] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
73 Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, Huang X, Xiang Y, Li B, Zhang X, Cui R. Glycometabolic rearrangements--aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. J Exp Clin Cancer Res 2020;39:267. [PMID: 33256814 DOI: 10.1186/s13046-020-01765-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
74 Zhang J, Tian XJ, Xing J. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J Clin Med 2016;5:E41. [PMID: 27043642 DOI: 10.3390/jcm5040041] [Cited by in Crossref: 158] [Cited by in F6Publishing: 161] [Article Influence: 26.3] [Reference Citation Analysis]
75 Watari A, Yagi K, Kondoh M. A simple reporter assay for screening claudin-4 modulators. Biochem Biophys Res Commun 2012;426:454-60. [PMID: 22960168 DOI: 10.1016/j.bbrc.2012.08.083] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
76 Geradts J, de Herreros AG, Su Z, Burchette J, Broadwater G, Bachelder RE. Nuclear Snail1 and nuclear ZEB1 protein expression in invasive and intraductal human breast carcinomas. Hum Pathol 2011;42:1125-31. [PMID: 21315410 DOI: 10.1016/j.humpath.2010.11.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
77 Garg M. Epithelial-mesenchymal transition - activating transcription factors - multifunctional regulators in cancer. World J Stem Cells 2013; 5(4): 188-195 [PMID: 24179606 DOI: 10.4252/wjsc.v5.i4.188] [Cited by in Crossref: 109] [Cited by in F6Publishing: 108] [Article Influence: 12.1] [Reference Citation Analysis]
78 Xu W, Wang NR, Wang HF, Feng Q, Deng J, Gong ZQ, Sun J, Lou XL, Yu XF, Zhou L, Hu JP, Huang XF, Qi XQ, Deng YJ, Gong R, Guo Y, Wang MM, Xiao JC, Deng H. Analysis of epithelial-mesenchymal transition markers in the histogenesis of hepatic progenitor cell in HBV-related liver diseases. Diagn Pathol 2016;11:136. [PMID: 27881141 DOI: 10.1186/s13000-016-0587-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
79 Chen IC, Chiang WF, Huang HH, Chen PF, Shen YY, Chiang HC. Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol Cancer 2014;13:254. [PMID: 25424420 DOI: 10.1186/1476-4598-13-254] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 7.4] [Reference Citation Analysis]
80 Kumar-Singh A, Parniewska MM, Giotopoulou N, Javadi J, Sun W, Szatmári T, Dobra K, Hjerpe A, Fuxe J. Nuclear Syndecan-1 Regulates Epithelial-Mesenchymal Plasticity in Tumor Cells. Biology (Basel) 2021;10:521. [PMID: 34208075 DOI: 10.3390/biology10060521] [Reference Citation Analysis]
81 Lamouille S, Derynck R. Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial-mesenchymal transition. Cells Tissues Organs. 2011;193:8-22. [PMID: 21041997 DOI: 10.1159/000320172] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 5.0] [Reference Citation Analysis]
82 Xian S, Zeng Z. Signalling pathways implicated in the pathogenesis of rheumatic heart disease (Review). Exp Ther Med 2021;21:76. [PMID: 33365076 DOI: 10.3892/etm.2020.9508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Kang GY, Pyun BJ, Seo HR, Jin YB, Lee HJ, Lee YJ, Lee YS. Inhibition of Snail1-DNA-PKcs protein-protein interface sensitizes cancer cells and inhibits tumor metastasis. J Biol Chem 2013;288:32506-16. [PMID: 24085291 DOI: 10.1074/jbc.M113.479840] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
84 Wang D, Dai C, Li Y, Liu Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int. 2011;80:1159-1169. [PMID: 21832980 DOI: 10.1038/ki.2011.255] [Cited by in Crossref: 99] [Cited by in F6Publishing: 98] [Article Influence: 9.0] [Reference Citation Analysis]
85 Hata A, Chen YG. TGF-β Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol 2016;8:a022061. [PMID: 27449815 DOI: 10.1101/cshperspect.a022061] [Cited by in Crossref: 255] [Cited by in F6Publishing: 263] [Article Influence: 42.5] [Reference Citation Analysis]
86 Feng S, Liu W, Bai X, Pan W, Jia Z, Zhang S, Zhu Y, Tan W. LncRNA-CTS promotes metastasis and epithelial-to-mesenchymal transition through regulating miR-505/ZEB2 axis in cervical cancer. Cancer Letters 2019;465:105-17. [DOI: 10.1016/j.canlet.2019.09.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
87 Oh E, Kim JY, Cho Y, An H, Lee N, Jo H, Ban C, Seo JH. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis. Biochim Biophys Acta 2016;1863:1071-81. [PMID: 26975580 DOI: 10.1016/j.bbamcr.2016.03.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
88 Wang Y, Zhou BP. Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer. 2011;30:603-611. [PMID: 21880181 DOI: 10.5732/cjc.011.10226] [Cited by in Crossref: 105] [Cited by in F6Publishing: 112] [Article Influence: 10.5] [Reference Citation Analysis]
89 Lacher MD, Shiina M, Chang P, Keller D, Tiirikainen MI, Korn WM. ZEB1 limits adenoviral infectability by transcriptionally repressing the coxsackie virus and adenovirus receptor. Mol Cancer 2011;10:91. [PMID: 21791114 DOI: 10.1186/1476-4598-10-91] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
90 Liu M, Qu Y, Teng X, Xing Y, Li D, Li C, Cai L. PADI4‑mediated epithelial‑mesenchymal transition in lung cancer cells. Mol Med Rep 2019;19:3087-94. [PMID: 30816464 DOI: 10.3892/mmr.2019.9968] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
91 Chen X, Lingala S, Khoobyari S, Nolta J, Zern MA, Wu J. Epithelial mesenchymal transition and hedgehog signaling activation are associated with chemoresistance and invasion of hepatoma subpopulations. J Hepatol. 2011;55:838-845. [PMID: 21334406 DOI: 10.1016/j.jhep.2010.12.043] [Cited by in Crossref: 126] [Cited by in F6Publishing: 119] [Article Influence: 11.5] [Reference Citation Analysis]
92 Nguyen N, Fernando SD, Biette KA, Hammer JA, Capocelli KE, Kitzenberg DA, Glover LE, Colgan SP, Furuta GT, Masterson JC. TGF-β1 alters esophageal epithelial barrier function by attenuation of claudin-7 in eosinophilic esophagitis. Mucosal Immunol 2018;11:415-26. [PMID: 28832026 DOI: 10.1038/mi.2017.72] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
93 Dhillon AS, Tulchinsky E. FRA-1 as a driver of tumour heterogeneity: a nexus between oncogenes and embryonic signalling pathways in cancer. Oncogene 2015;34:4421-8. [PMID: 25381818 DOI: 10.1038/onc.2014.374] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.9] [Reference Citation Analysis]
94 Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019;20:E2767. [PMID: 31195692 DOI: 10.3390/ijms20112767] [Cited by in Crossref: 180] [Cited by in F6Publishing: 190] [Article Influence: 60.0] [Reference Citation Analysis]
95 Raman D, Foo CH, Clement MV, Pervaiz S. Breast Cancer: A Molecular and Redox Snapshot. Antioxid Redox Signal 2016;25:337-70. [PMID: 27116998 DOI: 10.1089/ars.2015.6546] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
96 Wu J, Ru NY, Zhang Y, Li Y, Wei D, Ren Z, Huang XF, Chen ZN, Bian H. HAb18G/CD147 promotes epithelial-mesenchymal transition through TGF-β signaling and is transcriptionally regulated by Slug. Oncogene 2011;30:4410-27. [PMID: 21532623 DOI: 10.1038/onc.2011.149] [Cited by in Crossref: 112] [Cited by in F6Publishing: 109] [Article Influence: 10.2] [Reference Citation Analysis]
97 Deng G, Chen L, Zhang Y, Fan S, Li W, Lu J, Chen X. Fucosyltransferase 2 induced epithelial-mesenchymal transition via TGF-β/Smad signaling pathway in lung adenocarcinaoma. Exp Cell Res 2018;370:613-22. [PMID: 30031128 DOI: 10.1016/j.yexcr.2018.07.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
98 Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, Kapaettu S, Radhakrishnan R. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. Jpn Dent Sci Rev 2020;56:97-108. [PMID: 32874377 DOI: 10.1016/j.jdsr.2020.07.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
99 Zhu S, Zhang J, Xu F, Xu E, Ruan W, Ma Y, Huang Q, Lai M. IGFBP-rP1 suppresses epithelial-mesenchymal transition and metastasis in colorectal cancer. Cell Death Dis 2015;6:e1695. [PMID: 25789970 DOI: 10.1038/cddis.2015.59] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
100 Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178-196. [PMID: 24556840 DOI: 10.1038/nrm3758] [Cited by in Crossref: 3878] [Cited by in F6Publishing: 3852] [Article Influence: 484.8] [Reference Citation Analysis]
101 Zhang J, Zhang X, Li Z, Wang Q, Shi Y, Jiang X, Sun X. The miR-124-3p/Neuropilin-1 Axis Contributes to the Proliferation and Metastasis of Triple-Negative Breast Cancer Cells and Co-Activates the TGF-β Pathway. Front Oncol 2021;11:654672. [PMID: 33912463 DOI: 10.3389/fonc.2021.654672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Dhasarathy A, Phadke D, Mav D, Shah RR, Wade PA. The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer. PLoS One. 2011;6:e26514. [PMID: 22028892 DOI: 10.1371/journal.pone.0026514] [Cited by in Crossref: 98] [Cited by in F6Publishing: 102] [Article Influence: 8.9] [Reference Citation Analysis]
103 Yang Z, Huang WX, Wang S, Yao JB, Da M. Expression and clinical significance of paired- related homeobox 1 and Smad2 in gastric cancer. Eur J Cancer Prev 2021;30:154-60. [PMID: 32868636 DOI: 10.1097/CEJ.0000000000000619] [Reference Citation Analysis]
104 Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G, Cao D. Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: an update. Cell Tissue Res 2012;347:73-84. [PMID: 21845401 DOI: 10.1007/s00441-011-1225-3] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.2] [Reference Citation Analysis]
105 Hill CS. Transcriptional Control by the SMADs. Cold Spring Harb Perspect Biol 2016;8:a022079. [PMID: 27449814 DOI: 10.1101/cshperspect.a022079] [Cited by in Crossref: 148] [Cited by in F6Publishing: 134] [Article Influence: 24.7] [Reference Citation Analysis]
106 Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption. Alcohol Clin Exp Res 2014;38:344-53. [PMID: 24033729 DOI: 10.1111/acer.12234] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
107 Liao CJ, Hsieh CH, Chiu TK, Zhu YX, Wang HM, Hung FC, Chou WP, Wu MH. An Optically Induced Dielectrophoresis (ODEP)-Based Microfluidic System for the Isolation of High-Purity CD45neg/EpCAMneg Cells from the Blood Samples of Cancer Patients-Demonstration and Initial Exploration of the Clinical Significance of These Cells. Micromachines (Basel) 2018;9:E563. [PMID: 30715062 DOI: 10.3390/mi9110563] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
108 Shih KW, Chen WC, Chang CH, Tai TE, Wu JC, Huang AC, Liu MC. Non-Muscular Invasive Bladder Cancer: Re-envisioning Therapeutic Journey from Traditional to Regenerative Interventions. Aging Dis 2021;12:868-85. [PMID: 34094648 DOI: 10.14336/AD.2020.1109] [Reference Citation Analysis]
109 Zhang Z, Wuethrich A, Wang J, Korbie D, Lin LL, Trau M. Dynamic Monitoring of EMT in CTCs as an Indicator of Cancer Metastasis. Anal Chem 2021;93:16787-95. [PMID: 34889595 DOI: 10.1021/acs.analchem.1c03167] [Reference Citation Analysis]
110 Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med 2016;20:1761-9. [PMID: 27027258 DOI: 10.1111/jcmm.12851] [Cited by in Crossref: 35] [Cited by in F6Publishing: 45] [Article Influence: 5.8] [Reference Citation Analysis]
111 Su X, Liu K, Xie Y, Zhang M, Wu X, Zhang Y, Wang J. Mushroom Inonotus sanghuang alleviates experimental pulmonary fibrosis: Implications for therapy of pulmonary fibrosis. Biomed Pharmacother 2021;133:110919. [PMID: 33202282 DOI: 10.1016/j.biopha.2020.110919] [Reference Citation Analysis]
112 Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021;13:5086. [PMID: 34680235 DOI: 10.3390/cancers13205086] [Reference Citation Analysis]
113 Ma H, Gao L, Li S, Qin J, Chen L, Liu X, Xu P, Wang F, Xiao H, Zhou S. CCR7 enhances TGF-β1-induced epithelial-mesenchymal transition and is associated with lymph node metastasis and poor overall survival in gastric cancer. Oncotarget. 2015;6:24348-24360. [PMID: 26176983 DOI: 10.18632/oncotarget.4484] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
114 Park SY, Kim MJ, Park SA, Kim JS, Min KN, Kim DK, Lim W, Nam JS, Sheen YY. Combinatorial TGF-β attenuation with paclitaxel inhibits the epithelial-to-mesenchymal transition and breast cancer stem-like cells. Oncotarget 2015;6:37526-43. [PMID: 26462028 DOI: 10.18632/oncotarget.6063] [Cited by in Crossref: 29] [Cited by in F6Publishing: 36] [Article Influence: 4.8] [Reference Citation Analysis]
115 Reyes-Reyes EM, Aispuro I, Tavera-Garcia MA, Field M, Moore S, Ramos I, Ramos KS. LINE-1 couples EMT programming with acquisition of oncogenic phenotypes in human bronchial epithelial cells. Oncotarget 2017;8:103828-42. [PMID: 29262603 DOI: 10.18632/oncotarget.21953] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
116 Risolino M, Mandia N, Iavarone F, Dardaei L, Longobardi E, Fernandez S, Talotta F, Bianchi F, Pisati F, Spaggiari L, Harter PN, Mittelbronn M, Schulte D, Incoronato M, Di Fiore PP, Blasi F, Verde P. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-β-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc Natl Acad Sci U S A 2014;111:E3775-84. [PMID: 25157139 DOI: 10.1073/pnas.1407074111] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 7.5] [Reference Citation Analysis]
117 Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, Zhang HZ, Wu J, Liu L, Song J, Guan H, Cai J, Zhu X, Li J, Li M. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin Invest 2017;127:1725-40. [PMID: 28375158 DOI: 10.1172/JCI90439] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 6.6] [Reference Citation Analysis]
118 Strbkova L, Carson BB, Vincent T, Vesely P, Chmelik R. Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition. J Biomed Opt 2020;25. [PMID: 32812412 DOI: 10.1117/1.JBO.25.8.086502] [Reference Citation Analysis]
119 Li L, Ji Y, Fan J, Li F, Li Y, Wu M, Cheng H, Xu C. Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF-β signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2019;392:593-603. [PMID: 30729271 DOI: 10.1007/s00210-019-01614-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
120 Zhao C, Zhao F, Feng H, Xu S, Qin G. MicroRNA-92b inhibits epithelial-mesenchymal transition-induced migration and invasion by targeting Smad3 in nasopharyngeal cancer. Oncotarget 2017;8:91603-13. [PMID: 29207670 DOI: 10.18632/oncotarget.21342] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
121 Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018;6:2. [PMID: 29423331 DOI: 10.1038/s41413-017-0005-4] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 22.5] [Reference Citation Analysis]
122 Kurozumi S, Yamaguchi Y, Kurosumi M, Ohira M, Matsumoto H, Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2017;62:15-24. [PMID: 27439682 DOI: 10.1038/jhg.2016.89] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 12.8] [Reference Citation Analysis]
123 Lachapelle P, Li M, Douglass J, Stewart A. Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol Ther 2018;187:98-113. [PMID: 29462659 DOI: 10.1016/j.pharmthera.2018.02.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
124 Singh AB, Dhawan P. Claudins and cancer: Fall of the soldiers entrusted to protect the gate and keep the barrier intact. Semin Cell Dev Biol. 2015;42:58-65. [PMID: 26025580 DOI: 10.1016/j.semcdb.2015.05.001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 6.1] [Reference Citation Analysis]
125 Liang C, Xu J, Meng Q, Zhang B, Liu J, Hua J, Zhang Y, Shi S, Yu X. TGFB1-induced autophagy affects the pattern of pancreatic cancer progression in distinct ways depending on SMAD4 status. Autophagy 2020;16:486-500. [PMID: 31177911 DOI: 10.1080/15548627.2019.1628540] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
126 Pu B, Zhang X, Yan T, Li Y, Liu B, Jian Z, Mahgoub OK, Gu L, Xiong X, Zou N. MICAL2 Promotes Proliferation and Migration of Glioblastoma Cells Through TGF-β/p-Smad2/EMT-Like Signaling Pathway. Front Oncol 2021;11:735180. [PMID: 34868922 DOI: 10.3389/fonc.2021.735180] [Reference Citation Analysis]
127 Hou W, Hu S, Li C, Ma H, Wang Q, Meng G, Guo T, Zhang J. Cigarette Smoke Induced Lung Barrier Dysfunction, EMT, and Tissue Remodeling: A Possible Link between COPD and Lung Cancer. Biomed Res Int 2019;2019:2025636. [PMID: 31341890 DOI: 10.1155/2019/2025636] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
128 Semina SE, Scherbakov AM, Vnukova AA, Bagrov DV, Evtushenko EG, Safronova VM, Golovina DA, Lyubchenko LN, Gudkova MV, Krasil'nikov MA. Exosome-Mediated Transfer of Cancer Cell Resistance to Antiestrogen Drugs. Molecules 2018;23:E829. [PMID: 29617321 DOI: 10.3390/molecules23040829] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
129 Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta. 2012;1826:272-296. [PMID: 22579961 DOI: 10.1016/j.bbcan.2012.04.008] [Cited by in Crossref: 38] [Cited by in F6Publishing: 80] [Article Influence: 3.8] [Reference Citation Analysis]
130 Sharma P, Martis PC, Excoffon KJDA. Adenovirus transduction: More complicated than receptor expression. Virology 2017;502:144-51. [PMID: 28049062 DOI: 10.1016/j.virol.2016.12.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
131 Taiyab A, Korol A, Deschamps PA, West-Mays JA. β-Catenin/CBP-Dependent Signaling Regulates TGF-β-Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells. Invest Ophthalmol Vis Sci 2016;57:5736-47. [PMID: 27787561 DOI: 10.1167/iovs.16-20162] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
132 Zhang R, Zhao C, Xiong Z, Zhou X. Pathway bridge based multiobjective optimization approach for lurking pathway prediction. Biomed Res Int 2014;2014:351095. [PMID: 24949437 DOI: 10.1155/2014/351095] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
133 Maseki S, Ijichi K, Tanaka H, Fujii M, Hasegawa Y, Ogawa T, Murakami S, Kondo E, Nakanishi H. Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3β/snail signalling pathway. Br J Cancer. 2012;106:1196-1204. [PMID: 22315058 DOI: 10.1038/bjc.2012.24] [Cited by in Crossref: 83] [Cited by in F6Publishing: 81] [Article Influence: 8.3] [Reference Citation Analysis]
134 Jiang H, Shen J, Ran Z. Epithelial-mesenchymal transition in Crohn's disease. Mucosal Immunol. 2018;11:294-303. [PMID: 29346350 DOI: 10.1038/mi.2017.107] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
135 Khatibi S, Zhu HJ, Wagner J, Tan CW, Manton JH, Burgess AW. Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching. BMC Syst Biol 2017;11:48. [PMID: 28407804 DOI: 10.1186/s12918-017-0421-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
136 Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021;22:9203. [PMID: 34502112 DOI: 10.3390/ijms22179203] [Reference Citation Analysis]
137 Vélez-Pérez A, Huang RS, Everett JM, Guo S, Buryanek J, Karni RJ, Brown RE. Carcinosarcoma of the parotid: investigating its biology with morphoproteomics. Int J Surg Pathol 2015;23:116-21. [PMID: 25515562 DOI: 10.1177/1066896914562278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
138 Zheng L, Zhao Z, Rong L, Xue L, Song Y. RASSF6-TRIM16 axis promotes cell proliferation, migration and invasion in esophageal squamous cell carcinoma. J Genet Genomics 2019;46:477-88. [PMID: 31812473 DOI: 10.1016/j.jgg.2019.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
139 Zapparoli E, Briata P, Rossi M, Brondolo L, Bucci G, Gherzi R. Comprehensive multi-omics analysis uncovers a group of TGF-β-regulated genes among lncRNA EPR direct transcriptional targets. Nucleic Acids Res 2020;48:9053-66. [PMID: 32756918 DOI: 10.1093/nar/gkaa628] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
140 Ohi R. Kip3-ing kinetochores clustered. Cell Cycle 2010;9:2497. [PMID: 20647749 DOI: 10.4161/cc.9.13.12274] [Reference Citation Analysis]
141 Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 2016;365:495-506. [PMID: 27461257 DOI: 10.1007/s00441-016-2464-0] [Cited by in Crossref: 215] [Cited by in F6Publishing: 219] [Article Influence: 35.8] [Reference Citation Analysis]
142 Bévant K, Desoteux M, Abdel Wahab AHA, Abdel Wahab SA, Metwally AM, Coulouarn C. DNA Methylation of TGFβ Target Genes: Epigenetic Control of TGFβ Functional Duality in Liver Cancer. Cells 2021;10:2207. [PMID: 34571856 DOI: 10.3390/cells10092207] [Reference Citation Analysis]
143 Wang BC, Tao QS, Ji ZL. Role of epithelial-mesenchymal transition in the development of intestinal fibrosis in Crohn's disease. Shijie Huaren Xiaohua Zazhi 2011; 19(11): 1160-1164 [DOI: 10.11569/wcjd.v19.i11.1160] [Reference Citation Analysis]
144 Ju SY, Chiou SH, Su Y. Maintenance of the stemness in CD44(+) HCT-15 and HCT-116 human colon cancer cells requires miR-203 suppression. Stem Cell Res. 2014;12:86-100. [PMID: 24145190 DOI: 10.1016/j.scr.2013.09.011] [Cited by in Crossref: 59] [Cited by in F6Publishing: 65] [Article Influence: 6.6] [Reference Citation Analysis]
145 Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J Transl Med. 2011;9:97. [PMID: 21702981 DOI: 10.1186/1479-5876-9-97] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 6.2] [Reference Citation Analysis]
146 Savary K, Moustakas A. Role of TGF-β signaling in EMT, cancer progression and metastasis. Drug Discovery Today: Disease Models 2011;8:121-6. [DOI: 10.1016/j.ddmod.2011.07.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
147 Ioannou M, Kouvaras E, Papamichali R, Samara M, Chiotoglou I, Koukoulis G. Smad4 and epithelial-mesenchymal transition proteins in colorectal carcinoma: an immunohistochemical study. J Mol Histol 2018;49:235-44. [PMID: 29468299 DOI: 10.1007/s10735-018-9763-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
148 Barriere G, Fici P, Gallerani G, Fabbri F, Rigaud M. Epithelial Mesenchymal Transition: a double-edged sword. Clin Transl Med 2015;4:14. [PMID: 25932287 DOI: 10.1186/s40169-015-0055-4] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 9.4] [Reference Citation Analysis]
149 Xue J, Lin X, Chiu WT, Chen YH, Yu G, Liu M, Feng XH, Sawaya R, Medema RH, Hung MC, Huang S. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest 2014;124:564-79. [PMID: 24382352 DOI: 10.1172/JCI71104] [Cited by in Crossref: 104] [Cited by in F6Publishing: 87] [Article Influence: 13.0] [Reference Citation Analysis]
150 Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT, Zhao J. MiR-145 and miR-203 represses TGF-β-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells. Lung Cancer 2016;97:87-94. [PMID: 27237033 DOI: 10.1016/j.lungcan.2016.04.017] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 9.2] [Reference Citation Analysis]
151 Yastrebova MA, Khamidullina AI, Tatarskiy VV, Scherbakov AM. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Naturae 2021;13:76-90. [PMID: 33959388 DOI: 10.32607/actanaturae.11062] [Reference Citation Analysis]
152 Yoshida K, Matsuzaki K, Murata M, Yamaguchi T, Suwa K, Okazaki K. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers (Basel) 2018;10:E183. [PMID: 29874844 DOI: 10.3390/cancers10060183] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
153 Sravani S, Saifi MA, Godugu C. Riociguat ameliorates kidney injury and fibrosis in an animal model. Biochem Biophys Res Commun 2020;530:706-12. [PMID: 32768189 DOI: 10.1016/j.bbrc.2020.07.128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
154 Alkatout I, Hübner F, Wenners A, Hedderich J, Wiedermann M, Sánchez C, Röcken C, Mathiak M, Maass N, Klapper W. In situ localization of tumor cells associated with the epithelial-mesenchymal transition marker Snail and the prognostic impact of lymphocytes in the tumor microenvironment in invasive ductal breast cancer. Exp Mol Pathol 2017;102:268-75. [PMID: 28232080 DOI: 10.1016/j.yexmp.2017.02.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
155 Ganguly SS, Li X, Miranti CK. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front Oncol 2014;4:364. [PMID: 25566502 DOI: 10.3389/fonc.2014.00364] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
156 Zhou W, Pan H, Xia T, Xue J, Cheng L, Fan P, Zhang Y, Zhu W, Xue Y, Liu X, Ding Q, Liu Y, Wang S. Up-regulation of S100A16 expression promotes epithelial-mesenchymal transition via Notch1 pathway in breast cancer. J Biomed Sci 2014;21:97. [PMID: 25287362 DOI: 10.1186/s12929-014-0097-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
157 Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018;145:dev157628. [PMID: 29437830 DOI: 10.1242/dev.157628] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
158 Pierucci-Alves F, Akoyev V, Stewart JC 3rd, Wang LH, Janardhan KS, Schultz BD. Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 2011;85:442-51. [PMID: 21593481 DOI: 10.1095/biolreprod.111.090860] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
159 Al Saleh S, Al Mulla F, Luqmani YA. Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One 2011;6:e20610. [PMID: 21713035 DOI: 10.1371/journal.pone.0020610] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 6.7] [Reference Citation Analysis]
160 Alcaraz A, Mrowiec A, Insausti CL, García-Vizcaíno EM, Ruiz-Canada C, López-Martínez MC, Moraleda JM, Nicolás FJ. Autocrine TGF-β induces epithelial to mesenchymal transition in human amniotic epithelial cells. Cell Transplant 2013;22:1351-67. [PMID: 23031712 DOI: 10.3727/096368912X657387] [Cited by in Crossref: 36] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
161 Ray U, Roy SS, Chowdhury SR. Lysophosphatidic Acid Promotes Epithelial to Mesenchymal Transition in Ovarian Cancer Cells by Repressing SIRT1. Cell Physiol Biochem 2017;41:795-805. [PMID: 28214851 DOI: 10.1159/000458744] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
162 Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D, Borok Z, Frenkel B. Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res 2011;13:R127. [PMID: 22151997 DOI: 10.1186/bcr3073] [Cited by in Crossref: 88] [Cited by in F6Publishing: 80] [Article Influence: 8.0] [Reference Citation Analysis]
163 Cruz-solbes AS, Youker K. Epithelial to Mesenchymal Transition (EMT) and Endothelial to Mesenchymal Transition (EndMT): Role and Implications in Kidney Fibrosis. In: Miller RK, editor. Kidney Development and Disease. Cham: Springer International Publishing; 2017. pp. 345-72. [DOI: 10.1007/978-3-319-51436-9_13] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 10.2] [Reference Citation Analysis]
164 Termén S, Tan E, Heldin C, Moustakas A. p53 regulates epithelial-mesenchymal transition induced by transforming growth factor β. J Cell Physiol 2013;228:801-13. [DOI: 10.1002/jcp.24229] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
165 Katsuno Y, Lamouille S, Derynck R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76-84. [PMID: 23197193 DOI: 10.1097/cco.0b013e32835b6371] [Cited by in Crossref: 479] [Cited by in F6Publishing: 343] [Article Influence: 53.2] [Reference Citation Analysis]
166 Tan X, Tong L, Li L, Xu J, Xie S, Ji L, Fu J, Liu Q, Shen S, Liu Y, Xiao Y, Gao F, Moses RE, Bardeesy N, Wang Y, Zhang J, Tang L, Li L, Wong KK, Song D, Yang X, Liu J, Li X. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nat Commun 2021;12:4853. [PMID: 34381046 DOI: 10.1038/s41467-021-24898-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
167 Gudey SK, Sundar R, Heldin CH, Bergh A, Landström M. Pro-invasive properties of Snail1 are regulated by sumoylation in response to TGFβ stimulation in cancer. Oncotarget 2017;8:97703-26. [PMID: 29228645 DOI: 10.18632/oncotarget.20097] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
168 Ber S, Lee C, Voiculescu O, Surani MA. Dedifferentiation of foetal CNS stem cells to mesendoderm-like cells through an EMT process. PLoS One 2012;7:e30759. [PMID: 22276221 DOI: 10.1371/journal.pone.0030759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
169 Stadler SC, Vincent CT, Fedorov VD, Patsialou A, Cherrington BD, Wakshlag JJ, Mohanan S, Zee BM, Zhang X, Garcia BA, Condeelis JS, Brown AM, Coonrod SA, Allis CD. Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells. Proc Natl Acad Sci U S A 2013;110:11851-6. [PMID: 23818587 DOI: 10.1073/pnas.1308362110] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 7.7] [Reference Citation Analysis]
170 Feng J, Xu L, Ni S, Gu J, Zhu H, Wang H, Zhang S, Zhang W, Huang J. Involvement of FoxQ1 in NSCLC through regulating EMT and increasing chemosensitivity. Oncotarget 2014;5:9689-702. [PMID: 25356753 DOI: 10.18632/oncotarget.2103] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.7] [Reference Citation Analysis]
171 Zhao M, Mishra L, Deng CX. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 2018;14:111-23. [PMID: 29483830 DOI: 10.7150/ijbs.23230] [Cited by in Crossref: 151] [Cited by in F6Publishing: 155] [Article Influence: 37.8] [Reference Citation Analysis]
172 Anwer S, Branchard E, Dan Q, Dan A, Szászi K. Tumor necrosis factor-α induces claudin-3 upregulation in kidney tubular epithelial cells through NF-κB and CREB1. Am J Physiol Cell Physiol 2021;320:C495-508. [PMID: 33439776 DOI: 10.1152/ajpcell.00185.2020] [Reference Citation Analysis]
173 Li DM, Zhang J, Li WM, Cui JT, Pan YM, Liu SQ, Xing R, Lu YY. MAWBP and MAWD inhibit proliferation and invasion in gastric cancer. World J Gastroenterol 2013; 19(18): 2781-2792 [PMID: 23687415 DOI: 10.3748/wjg.v19.i18.2781] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
174 Miao Y, Shen Q, Zhang S, Huang H, Meng X, Zheng X, Yao Z, He Z, Lu S, Cai C, Zou F. Calcium-sensing stromal interaction molecule 2 upregulates nuclear factor of activated T cells 1 and transforming growth factor-β signaling to promote breast cancer metastasis. Breast Cancer Res 2019;21:99. [PMID: 31464639 DOI: 10.1186/s13058-019-1185-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
175 Heldin CH, Moustakas A. Role of Smads in TGFβ signaling. Cell Tissue Res. 2012;347:21-36. [PMID: 21643690 DOI: 10.1007/s00441-011-1190-x] [Cited by in Crossref: 216] [Cited by in F6Publishing: 216] [Article Influence: 19.6] [Reference Citation Analysis]
176 Pourrajab F, Babaei Zarch M, BaghiYazdi M, Hekmatimoghaddam S, Zare-Khormizi MR. MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation. Int J Biochem Cell Biol 2014;55:318-28. [PMID: 25150833 DOI: 10.1016/j.biocel.2014.08.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
177 Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, Su WY, Wang JL, Cui Y, Wang ZH. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. J Biol Chem. 2012;287:5819-5832. [PMID: 22205702 DOI: 10.1074/jbc.m111.295964] [Cited by in Crossref: 188] [Cited by in F6Publishing: 115] [Article Influence: 17.1] [Reference Citation Analysis]
178 Jiang L, He D, Yang D, Chen Z, Pan Q, Mao A, Cai Y, Li X, Xing H, Shi M, Chen Y, Bruce IC, Wang T, Jin L, Qi X, Hua D, Jin J, Ma X. MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett 2014;588:2009-15. [PMID: 24786471 DOI: 10.1016/j.febslet.2014.04.024] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 9.0] [Reference Citation Analysis]
179 Ma L, Zhai B, Zhu H, Li W, Jiang W, Lei L, Zhang S, Qiao H, Jiang X, Sun X. The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell Int 2019;19:248. [PMID: 31572065 DOI: 10.1186/s12935-019-0963-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
180 Chen X, Zhang J, Zhang Z, Li H, Cheng W, Liu J. Cancer stem cells, epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous carcinoma. Hum Pathol 2013;44:2373-84. [PMID: 23850493 DOI: 10.1016/j.humpath.2013.05.001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 5.0] [Reference Citation Analysis]
181 Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal 2011;15:1195-219. [PMID: 21235353 DOI: 10.1089/ars.2010.3542] [Cited by in Crossref: 95] [Cited by in F6Publishing: 91] [Article Influence: 8.6] [Reference Citation Analysis]
182 Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, Mazloom AR, Chen EY, D'Agati V, Xiong H, Ross MJ, Chen N, Ma'ayan A, He JC. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 2012;18:580-8. [PMID: 22406746 DOI: 10.1038/nm.2685] [Cited by in Crossref: 95] [Cited by in F6Publishing: 94] [Article Influence: 9.5] [Reference Citation Analysis]
183 Ahn SM, Cha JY, Kim J, Kim D, Trang HT, Kim YM, Cho YH, Park D, Hong S. Smad3 regulates E-cadherin via miRNA-200 pathway. Oncogene 2012;31:3051-9. [PMID: 22020340 DOI: 10.1038/onc.2011.484] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 6.8] [Reference Citation Analysis]
184 Hsu YL, Chen CY, Lin IP, Tsai EM, Kuo PL, Hou MF. 4-Shogaol, an active constituent of dietary ginger, inhibits metastasis of MDA-MB-231 human breast adenocarcinoma cells by decreasing the repression of NF-κB/Snail on RKIP. J Agric Food Chem. 2012;60:852-861. [PMID: 22224671 DOI: 10.1021/jf2052515] [Cited by in Crossref: 38] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
185 Fuxe J, Karlsson MC. TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol. 2012;22:455-461. [PMID: 22627188 DOI: 10.1016/j.semcancer.2012.05.004] [Cited by in Crossref: 129] [Cited by in F6Publishing: 127] [Article Influence: 12.9] [Reference Citation Analysis]
186 Johansson J, Berg T, Kurzejamska E, Pang MF, Tabor V, Jansson M, Roswall P, Pietras K, Sund M, Religa P, Fuxe J. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013;32:5614-24. [PMID: 23955085 DOI: 10.1038/onc.2013.322] [Cited by in Crossref: 109] [Cited by in F6Publishing: 107] [Article Influence: 12.1] [Reference Citation Analysis]
187 Tsubakihara Y, Moustakas A. Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor β.Int J Mol Sci. 2018;19. [PMID: 30463358 DOI: 10.3390/ijms19113672] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 15.0] [Reference Citation Analysis]
188 Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum 2011;63:2473-83. [PMID: 21425122 DOI: 10.1002/art.30317] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 6.4] [Reference Citation Analysis]
189 Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci. 2012;69:3429-3456. [PMID: 22945800 DOI: 10.1007/s00018-012-1122-2] [Cited by in Crossref: 322] [Cited by in F6Publishing: 313] [Article Influence: 32.2] [Reference Citation Analysis]
190 Sou PW, Delic NC, Halliday GM, Lyons JG. Snail transcription factors in keratinocytes: Enough to make your skin crawl. Int J Biochem Cell Biol 2010;42:1940-4. [PMID: 20833256 DOI: 10.1016/j.biocel.2010.08.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
191 Clarke TB, Francella N, Huegel A, Weiser JN. Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe 2011;9:404-14. [PMID: 21575911 DOI: 10.1016/j.chom.2011.04.012] [Cited by in Crossref: 70] [Cited by in F6Publishing: 63] [Article Influence: 6.4] [Reference Citation Analysis]
192 Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J, Guo D, Lu M, Liu F, Liu J, Ma C, Shi LL, Athiviraham A, He TC, Lee MJ. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016;3:11-40. [PMID: 27077077 DOI: 10.1016/j.gendis.2015.12.004] [Cited by in F6Publishing: 147] [Reference Citation Analysis]
193 Conidi A, van den Berghe V, Leslie K, Stryjewska A, Xue H, Chen YG, Seuntjens E, Huylebroeck D. Four amino acids within a tandem QxVx repeat in a predicted extended α-helix of the Smad-binding domain of Sip1 are necessary for binding to activated Smad proteins. PLoS One 2013;8:e76733. [PMID: 24146916 DOI: 10.1371/journal.pone.0076733] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
194 Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray PA, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012;241:1432-53. [PMID: 22711520 DOI: 10.1002/dvdy.23823] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
195 Bu W, Wang Z, Meng L, Li X, Liu X, Chen Y, Xin Y, Li B, Sun H. Disulfiram inhibits epithelial-mesenchymal transition through TGFβ-ERK-Snail pathway independently of Smad4 to decrease oral squamous cell carcinoma metastasis. Cancer Manag Res 2019;11:3887-98. [PMID: 31118804 DOI: 10.2147/CMAR.S199912] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
196 Rachow S, Zorn-Kruppa M, Ohnemus U, Kirschner N, Vidal-y-Sy S, von den Driesch P, Börnchen C, Eberle J, Mildner M, Vettorazzi E, Rosenthal R, Moll I, Brandner JM. Occludin is involved in adhesion, apoptosis, differentiation and Ca2+-homeostasis of human keratinocytes: implications for tumorigenesis. PLoS One 2013;8:e55116. [PMID: 23390516 DOI: 10.1371/journal.pone.0055116] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 5.9] [Reference Citation Analysis]
197 Katsuno Y, Derynck R. Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021;56:726-46. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
198 Ijaz T, Pazdrak K, Kalita M, Konig R, Choudhary S, Tian B, Boldogh I, Brasier AR. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma. World Allergy Organ J 2014;7:13. [PMID: 24982697 DOI: 10.1186/1939-4551-7-13] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 6.5] [Reference Citation Analysis]
199 Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, Gao J, Zhao Z, Liu C. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 2014;5:10803-15. [PMID: 25301732 DOI: 10.18632/oncotarget.2506] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 12.3] [Reference Citation Analysis]
200 Filipova A, Seifrtova M, Mokry J, Dvorak J, Rezacova M, Filip S, Diaz-garcia D. Breast Cancer and Cancer Stem Cells: A Mini-Review. Tumori Journal 2018;100:363-9. [DOI: 10.1177/1636.17886] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
201 Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021;40:e108647. [PMID: 34459003 DOI: 10.15252/embj.2021108647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
202 Hirakawa M, Takimoto R, Tamura F, Yoshida M, Ono M, Murase K, Sato Y, Osuga T, Sato T, Iyama S, Miyanishi K, Takada K, Hayashi T, Kobune M, Kato J. Fucosylated TGF-β receptors transduces a signal for epithelial-mesenchymal transition in colorectal cancer cells. Br J Cancer 2014;110:156-63. [PMID: 24253505 DOI: 10.1038/bjc.2013.699] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 4.9] [Reference Citation Analysis]
203 Cai F, Xu H, Zha D, Wang X, Li P, Yu S, Yao Y, Chang X, Chen J, Lu Y, Hua ZC, Zhuang H. AK2 Promotes the Migration and Invasion of Lung Adenocarcinoma by Activating TGF-β/Smad Pathway In vitro and In vivo. Front Pharmacol 2021;12:714365. [PMID: 34630090 DOI: 10.3389/fphar.2021.714365] [Reference Citation Analysis]
204 Johnson JR, Roos A, Berg T, Nord M, Fuxe J. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways. PLoS One 2011;6:e16175. [PMID: 21283768 DOI: 10.1371/journal.pone.0016175] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 6.4] [Reference Citation Analysis]
205 Leopold PL, Vincent J, Wang H. A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012;22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 5.0] [Reference Citation Analysis]
206 Sakurai F, Narii N, Tomita K, Togo S, Takahashi K, Machitani M, Tachibana M, Ouchi M, Katagiri N, Urata Y, Fujiwara T, Mizuguchi H. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus. Mol Ther Methods Clin Dev 2016;3:16001. [PMID: 26966699 DOI: 10.1038/mtm.2016.1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
207 Shaykhiev R, Otaki F, Bonsu P, Dang DT, Teater M, Strulovici-Barel Y, Salit J, Harvey BG, Crystal RG. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci. 2011;68:877-892. [PMID: 20820852 DOI: 10.1007/s00018-010-0500-x] [Cited by in Crossref: 131] [Cited by in F6Publishing: 126] [Article Influence: 10.9] [Reference Citation Analysis]
208 Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, Huang K, Qiu Z. SMAD4 and its role in pancreatic cancer. Tumour Biol. 2015;36:111-119. [PMID: 25464861 DOI: 10.1007/s13277-014-2883-z] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 5.5] [Reference Citation Analysis]
209 Gao T, Li J, Lu Y, Zhang C, Li Q, Mao J, Li L. The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomedicine & Pharmacotherapy 2016;80:393-405. [DOI: 10.1016/j.biopha.2016.02.044] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 6.7] [Reference Citation Analysis]
210 Zhang S, Miao Y, Zheng X, Gong Y, Zhang J, Zou F, Cai C. STIM1 and STIM2 differently regulate endogenous Ca2+ entry and promote TGF-β-induced EMT in breast cancer cells. Biochem Biophys Res Commun 2017;488:74-80. [PMID: 28479254 DOI: 10.1016/j.bbrc.2017.05.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
211 Ducker C, Shaw PE. USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int J Biochem Cell Biol 2021;130:105886. [PMID: 33227393 DOI: 10.1016/j.biocel.2020.105886] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
212 Rivero S, Ceballos-Chávez M, Bhattacharya SS, Reyes JC. HMG20A is required for SNAI1-mediated epithelial to mesenchymal transition. Oncogene 2015;34:5264-76. [PMID: 25639869 DOI: 10.1038/onc.2014.446] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
213 Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021;18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
214 Singha PK, Pandeswara S, Geng H, Lan R, Venkatachalam MA, Dobi A, Srivastava S, Saikumar P. Increased Smad3 and reduced Smad2 levels mediate the functional switch of TGF-β from growth suppressor to growth and metastasis promoter through TMEPAI/PMEPA1 in triple negative breast cancer. Genes Cancer 2019;10:134-49. [PMID: 31798766 DOI: 10.18632/genesandcancer.194] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
215 Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014;7:re8. [PMID: 25249658 DOI: 10.1126/scisignal.2005189] [Cited by in Crossref: 709] [Cited by in F6Publishing: 743] [Article Influence: 88.6] [Reference Citation Analysis]
216 Asli NS, Harvey RP. Epithelial to mesenchymal transition as a portal to stem cell characters embedded in gene networks. Bioessays 2013;35:191-200. [DOI: 10.1002/bies.201200089] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
217 Naber HP, Drabsch Y, Snaar-Jagalska BE, ten Dijke P, van Laar T. Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun. 2013;435:58-63. [PMID: 23618854 DOI: 10.1016/j.bbrc.2013.04.037] [Cited by in Crossref: 88] [Cited by in F6Publishing: 87] [Article Influence: 9.8] [Reference Citation Analysis]
218 Gonzalez RS, Huh WJ, Cates JM, Washington K, Beauchamp RD, Coffey RJ, Shi C. Micropapillary colorectal carcinoma: clinical, pathological and molecular properties, including evidence of epithelial-mesenchymal transition. Histopathology 2017;70:223-31. [PMID: 27560620 DOI: 10.1111/his.13068] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
219 de Herreros AG, Peiró S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia. 2010;15:135-147. [PMID: 20455012 DOI: 10.1007/s10911-010-9179-8] [Cited by in Crossref: 164] [Cited by in F6Publishing: 161] [Article Influence: 13.7] [Reference Citation Analysis]
220 Sorbye SW, Kilvaer TK, Valkov A, Donnem T, Smeland E, Al-Shibli K, Bremnes RM, Busund LT. Prognostic impact of CD57, CD68, M-CSF, CSF-1R, Ki67 and TGF-beta in soft tissue sarcomas. BMC Clin Pathol 2012;12:7. [PMID: 22554285 DOI: 10.1186/1472-6890-12-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
221 Plygawko AT, Kan S, Campbell K. Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis. Philos Trans R Soc Lond B Biol Sci 2020;375:20200087. [PMID: 32829692 DOI: 10.1098/rstb.2020.0087] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
222 Wang W, Ying Y, Xie H, Li J, Ma X, He L, Xu M, Chen S, Shen H, Zheng X, Liu B, Wang X, Xie L. miR-665 inhibits epithelial-to-mesenchymal transition in bladder cancer via the SMAD3/SNAIL axis. Cell Cycle 2021;20:1242-52. [PMID: 34196584 DOI: 10.1080/15384101.2021.1929677] [Reference Citation Analysis]
223 Wu Y, Tran T, Dwabe S, Sarkissyan M, Kim J, Nava M, Clayton S, Pietras R, Farias-Eisner R, Vadgama JV. A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res Treat 2017;163:449-60. [PMID: 28337662 DOI: 10.1007/s10549-017-4211-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
224 Xiao Q, Gan Y, Li Y, Fan L, Liu J, Lu P, Liu J, Chen A, Shu G, Yin G. MEF2A transcriptionally upregulates the expression of ZEB2 and CTNNB1 in colorectal cancer to promote tumor progression. Oncogene 2021;40:3364-77. [PMID: 33863999 DOI: 10.1038/s41388-021-01774-w] [Reference Citation Analysis]
225 Chang C, Yang X, Pursell B, Mercurio AM. Id2 complexes with the SNAG domain of Snai1 inhibiting Snai1-mediated repression of integrin β4. Mol Cell Biol 2013;33:3795-804. [PMID: 23878399 DOI: 10.1128/MCB.00434-13] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
226 Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol 2017;11:781-91. [PMID: 28590032 DOI: 10.1002/1878-0261.12092] [Cited by in Crossref: 62] [Cited by in F6Publishing: 54] [Article Influence: 12.4] [Reference Citation Analysis]
227 Wei Z, Shan Z, Shaikh ZA. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail. Toxicol Appl Pharmacol 2018;344:46-55. [PMID: 29501589 DOI: 10.1016/j.taap.2018.02.022] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
228 Zielinska HA, Bahl A, Holly JM, Perks CM. Epithelial-to-mesenchymal transition in breast cancer: a role for insulin-like growth factor I and insulin-like growth factor-binding protein 3? Breast Cancer (Dove Med Press) 2015;7:9-19. [PMID: 25632238 DOI: 10.2147/BCTT.S43932] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 0.7] [Reference Citation Analysis]
229 Du X, Zhang L, Li X, Pan Z, Liu H, Li Q. TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death Dis 2016;7:e2476. [PMID: 27882941 DOI: 10.1038/cddis.2016.379] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 10.0] [Reference Citation Analysis]
230 Danielsson K, Boldrup L, Rentoft M, Coates PJ, Ebrahimi M, Nylander E, Wahlin YB, Nylander K. Autoantibodies and decreased expression of the transcription factor ELF-3 together with increased chemokine pathways support an autoimmune phenotype and altered differentiation in lichen planus located in oral mucosa. J Eur Acad Dermatol Venereol 2013;27:1410-6. [PMID: 23134363 DOI: 10.1111/jdv.12027] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
231 Ni T, Li XY, Lu N, An T, Liu ZP, Fu R, Lv WC, Zhang YW, Xu XJ, Grant Rowe R, Lin YS, Scherer A, Feinberg T, Zheng XQ, Chen BA, Liu XS, Guo QL, Wu ZQ, Weiss SJ. Snail1-dependent p53 repression regulates expansion and activity of tumour-initiating cells in breast cancer. Nat Cell Biol 2016;18:1221-32. [PMID: 27749822 DOI: 10.1038/ncb3425] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 9.2] [Reference Citation Analysis]
232 Kocic J, Bugarski D, Santibanez JF. SMAD3 is essential for transforming growth factor-β1-induced urokinase type plasminogen activator expression and migration in transformed keratinocytes. Eur J Cancer 2012;48:1550-7. [PMID: 21798735 DOI: 10.1016/j.ejca.2011.06.043] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
233 Lui GY, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR. Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget 2015;6:18748-79. [PMID: 26125440 DOI: 10.18632/oncotarget.4349] [Cited by in Crossref: 96] [Cited by in F6Publishing: 90] [Article Influence: 16.0] [Reference Citation Analysis]
234 Thomas AL, Lind H, Hong A, Dokic D, Oppat K, Rosenthal E, Guo A, Thomas A, Hamden R, Jeruss JS. Inhibition of CDK-mediated Smad3 phosphorylation reduces the Pin1-Smad3 interaction and aggressiveness of triple negative breast cancer cells. Cell Cycle 2017;16:1453-64. [PMID: 28678584 DOI: 10.1080/15384101.2017.1338988] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
235 Jiang K, Zhao T, Shen M, Zhang F, Duan S, Lei Z, Chen Y. MiR-940 inhibits TGF-β-induced epithelial-mesenchymal transition and cell invasion by targeting Snail in non-small cell lung cancer. J Cancer 2019;10:2735-44. [PMID: 31258781 DOI: 10.7150/jca.31800] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
236 Kawata M, Koinuma D, Ogami T, Umezawa K, Iwata C, Watabe T, Miyazono K. TGF-β-induced epithelial-mesenchymal transition of A549 lung adenocarcinoma cells is enhanced by pro-inflammatory cytokines derived from RAW 264.7 macrophage cells. J Biochem 2012;151:205-16. [PMID: 22161143 DOI: 10.1093/jb/mvr136] [Cited by in Crossref: 82] [Cited by in F6Publishing: 82] [Article Influence: 7.5] [Reference Citation Analysis]
237 Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35:2871-2882. [PMID: 24338768 DOI: 10.1007/s13277-013-1511-7] [Cited by in Crossref: 280] [Cited by in F6Publishing: 262] [Article Influence: 31.1] [Reference Citation Analysis]
238 Narimatsu T, Matsuura K, Nakada C, Tsukamoto Y, Hijiya N, Kai T, Inoue T, Uchida T, Nomura T, Sato F, Seto M, Takeuchi I, Mimata H, Moriyama M. Downregulation of NDUFB6 due to 9p24.1-p13.3 loss is implicated in metastatic clear cell renal cell carcinoma. Cancer Med 2015;4:112-24. [PMID: 25315157 DOI: 10.1002/cam4.351] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
239 Zong W, Yu C, Wang P, Dong L. Overexpression of SASH1 Inhibits TGF-β1-Induced EMT in Gastric Cancer Cells. Oncol Res 2016;24:17-23. [PMID: 27178818 DOI: 10.3727/096504016X14570992647203] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 4.6] [Reference Citation Analysis]
240 Jung AR, Jung CH, Noh JK, Lee YC, Eun YG. Epithelial-mesenchymal transition gene signature is associated with prognosis and tumor microenvironment in head and neck squamous cell carcinoma. Sci Rep 2020;10:3652. [PMID: 32107458 DOI: 10.1038/s41598-020-60707-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
241 Guo Y, Cui W, Pei Y, Xu D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway. Gynecol Oncol 2019;153:639-50. [PMID: 30928020 DOI: 10.1016/j.ygyno.2019.02.026] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
242 García de Herreros A, Baulida J. Cooperation, amplification, and feed-back in epithelial-mesenchymal transition. Biochim Biophys Acta. 2012;1825:223-228. [PMID: 22306657 DOI: 10.1016/j.bbcan.2012.01.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 27] [Article Influence: 1.0] [Reference Citation Analysis]
243 Hua F, Mu R, Liu J, Xue J, Wang Z, Lin H, Yang H, Chen X, Hu Z. TRB3 interacts with SMAD3 promoting tumor cell migration and invasion. Journal of Cell Science 2011;124:3235-46. [DOI: 10.1242/jcs.082875] [Cited by in Crossref: 90] [Cited by in F6Publishing: 91] [Article Influence: 8.2] [Reference Citation Analysis]
244 Drabsch Y, ten Dijke P. TGF-β signaling in breast cancer cell invasion and bone metastasis. J Mammary Gland Biol Neoplasia. 2011;16:97-108. [PMID: 21494783 DOI: 10.1007/s10911-011-9217-1] [Cited by in Crossref: 85] [Cited by in F6Publishing: 89] [Article Influence: 7.7] [Reference Citation Analysis]
245 Liu X, Ma Y, Zhang C, Wei S, Cao Y, Wang Q. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation. J Genet Genomics 2013;40:515-21. [PMID: 24156917 DOI: 10.1016/j.jgg.2013.07.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
246 Nordin A, Kamal H, Yazid MD, Saim A, Idrus R. Effect of Nigella sativa and its bioactive compound on type 2 epithelial to mesenchymal transition: a systematic review. BMC Complement Altern Med 2019;19:290. [PMID: 31666058 DOI: 10.1186/s12906-019-2706-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
247 Burns WC, Thomas MC. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Mol Med 2010;12:e17. [PMID: 20504380 DOI: 10.1017/S1462399410001481] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
248 Huang CS, Ho JY, Chiang JH, Yu CP, Yu DS. Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells 2020;9:E1419. [PMID: 32517366 DOI: 10.3390/cells9061419] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
249 Bu F, Liu X, Li J, Chen S, Tong X, Ma C, Mao H, Pan F, Li X, Chen B, Xu L, Li E, Kou G, Han J, Guo S, Zhao J, Guo Y. TGF-β1 induces epigenetic silence of TIP30 to promote tumor metastasis in esophageal carcinoma. Oncotarget 2015;6:2120-33. [PMID: 25544767 DOI: 10.18632/oncotarget.2940] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
250 Haider S, Kunihs V, Fiala C, Pollheimer J, Knöfler M. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast. Placenta 2017;57:17-25. [PMID: 28864007 DOI: 10.1016/j.placenta.2017.06.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
251 Tian B, Patrikeev I, Ochoa L, Vargas G, Belanger KK, Litvinov J, Boldogh I, Ameredes BT, Motamedi M, Brasier AR. NF-κB Mediates Mesenchymal Transition, Remodeling, and Pulmonary Fibrosis in Response to Chronic Inflammation by Viral RNA Patterns. Am J Respir Cell Mol Biol 2017;56:506-20. [PMID: 27911568 DOI: 10.1165/rcmb.2016-0259OC] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
252 Meng X, Ezzati P, Wilkins JA. Requirement of podocalyxin in TGF-beta induced epithelial mesenchymal transition. PLoS One. 2011;6:e18715. [PMID: 21533279 DOI: 10.1371/journal.pone.0018715] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 4.7] [Reference Citation Analysis]
253 Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871-890. [PMID: 19945376 DOI: 10.1016/j.cell.2009.11.007] [Cited by in Crossref: 6203] [Cited by in F6Publishing: 6026] [Article Influence: 477.2] [Reference Citation Analysis]
254 Yang H, Wang L, Zhao J, Chen Y, Lei Z, Liu X, Xia W, Guo L, Zhang HT. TGF-β-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer. 2015;87:249-257. [PMID: 25595426 DOI: 10.1016/j.lungcan.2014.12.015] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 8.3] [Reference Citation Analysis]
255 Kaylan KB, Berg IC, Biehl MJ, Brougham-Cook A, Jain I, Jamil SM, Sargeant LH, Cornell NJ, Raetzman LT, Underhill GH. Spatial patterning of liver progenitor cell differentiation mediated by cellular contractility and Notch signaling. Elife 2018;7:e38536. [PMID: 30589410 DOI: 10.7554/eLife.38536] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
256 Kwapisz O, Górka J, Korlatowicz A, Kotlinowski J, Waligórska A, Marona P, Pydyn N, Dobrucki JW, Jura J, Miekus K. Fatty Acids and a High-Fat Diet Induce Epithelial-Mesenchymal Transition by Activating TGFβ and β-Catenin in Liver Cells. Int J Mol Sci 2021;22:1272. [PMID: 33525359 DOI: 10.3390/ijms22031272] [Reference Citation Analysis]
257 Kim NH, Song SH, Choi YH, Hwang KH, Yun JS, Song H, Cha SY, Cho SB, Lee I, Kim HS, Yook JI. Competing Endogenous RNA of Snail and Zeb1 UTR in Therapeutic Resistance of Colorectal Cancer. Int J Mol Sci 2021;22:9589. [PMID: 34502497 DOI: 10.3390/ijms22179589] [Reference Citation Analysis]
258 Malinda RR, Zeeberg K, Sharku PC, Ludwig MQ, Pedersen LB, Christensen ST, Pedersen SF. TGFβ Signaling Increases Net Acid Extrusion, Proliferation and Invasion in Panc-1 Pancreatic Cancer Cells: SMAD4 Dependence and Link to Merlin/NF2 Signaling. Front Oncol 2020;10:687. [PMID: 32457840 DOI: 10.3389/fonc.2020.00687] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
259 Chen MJ, Shih SC, Wang HY, Lin CC, Liu CY, Wang TE, Chu CH, Chen YJ. Caffeic Acid phenethyl ester inhibits epithelial-mesenchymal transition of human pancreatic cancer cells. Evid Based Complement Alternat Med. 2013;2013:270906. [PMID: 23662124 DOI: 10.1155/2013/270906] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
260 Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer. 2013;132:745-754. [PMID: 22753312 DOI: 10.1002/ijc.27708] [Cited by in Crossref: 154] [Cited by in F6Publishing: 153] [Article Influence: 15.4] [Reference Citation Analysis]
261 Han D, Wu G, Chang C, Zhu F, Xiao Y, Li Q, Zhang T, Zhang L. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. Oncotarget 2015;6:40907-19. [PMID: 26517513 DOI: 10.18632/oncotarget.5723] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
262 Lee H, Hwang K, Choi K. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Molecular and Cellular Endocrinology 2017;457:103-13. [DOI: 10.1016/j.mce.2016.12.026] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
263 Velden JL, Alcorn JF, Guala AS, Badura EC, Janssen-Heininger YM. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Am J Respir Cell Mol Biol 2011;44:571-81. [PMID: 20581097 DOI: 10.1165/rcmb.2009-0282OC] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 4.1] [Reference Citation Analysis]
264 Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm. 2014;2014:141747. [PMID: 24891760 DOI: 10.1155/2014/141747] [Cited by in Crossref: 115] [Cited by in F6Publishing: 117] [Article Influence: 14.4] [Reference Citation Analysis]
265 Tian Y, Guo XL, Wang LQ, Li Y. Emodin reduces intestinal fibrosis in rats with TNBS-induced colitis. Shijie Huaren Xiaohua Zazhi 2012; 20(28): 2703-2708 [DOI: 10.11569/wcjd.v20.i28.2703] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
266 Guckenberger DJ, Berthier E, Beebe DJ. High-density self-contained microfluidic KOALA kits for use by everyone. J Lab Autom 2015;20:146-53. [PMID: 25424385 DOI: 10.1177/2211068214560609] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
267 Wang H, Maitra A, Wang H. The emerging roles of F-box proteins in pancreatic tumorigenesis. Semin Cancer Biol 2016;36:88-94. [PMID: 26384530 DOI: 10.1016/j.semcancer.2015.09.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
268 Liu YM, Liu YK, Huang PI, Tsai TH, Chen YJ. Antrodia cinnamomea mycelial fermentation broth inhibits the epithelial-mesenchymal transition of human esophageal adenocarcinoma cancer cells. Food Chem Toxicol 2018;119:380-6. [PMID: 29475041 DOI: 10.1016/j.fct.2018.01.028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
269 Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK, Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 2014;7:1197-210. [PMID: 24794431 DOI: 10.1016/j.celrep.2014.03.074] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 5.5] [Reference Citation Analysis]
270 Li SP, Xu HX, Yu Y, He JD, Wang Z, Xu YJ, Wang CY, Zhang HM, Zhang RX, Zhang JJ, Yao Z, Shen ZY. LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget. 2016;7:42431-42446. [PMID: 27285757 DOI: 10.18632/oncotarget.9883] [Cited by in Crossref: 126] [Cited by in F6Publishing: 164] [Article Influence: 31.5] [Reference Citation Analysis]
271 Derynck R, Akhurst RJ. BMP-9 balances endothelial cell fate. Proc Natl Acad Sci U S A 2013;110:18746-7. [PMID: 24222686 DOI: 10.1073/pnas.1318346110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
272 Frey P, Devisme A, Rose K, Schrempp M, Freihen V, Andrieux G, Boerries M, Hecht A. SMAD4 mutations do not preclude epithelial-mesenchymal transition in colorectal cancer. Oncogene 2021. [PMID: 34857888 DOI: 10.1038/s41388-021-02128-2] [Reference Citation Analysis]
273 Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, Fu GF, Xie C, Lin Q, Xie L, Huang L, Pu P, Ouyang Z, Chan HL, Zhao TJ, Chen XL, Fu G, Wang HR. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv 2020;6:eaay9819. [PMID: 32010791 DOI: 10.1126/sciadv.aay9819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
274 Wang M, Zhang L, Liu Z, Zhou J, Pan Q, Fan J, Zang R, Wang L. AGO1 may influence the prognosis of hepatocellular carcinoma through TGF-β pathway. Cell Death Dis 2018;9:324. [PMID: 29487329 DOI: 10.1038/s41419-018-0338-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
275 Chiechi A, Waning DL, Stayrook KR, Buijs JT, Guise TA, Mohammad KS. Role of TGF-β in breast cancer bone metastases. Adv Biosci Biotechnol 2013;4:15-30. [PMID: 24558636 DOI: 10.4236/abb.2013.410A4003] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
276 Kahata K, Dadras MS, Moustakas A. TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb Perspect Biol 2018;10:a022194. [PMID: 28246184 DOI: 10.1101/cshperspect.a022194] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
277 Lee K, Lee NK, Kim JH, Kang MS, Yoo HY, Kim HH, Um SH, Kim S. Twist1 causes the transcriptional repression of claudin-4 with prognostic significance in esophageal cancer. Biochemical and Biophysical Research Communications 2012;423:454-60. [DOI: 10.1016/j.bbrc.2012.05.140] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
278 Kucuksayan H, Akgun S, Ozes ON, Alikanoglu AS, Yildiz M, Dal E, Akca H. TGF-β-SMAD-miR-520e axis regulates NSCLC metastasis through a TGFBR2-mediated negative-feedback loop. Carcinogenesis 2019;40:695-705. [PMID: 30475986 DOI: 10.1093/carcin/bgy166] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
279 Kalita M, Tian B, Gao B, Choudhary S, Wood TG, Carmical JR, Boldogh I, Mitra S, Minna JD, Brasier AR. Systems approaches to modeling chronic mucosal inflammation. Biomed Res Int 2013;2013:505864. [PMID: 24228254 DOI: 10.1155/2013/505864] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
280 Mazzolini R, Gonzàlez N, Garcia-Garijo A, Millanes-Romero A, Peiró S, Smith S, García de Herreros A, Canudas S. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2018;46:146-58. [PMID: 29059385 DOI: 10.1093/nar/gkx958] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
281 Giarnieri E, Bellipanni G, Macaluso M, Mancini R, Holstein AC, Milanese C, Giovagnoli MR, Giordano A, Russo G. Review: Cell Dynamics in Malignant Pleural Effusions. J Cell Physiol 2015;230:272-7. [PMID: 25205557 DOI: 10.1002/jcp.24806] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
282 Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal 2019;12:eaav5183. [PMID: 30808818 DOI: 10.1126/scisignal.aav5183] [Cited by in Crossref: 195] [Cited by in F6Publishing: 185] [Article Influence: 65.0] [Reference Citation Analysis]
283 Voutsadakis IA. Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol. 2012;33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
284 Ozawa H, Ranaweera RS, Izumchenko E, Makarev E, Zhavoronkov A, Fertig EJ, Howard JD, Markovic A, Bedi A, Ravi R, Perez J, Le QT, Kong CS, Jordan RC, Wang H, Kang H, Quon H, Sidransky D, Chung CH. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells. Clin Cancer Res 2017;23:5162-75. [PMID: 28522603 DOI: 10.1158/1078-0432.CCR-16-1686] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 7.4] [Reference Citation Analysis]
285 Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D. Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 2012;31:2521-34. [PMID: 21963846 DOI: 10.1038/onc.2011.429] [Cited by in Crossref: 133] [Cited by in F6Publishing: 130] [Article Influence: 12.1] [Reference Citation Analysis]
286 Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial-mesenchymal transition. Trends Genet 2012;28:454-63. [PMID: 22717049 DOI: 10.1016/j.tig.2012.05.005] [Cited by in Crossref: 109] [Cited by in F6Publishing: 107] [Article Influence: 10.9] [Reference Citation Analysis]
287 Lin CW, Lin PY, Yang PC. Noncoding RNAs in Tumor Epithelial-to-Mesenchymal Transition. Stem Cells Int 2016;2016:2732705. [PMID: 26989421 DOI: 10.1155/2016/2732705] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
288 Zhong J, Liu C, Zhang QH, Chen L, Shen YY, Chen YJ, Zeng X, Zu XY, Cao RX. TGF-β1 induces HMGA1 expression: The role of HMGA1 in thyroid cancer proliferation and invasion. Int J Oncol 2017;50:1567-78. [PMID: 28393241 DOI: 10.3892/ijo.2017.3958] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
289 Otterbein H, Lehnert H, Ungefroren H. Negative Control of Cell Migration by Rac1b in Highly Metastatic Pancreatic Cancer Cells Is Mediated by Sequential Induction of Nonactivated Smad3 and Biglycan. Cancers (Basel) 2019;11:E1959. [PMID: 31817656 DOI: 10.3390/cancers11121959] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
290 Johansson J, Tabor V, Wikell A, Jalkanen S, Fuxe J. TGF-β1-Induced Epithelial-Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells. Front Oncol 2015;5:3. [PMID: 25674539 DOI: 10.3389/fonc.2015.00003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 38] [Article Influence: 4.0] [Reference Citation Analysis]
291 Horejs CM. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur J Cell Biol 2016;95:427-40. [PMID: 27397693 DOI: 10.1016/j.ejcb.2016.06.002] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
292 Mizrahi A, Barzilai A, Gur-Wahnon D, Ben-Dov IZ, Glassberg S, Meningher T, Elharar E, Masalha M, Jacob-Hirsch J, Tabibian-Keissar H, Barshack I, Roszik J, Leibowitz-Amit R, Sidi Y, Avni D. Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene 2018;37:218-30. [PMID: 28925390 DOI: 10.1038/onc.2017.315] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
293 Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. Respir Res 2014;15:146. [PMID: 25413472 DOI: 10.1186/s12931-014-0146-6] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 5.1] [Reference Citation Analysis]
294 Valkov A, Sorbye SW, Kilvaer TK, Donnem T, Smeland E, Bremnes RM, Busund LT. The prognostic impact of TGF-β1, fascin, NF-κB and PKC-ζ expression in soft tissue sarcomas. PLoS One 2011;6:e17507. [PMID: 21390241 DOI: 10.1371/journal.pone.0017507] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 2.4] [Reference Citation Analysis]
295 Danielsson K, Wahlin YB, Coates PJ, Nylander K. Increased expression of Smad proteins, and in particular Smad3, in oral lichen planus compared to normal oral mucosa. J Oral Pathol Med 2010;39:639-44. [PMID: 20618616 DOI: 10.1111/j.1600-0714.2010.00902.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
296 Alba-Castellón L, Batlle R, Francí C, Fernández-Aceñero MJ, Mazzolini R, Peña R, Loubat J, Alameda F, Rodríguez R, Curto J, Albanell J, Muñoz A, Bonilla F, Ignacio Casal J, Rojo F, García de Herreros A. Snail1 expression is required for sarcomagenesis. Neoplasia 2014;16:413-21. [PMID: 24947186 DOI: 10.1016/j.neo.2014.05.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
297 Coughlan L, Alba R, Parker AL, Bradshaw AC, McNeish IA, Nicklin SA, Baker AH. Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses. 2010;2:2290-2355. [PMID: 21994621 DOI: 10.3390/v2102290] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 7.1] [Reference Citation Analysis]
298 Huang H, Sun P, Lei Z, Li M, Wang Y, Zhang HT, Liu J. miR-145 inhibits invasion and metastasis by directly targeting Smad3 in nasopharyngeal cancer. Tumour Biol 2015;36:4123-31. [PMID: 25578496 DOI: 10.1007/s13277-015-3046-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
299 Sharma A, Kansara S, Mahajan M, Yadav B, Garg M, Pandey AK. Long non-coding RNAs orchestrate various molecular and cellular processes by modulating epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2021;1867:166240. [PMID: 34363933 DOI: 10.1016/j.bbadis.2021.166240] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
300 Wang H, Chen Y, Wu G. SDHB deficiency promotes TGFβ-mediated invasion and metastasis of colorectal cancer through transcriptional repression complex SNAIL1-SMAD3/4. Transl Oncol 2016;9:512-20. [PMID: 27816688 DOI: 10.1016/j.tranon.2016.09.009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
301 Chang JT, Mani SA. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-to-mesenchymal transition. Cancer Lett 2013;341:16-23. [PMID: 23499890 DOI: 10.1016/j.canlet.2013.03.004] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
302 Saitoh M, Miyazawa K. Transcriptional and post-transcriptional regulation in TGF-β-mediated epithelial-mesenchymal transition. J Biochem 2012;151:563-71. [PMID: 22528665 DOI: 10.1093/jb/mvs040] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
303 Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020;58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
304 Chattopadhyay I, Ambati R, Gundamaraju R. Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021;2021:9918379. [PMID: 34220337 DOI: 10.1155/2021/9918379] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
305 Nilchian A, Plant E, Parniewska MM, Santiago A, Rossignoli A, Skogsberg J, Hedin U, Matic L, Fuxe J. Induction of the Coxsackievirus and Adenovirus Receptor in Macrophages During the Formation of Atherosclerotic Plaques. J Infect Dis 2020;222:2041-51. [PMID: 32852032 DOI: 10.1093/infdis/jiaa418] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
306 Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes. Int J Mol Sci 2019;20:E6140. [PMID: 31817513 DOI: 10.3390/ijms20246140] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 20.0] [Reference Citation Analysis]
307 Abdulla N, Vincent CT, Kaur M. Mechanistic Insights Delineating the Role of Cholesterol in Epithelial Mesenchymal Transition and Drug Resistance in Cancer. Front Cell Dev Biol 2021;9:728325. [PMID: 34869315 DOI: 10.3389/fcell.2021.728325] [Reference Citation Analysis]
308 Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, Bartholin L, Moustakas A. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol 2016;1344:147-81. [PMID: 26520123 DOI: 10.1007/978-1-4939-2966-5_9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
309 Wu C, Cao X, Yu D, Huijbers EJ, Essand M, Akusjärvi G, Johansson S, Svensson C. HAdV-2-suppressed growth of SV40 T antigen-transformed mouse mammary epithelial cell-induced tumours in SCID mice. Virology 2016;489:44-50. [PMID: 26707269 DOI: 10.1016/j.virol.2015.11.031] [Reference Citation Analysis]
310 Liu S, Zhao M, Zhou Y, Wang C, Yuan Y, Li L, Bresette W, Chen Y, Cheng J, Lu Y, Liu J. Resveratrol exerts dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: A potential risk to individuals with impaired kidney function. Phytomedicine 2019;57:223-35. [PMID: 30785018 DOI: 10.1016/j.phymed.2018.12.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
311 de Herreros AG, Peiró S, Nassour M, Savagner P. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010;15:135-47. [PMID: 20455012 DOI: 10.1007/s10911-010-9179-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
312 Sengupta D, Bhargava DK, Dixit A, Sahoo BS, Biswas S, Biswas G, Mishra SK. ERRβ signalling through FST and BCAS2 inhibits cellular proliferation in breast cancer cells. Br J Cancer 2014;110:2144-58. [PMID: 24667650 DOI: 10.1038/bjc.2014.53] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
313 Du D, Katsuno Y, Meyer D, Budi EH, Chen SH, Koeppen H, Wang H, Akhurst RJ, Derynck R. Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelial-mesenchymal transition. EMBO Rep 2018;19:135-55. [PMID: 29233829 DOI: 10.15252/embr.201744250] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 5.0] [Reference Citation Analysis]
314 Jiang L, Hu LG. Serpin peptidase inhibitor clade A member 1-overexpression in gastric cancer promotes tumor progression in vitro and is associated with poor prognosis. Oncol Lett 2020;20:278. [PMID: 33014156 DOI: 10.3892/ol.2020.12141] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
315 Okabe H, Ishimoto T, Mima K, Nakagawa S, Hayashi H, Kuroki H, Imai K, Nitta H, Saito S, Hashimoto D, Chikamoto A, Ishiko T, Watanabe M, Nagano O, Beppu T, Saya H, Baba H. CD44s signals the acquisition of the mesenchymal phenotype required for anchorage-independent cell survival in hepatocellular carcinoma. Br J Cancer. 2014;110:958-966. [PMID: 24300972 DOI: 10.1038/bjc.2013.759] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 5.2] [Reference Citation Analysis]
316 Runkle EA, Rice SJ, Qi J, Masser D, Antonetti DA, Winslow MM, Mu D. Occludin is a direct target of thyroid transcription factor-1 (TTF-1/NKX2-1). J Biol Chem 2012;287:28790-801. [PMID: 22761434 DOI: 10.1074/jbc.M112.367987] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
317 Quaggin SE, Kapus A. Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int. 2011;80:41-50. [PMID: 21430641 DOI: 10.1038/ki.2011.77] [Cited by in Crossref: 138] [Cited by in F6Publishing: 134] [Article Influence: 12.5] [Reference Citation Analysis]
318 Huang X, Xu J, Huang M, Li J, Dai L, Dai K, Zhang X. Histone deacetylase1 promotes TGF-β1-mediated early chondrogenesis through down-regulating canonical Wnt signaling. Biochemical and Biophysical Research Communications 2014;453:810-6. [DOI: 10.1016/j.bbrc.2014.10.021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
319 Zeng L, Xiao L, Jiang W, Yang H, Hu D, Xia C, Li Y, Zhou C, Xiong Y, Liu L, Liao D, Guan R, Li K, Wang J, Zhang Y, Yang N, Mansfield AS. Investigation of efficacy and acquired resistance for EGFR-TKI plus bevacizumab as first-line treatment in patients with EGFR sensitive mutant non-small cell lung cancer in a Real world population. Lung Cancer 2020;141:82-8. [PMID: 31982639 DOI: 10.1016/j.lungcan.2020.01.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
320 Li J, Weinberg MS, Zerbini L, Prince S. The oncogenic TBX3 is a downstream target and mediator of the TGF-β1 signaling pathway. Mol Biol Cell 2013;24:3569-76. [PMID: 24025717 DOI: 10.1091/mbc.E13-05-0273] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
321 Simon-Tillaux N, Hertig A. Snail and kidney fibrosis. Nephrol Dial Transplant 2017;32:224-33. [PMID: 28186539 DOI: 10.1093/ndt/gfw333] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
322 Günzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93:525-569. [PMID: 23589827 DOI: 10.1152/physrev.00019.2012] [Cited by in Crossref: 660] [Cited by in F6Publishing: 635] [Article Influence: 73.3] [Reference Citation Analysis]
323 Torzilli PA, Bourne JW, Cigler T, Vincent CT. A new paradigm for mechanobiological mechanisms in tumor metastasis. Semin Cancer Biol 2012;22:385-95. [PMID: 22613484 DOI: 10.1016/j.semcancer.2012.05.002] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
324 Motizuki M, Koinuma D, Yokoyama T, Itoh Y, Omata C, Miyazono K, Saitoh M, Miyazawa K. TGF-β-induced cell motility requires downregulation of ARHGAPs to sustain Rac1 activity. J Biol Chem 2021;296:100545. [PMID: 33741342 DOI: 10.1016/j.jbc.2021.100545] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
325 Ozaki-Honda Y, Seki S, Fujiwara M, Matsuura M, Fujita S, Ikeda H, Umeda M, Ayuse T, Ikeda T. Prognostic Prediction of Oral Squamous Cell Carcinoma by E-Cadherin and N-Cadherin Expression in Overall Cells in Tumor Nests or Tumor Cells at the Invasive Front. Cancer Microenviron 2017;10:87-94. [PMID: 29098659 DOI: 10.1007/s12307-017-0201-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
326 Andrews D, Oliviero G, De Chiara L, Watson A, Rochford E, Wynne K, Kennedy C, Clerkin S, Doyle B, Godson C, Connell P, O'brien C, Cagney G, Crean J. Unravelling the transcriptional responses of TGF‐β: Smad3 and EZH2 constitute a regulatory switch that controls neuroretinal epithelial cell fate specification. FASEB j 2019;33:6667-81. [DOI: 10.1096/fj.201800566rr] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
327 Ko H, Jeon H, Lee D, Choi HK, Kang KS, Choi KC. Sanguiin H6 suppresses TGF-β induction of the epithelial-mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg Med Chem Lett 2015;25:5508-13. [PMID: 26508552 DOI: 10.1016/j.bmcl.2015.10.067] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
328 Frey P, Devisme A, Schrempp M, Andrieux G, Boerries M, Hecht A. Canonical BMP Signaling Executes Epithelial-Mesenchymal Transition Downstream of SNAIL1. Cancers (Basel) 2020;12:E1019. [PMID: 32326239 DOI: 10.3390/cancers12041019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
329 Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res 2011;13:211. [PMID: 21672282 DOI: 10.1186/bcr2876] [Cited by in Crossref: 123] [Cited by in F6Publishing: 125] [Article Influence: 11.2] [Reference Citation Analysis]
330 Tian K, Chen P, Liu Z, Si S, Zhang Q, Mou Y, Han L, Wang Q, Zhou X. Sirtuin 6 inhibits epithelial to mesenchymal transition during idiopathic pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Oncotarget 2017;8:61011-24. [PMID: 28977842 DOI: 10.18632/oncotarget.17723] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
331 Valle BL, Morin PJ. Claudins in Cancer Biology. Elsevier; 2010. pp. 293-333. [DOI: 10.1016/s1063-5823(10)65013-2] [Cited by in Crossref: 11] [Article Influence: 0.9] [Reference Citation Analysis]
332 Carbone C, Moccia T, Zhu C, Paradiso G, Budillon A, Chiao PJ, Abbruzzese JL, Melisi D. Anti-VEGF treatment-resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin Cancer Res 2011;17:5822-32. [PMID: 21737511 DOI: 10.1158/1078-0432.CCR-11-1185] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 5.5] [Reference Citation Analysis]
333 Zhu H, Zhai B, He C, Li Z, Gao H, Niu Z, Jiang X, Lu J, Sun X. LncRNA TTN-AS1 promotes the progression of cholangiocarcinoma via the miR-320a/neuropilin-1 axis. Cell Death Dis. 2020;11:637. [PMID: 32801339 DOI: 10.1038/s41419-020-02896-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
334 Abd El-rehim DM, Abd-elghany MI, Nazmy MH. Integrin-Linked Kinase, Snail and Multidrug Resistance Protein 1: Three concordant players in the progression of non-small cell lung cancer. Journal of the Egyptian National Cancer Institute 2015;27:129-37. [DOI: 10.1016/j.jnci.2015.04.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
335 Lane DJ, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta 2014;1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Cited by in Crossref: 29] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
336 Umar S, Soni R, Durgapal SD, Soman S, Balakrishnan S. A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. J Biochem Mol Toxicol 2020;34:e22553. [PMID: 32578917 DOI: 10.1002/jbt.22553] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
337 Wu Y, Zhou BP. Inflammation: a driving force speeds cancer metastasis. Cell Cycle. 2009;8:3267-3273. [PMID: 19770594 DOI: 10.4161/cc.8.20.9699] [Cited by in Crossref: 179] [Cited by in F6Publishing: 183] [Article Influence: 13.8] [Reference Citation Analysis]
338 Basu S, Ma R, Moskal JR, Basu M, Banerjee S. Apoptosis of Breast Cancer Cells: Modulation of Genes for Glycoconjugate Biosynthesis and Targeted Drug Delivery. In: Sudhakaran PR, Surolia A, editors. Biochemical Roles of Eukaryotic Cell Surface Macromolecules. New York: Springer; 2012. pp. 233-55. [DOI: 10.1007/978-1-4614-3381-1_16] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
339 Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci 2020;77:2103-23. [PMID: 31822964 DOI: 10.1007/s00018-019-03398-6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
340 Starsíchová A, Lincová E, Pernicová Z, Kozubík A, Soucek K. TGF-beta1 suppresses IL-6-induced STAT3 activation through regulation of Jak2 expression in prostate epithelial cells. Cell Signal 2010;22:1734-44. [PMID: 20603212 DOI: 10.1016/j.cellsig.2010.06.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
341 Hou YF, Gao SH, Wang P, Zhang HM, Liu LZ, Ye MX, Zhou GM, Zhang ZL, Li BY. 1α,25(OH)₂D₃ Suppresses the Migration of Ovarian Cancer SKOV-3 Cells through the Inhibition of Epithelial-Mesenchymal Transition. Int J Mol Sci 2016;17:E1285. [PMID: 27548154 DOI: 10.3390/ijms17081285] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
342 Cho ES, Kim NH, Yun JS, Cho SB, Kim HS, Yook JI. Breast Cancer Subtypes Underlying EMT-Mediated Catabolic Metabolism. Cells 2020;9:E2064. [PMID: 32927665 DOI: 10.3390/cells9092064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
343 Jalalirad M, Haddad TC, Salisbury JL, Radisky D, Zhang M, Schroeder M, Tuma A, Leof E, Carter JM, Degnim AC, Boughey JC, Sarkaria J, Yu J, Wang L, Liu MC, Zammataro L, Malatino L, Galanis E, Ingle JN, Goetz MP, D'Assoro AB. Aurora-A kinase oncogenic signaling mediates TGF-β-induced triple-negative breast cancer plasticity and chemoresistance. Oncogene 2021;40:2509-23. [PMID: 33674749 DOI: 10.1038/s41388-021-01711-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
344 Deng YR, Liu WB, Lian ZX, Li X, Hou X. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2016;7:38292-305. [PMID: 27203677 DOI: 10.18632/oncotarget.9438] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 9.3] [Reference Citation Analysis]
345 Caja L, Tzavlaki K, Dadras MS, Tan EJ, Hatem G, Maturi NP, Morén A, Wik L, Watanabe Y, Savary K, Kamali-Moghaddan M, Uhrbom L, Heldin CH, Moustakas A. Snail regulates BMP and TGFβ pathways to control the differentiation status of glioma-initiating cells. Oncogene 2018;37:2515-31. [PMID: 29449696 DOI: 10.1038/s41388-018-0136-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
346 Excoffon KJDA. The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Lett 2020;594:1828-37. [PMID: 32298477 DOI: 10.1002/1873-3468.13794] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
347 Fenizia C, Bottino C, Corbetta S, Fittipaldi R, Floris P, Gaudenzi G, Carra S, Cotelli F, Vitale G, Caretti G. SMYD3 promotes the epithelial-mesenchymal transition in breast cancer. Nucleic Acids Res 2019;47:1278-93. [PMID: 30544196 DOI: 10.1093/nar/gky1221] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
348 Maturi V, Morén A, Enroth S, Heldin CH, Moustakas A. Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells. Mol Oncol 2018;12:1153-74. [PMID: 29729076 DOI: 10.1002/1878-0261.12317] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
349 Mansoori B, Mohammadi A, Ditzel HJ, Duijf PHG, Khaze V, Gjerstorff MF, Baradaran B. HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021;12:269. [PMID: 33668453 DOI: 10.3390/genes12020269] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
350 Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis 2018;9:680. [PMID: 29880900 DOI: 10.1038/s41419-018-0738-z] [Cited by in Crossref: 36] [Cited by in F6Publishing: 42] [Article Influence: 9.0] [Reference Citation Analysis]
351 Itoh F, Itoh S, Adachi T, Ichikawa K, Matsumura Y, Takagi T, Festing M, Watanabe T, Weinstein M, Karlsson S, Kato M. Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood 2012;119:5320-8. [PMID: 22498737 DOI: 10.1182/blood-2011-12-395772] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
352 Bonde AK, Tischler V, Kumar S, Soltermann A, Schwendener RA. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 2012;12:35. [PMID: 22273460 DOI: 10.1186/1471-2407-12-35] [Cited by in Crossref: 145] [Cited by in F6Publishing: 144] [Article Influence: 14.5] [Reference Citation Analysis]
353 Sarkar A, Das S, Rahaman A, Das Talukdar A, Bhattacharjee S, Mandal DP. Eugenol and capsaicin exhibit anti-metastatic activity via modulating TGF-β signaling in gastric carcinoma. Food Funct 2020;11:9020-34. [PMID: 33016967 DOI: 10.1039/d0fo00887g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
354 Voutsadakis IA. Epithelial to mesenchymal transition in the pathogenesis of uterine malignant mixed Müllerian tumours: the role of ubiquitin proteasome system and therapeutic opportunities. Clin Transl Oncol. 2012;14:243-253. [PMID: 22484631 DOI: 10.1007/s12094-012-0792-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
355 Heerma van Voss MR, van Diest PJ, Smolders YH, Bart J, van der Wall E, van der Groep P. Distinct claudin expression characterizes BRCA1-related breast cancer. Histopathology 2014;65:814-27. [PMID: 25041042 DOI: 10.1111/his.12490] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
356 Lin H, Zhu X, Long J, Chen Y, Xie Y, Liao M, Chen J, Tian J, Huang S, Tang R, Xian X, Wei S, Wang Q, Mo Z. HIPK2 polymorphisms rs2058265, rs6464214, and rs7456421 were associated with kidney stone disease in Chinese males not females. Gene 2018;653:51-6. [PMID: 29428801 DOI: 10.1016/j.gene.2018.02.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
357 Nilchian A, Giotopoulou N, Sun W, Fuxe J. Different Regulation of Glut1 Expression and Glucose Uptake during the Induction and Chronic Stages of TGFβ1-Induced EMT in Breast Cancer Cells. Biomolecules 2020;10:E1621. [PMID: 33271824 DOI: 10.3390/biom10121621] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
358 Wang HG, Huang XD, Ji GZ. EMT- and microRNA-related signaling pathways in tumors. Shijie Huaren Xiaohua Zazhi 2010; 18(34): 3672-3678 [DOI: 10.11569/wcjd.v18.i34.3672] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
359 Shi C, Chen Y, Chen Y, Yang Y, Bing W, Qi J. CD4+ CD25+ regulatory T cells promote hepatocellular carcinoma invasion via TGF-β1-induced epithelial-mesenchymal transition. Onco Targets Ther 2019;12:279-89. [PMID: 30643426 DOI: 10.2147/OTT.S172417] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
360 Horibata S, Rogers KE, Sadegh D, Anguish LJ, McElwee JL, Shah P, Thompson PR, Coonrod SA. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration. BMC Cancer 2017;17:378. [PMID: 28549415 DOI: 10.1186/s12885-017-3354-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
361 Angioni R, Sánchez-Rodríguez R, Viola A, Molon B. TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021;13:401. [PMID: 33499083 DOI: 10.3390/cancers13030401] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
362 Pezone A, Taddei ML, Tramontano A, Dolcini J, Boffo FL, De Rosa M, Parri M, Stinziani S, Comito G, Porcellini A, Raugei G, Gackowski D, Zarakowska E, Olinski R, Gabrielli A, Chiarugi P, Avvedimento EV. Targeted DNA oxidation by LSD1-SMAD2/3 primes TGF-β1/ EMT genes for activation or repression. Nucleic Acids Res 2020;48:8943-58. [PMID: 32697292 DOI: 10.1093/nar/gkaa599] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
363 Jain N, Mitre I, Nitisa D, Pirsko V, Cakstina-Dzerve I. Identification of Novel Endogenous Controls for qPCR Normalization in SK-BR-3 Breast Cancer Cell Line. Genes (Basel) 2021;12:1631. [PMID: 34681026 DOI: 10.3390/genes12101631] [Reference Citation Analysis]
364 Rubtsova SN, Zhitnyak IY, Gloushankova NA. Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. Int J Mol Sci 2021;22:1821. [PMID: 33673054 DOI: 10.3390/ijms22041821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
365 Szaszi K, Amoozadeh Y. New Insights into Functions, Regulation, and Pathological Roles of Tight Junctions in Kidney Tubular Epithelium. Elsevier; 2014. pp. 205-71. [DOI: 10.1016/b978-0-12-800097-7.00006-3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 2.9] [Reference Citation Analysis]
366 Voutsadakis IA. Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol 2011; 3(11): 153-164 [PMID: 22110842 DOI: 10.4251/wjgo.v3.i11.153] [Cited by in CrossRef: 52] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
367 Cicchini C, Amicone L, Alonzi T, Marchetti A, Mancone C, Tripodi M. Molecular mechanisms controlling the phenotype and the EMT/MET dynamics of hepatocyte. Liver Int 2015;35:302-10. [PMID: 24766136 DOI: 10.1111/liv.12577] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.8] [Reference Citation Analysis]
368 Jiao J, Zhao X, Liang Y, Tang D, Pan C. FGF1-FGFR1 axis promotes tongue squamous cell carcinoma (TSCC) metastasis through epithelial-mesenchymal transition (EMT). Biochem Biophys Res Commun 2015;466:327-32. [PMID: 26362179 DOI: 10.1016/j.bbrc.2015.09.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
369 Tan EJ, Olsson AK, Moustakas A. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ. Cell Adh Migr 2015;9:233-46. [PMID: 25482613 DOI: 10.4161/19336918.2014.983794] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
370 Jung HY, Fattet L, Yang J. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clin Cancer Res. 2015;21:962-968. [PMID: 25107915 DOI: 10.1158/1078-0432.ccr-13-3173] [Cited by in Crossref: 169] [Cited by in F6Publishing: 110] [Article Influence: 21.1] [Reference Citation Analysis]
371 Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Queralt B, Báez L, Guardeño R, Hernández-Yagüe X, Martin-Castillo B, Brunet J, Menendez JA. Stem cell property epithelial-to-mesenchymal transition is a core transcriptional network for predicting cetuximab (Erbitux™) efficacy in KRAS wild-type tumor cells. J Cell Biochem 2011;112:10-29. [PMID: 21104905 DOI: 10.1002/jcb.22952] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
372 Park SJ, Choi YS, Lee S, Lee YJ, Hong S, Han S, Kim BC. BIX02189 inhibits TGF-β1-induced lung cancer cell metastasis by directly targeting TGF-β type I receptor. Cancer Lett 2016;381:314-22. [PMID: 27543359 DOI: 10.1016/j.canlet.2016.08.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
373 Guo Y, Zhai J, Zhang J, Zhou H. NGAL protects in nasopharyngeal carcinoma by inducing apoptosis and blocking epithelial-mesenchymal transition. Oncol Lett 2020;19:3711-8. [PMID: 32391093 DOI: 10.3892/ol.2020.11527] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
374 Park E, Song CH, Park JI, Ahn RS, Choi HS, Ko C, Lee K. Transforming growth factor-β1 signaling represses testicular steroidogenesis through cross-talk with orphan nuclear receptor Nur77. PLoS One 2014;9:e104812. [PMID: 25140527 DOI: 10.1371/journal.pone.0104812] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
375 Liang X, Zeng J, Wang L, Shen L, Ma X, Li S, Wu Y, Ma L, Ci X, Guo Q, Jia M, Shen H, Sun Y, Liu Z, Liu S, Li W, Yu H, Chen C, Jia J. Histone demethylase RBP2 promotes malignant progression of gastric cancer through TGF-β1-(p-Smad3)-RBP2-E-cadherin-Smad3 feedback circuit. Oncotarget 2015;6:17661-74. [PMID: 25974964 DOI: 10.18632/oncotarget.3756] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
376 Wang Y, Shi J, Chai K, Ying X, Zhou BP. The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets. 2013;13:963-972. [PMID: 24168186 DOI: 10.2174/15680096113136660102] [Cited by in Crossref: 392] [Cited by in F6Publishing: 389] [Article Influence: 49.0] [Reference Citation Analysis]
377 Du X, Li Q, Yang L, Liu L, Cao Q, Li Q. SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death Dis 2020;11:373. [PMID: 32415058 DOI: 10.1038/s41419-020-2578-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
378 Forsyth CB, Tang Y, Shaikh M, Zhang L, Keshavarzian A. Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcohol Clin Exp Res. 2011;35:1635-1643. [PMID: 21535025 DOI: 10.1111/j.1530-0277.2011.01510.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 0.8] [Reference Citation Analysis]
379 Xian S, Chen A, Wu X, Lu C, Wu Y, Huang F, Zeng Z. Activation of activin/Smad2 and 3 signaling pathway and the potential involvement of endothelial‑mesenchymal transition in the valvular damage due to rheumatic heart disease. Mol Med Rep 2021;23:10. [PMID: 33179113 DOI: 10.3892/mmr.2020.11648] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
380 Sha J, Bai Y, Ngo HX, Okui T, Kanno T. Overview of Evidence-Based Chemotherapy for Oral Cancer: Focus on Drug Resistance Related to the Epithelial-Mesenchymal Transition. Biomolecules 2021;11:893. [PMID: 34208465 DOI: 10.3390/biom11060893] [Reference Citation Analysis]
381 Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011;195:417-433. [PMID: 22024162 DOI: 10.1083/jcb.201103097] [Cited by in Crossref: 296] [Cited by in F6Publishing: 285] [Article Influence: 26.9] [Reference Citation Analysis]
382 D'Andrea MR, Cereda V, Coppola L, Giordano G, Remo A, De Santis E. Propensity for Early Metastatic Spread in Breast Cancer: Role of Tumor Vascularization Features and Tumor Immune Infiltrate. Cancers (Basel) 2021;13:5917. [PMID: 34885027 DOI: 10.3390/cancers13235917] [Reference Citation Analysis]
383 Zhou HH, Chen L, Liang HF, Li GZ, Zhang BX, Chen XP. Smad3 Sensitizes Hepatocelluar Carcinoma Cells to Cisplatin by Repressing Phosphorylation of AKT. Int J Mol Sci 2016;17:E610. [PMID: 27110775 DOI: 10.3390/ijms17040610] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
384 Xiao J, Zhou N, Li Y, Xiao Y, Chen W, Ye J, Ma T, Zhang Y. PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT. Biomed Pharmacother 2020;130:110743. [PMID: 34321176 DOI: 10.1016/j.biopha.2020.110743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
385 Krivega M, Geens M, Van de Velde H. CAR expression in human embryos and hESC illustrates its role in pluripotency and tight junctions. Reproduction 2014;148:531-44. [PMID: 25118298 DOI: 10.1530/REP-14-0253] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.1] [Reference Citation Analysis]
386 Tian X, Fei Q, Du M, Zhu H, Ye J, Qian L, Lu Z, Zhang W, Wang Y, Peng F, Chen J, Liu B, Li Q, He X, Yin L. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med 2019;8:1197-208. [PMID: 30741461 DOI: 10.1002/cam4.1981] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
387 Islam R, Yoon H, Kim BS, Bae HS, Shin HR, Kim WJ, Yoon WJ, Lee YS, Woo KM, Baek JH, Ryoo HM. Blood-testis barrier integrity depends on Pin1 expression in Sertoli cells. Sci Rep 2017;7:6977. [PMID: 28765625 DOI: 10.1038/s41598-017-07229-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
388 Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010;15:169-190. [PMID: 20467795 DOI: 10.1007/s10911-010-9181-1] [Cited by in Crossref: 145] [Cited by in F6Publishing: 152] [Article Influence: 12.1] [Reference Citation Analysis]
389 Perrot CY, Javelaud D, Mauviel A. Overlapping activities of TGF-β and Hedgehog signaling in cancer: therapeutic targets for cancer treatment. Pharmacol Ther. 2013;137:183-199. [PMID: 23063491 DOI: 10.1016/j.pharmthera.2012.10.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
390 Liu P, He K, Song H, Ma Z, Yin W, Xu LX. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-α-dependent NF-κB signaling and TGF-β signaling. J Inorg Biochem 2016;160:40-8. [PMID: 27138103 DOI: 10.1016/j.jinorgbio.2016.04.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
391 Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V. Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells. Stem Cells Int 2019;2019:8387478. [PMID: 31191685 DOI: 10.1155/2019/8387478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
392 Liu L, Chen X, Wang Y, Qu Z, Lu Q, Zhao J, Yan X, Zhang H, Zhou Y. Notch3 is important for TGF-β-induced epithelial–mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1. Cancer Gene Ther 2014;21:364-72. [DOI: 10.1038/cgt.2014.39] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
393 Nandy SB, Lakshmanaswamy R. Cancer Stem Cells and Metastasis. Approaches to Understanding Breast Cancer. Elsevier; 2017. pp. 137-76. [DOI: 10.1016/bs.pmbts.2017.07.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
394 Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q, Xu Y. PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci 2013;126:3939-47. [PMID: 23843607 DOI: 10.1242/jcs.127381] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 6.3] [Reference Citation Analysis]
395 Peng Z, Wang CX, Fang EH, Wang GB, Tong Q. Role of epithelial-mesenchymal transition in gastric cancer initiation and progression. World J Gastroenterol 2014; 20(18): 5403-5410 [PMID: 24833870 DOI: 10.3748/wjg.v20.i18.5403] [Cited by in CrossRef: 112] [Cited by in F6Publishing: 110] [Article Influence: 14.0] [Reference Citation Analysis]
396 Franco DL, Mainez J, Vega S, Sancho P, Murillo MM, de Frutos CA, Del Castillo G, López-Blau C, Fabregat I, Nieto MA. Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 2010;123:3467-77. [PMID: 20930141 DOI: 10.1242/jcs.068692] [Cited by in Crossref: 97] [Cited by in F6Publishing: 93] [Article Influence: 8.8] [Reference Citation Analysis]
397 Alkatout I, Wiedermann M, Bauer M, Wenners A, Jonat W, Klapper W. Transcription factors associated with epithelial–mesenchymal transition and cancer stem cells in the tumor centre and margin of invasive breast cancer. Experimental and Molecular Pathology 2013;94:168-73. [DOI: 10.1016/j.yexmp.2012.09.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.6] [Reference Citation Analysis]
398 Díez M, Musri MM, Ferrer E, Barberà JA, Peinado VI. Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFβRI. Cardiovascular Research 2010;88:502-11. [DOI: 10.1093/cvr/cvq236] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 5.0] [Reference Citation Analysis]
399 Qiao P, Li G, Bi W, Yang L, Yao L, Wu D. microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer. 2015;15:469. [PMID: 26077733 DOI: 10.1186/s12885-015-1359-x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 8.4] [Reference Citation Analysis]
400 Johnson JR, Nishioka M, Chakir J, Risse PA, Almaghlouth I, Bazarbashi AN, Plante S, Martin JG, Eidelman D, Hamid Q. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respir Res 2013;14:118. [PMID: 24283210 DOI: 10.1186/1465-9921-14-118] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 5.3] [Reference Citation Analysis]
401 Niño CA, Sala S, Polo S. When ubiquitin meets E-cadherin: Plasticity of the epithelial cellular barrier. Seminars in Cell & Developmental Biology 2019;93:136-44. [DOI: 10.1016/j.semcdb.2018.12.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
402 Yuan Y, Chen H, Ma G, Cao X, Liu Z. Reelin is involved in transforming growth factor-β1-induced cell migration in esophageal carcinoma cells. PLoS One 2012;7:e31802. [PMID: 22393371 DOI: 10.1371/journal.pone.0031802] [Cited by in F6Publishing: 38] [Reference Citation Analysis]
403 Batlle R, Alba-Castellón L, Loubat-Casanovas J, Armenteros E, Francí C, Stanisavljevic J, Banderas R, Martin-Caballero J, Bonilla F, Baulida J, Casal JI, Gridley T, García de Herreros A. Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene 2013;32:3381-9. [PMID: 22869142 DOI: 10.1038/onc.2012.342] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]
404 Shen H, Zhong F, Zhang Y, Yu H, Liu Y, Qin L, He F, Tang Z, Yang P. Transcriptome and proteome of HCC reveal shared metastatic pathways with significant genes. Proteomics. 2015; Feb 4. [Epub ahead of print]. [PMID: 25652264 DOI: 10.1002/pmic.201400275] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
405 Wu N, Jiang M, Liu H, Chu Y, Wang D, Cao J, Wang Z, Xie X, Han Y, Xu B. LINC00941 promotes CRC metastasis through preventing SMAD4 protein degradation and activating the TGF-β/SMAD2/3 signaling pathway. Cell Death Differ 2021;28:219-32. [PMID: 32737443 DOI: 10.1038/s41418-020-0596-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
406 Tang X, Sui X, Weng L, Liu Y. SNAIL1: Linking Tumor Metastasis to Immune Evasion. Front Immunol 2021;12:724200. [PMID: 34917071 DOI: 10.3389/fimmu.2021.724200] [Reference Citation Analysis]
407 Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012;13:616-30. [PMID: 22992590 DOI: 10.1038/nrm3434] [Cited by in Crossref: 1815] [Cited by in F6Publishing: 1738] [Article Influence: 181.5] [Reference Citation Analysis]
408 Li YY, Xu QW, Xu PY, Li WM. MSC-derived exosomal miR-34a/c-5p and miR-29b-3p improve intestinal barrier function by targeting the Snail/Claudins signaling pathway. Life Sci 2020;257:118017. [PMID: 32603821 DOI: 10.1016/j.lfs.2020.118017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
409 Tian B, Li X, Kalita M, Widen SG, Yang J, Bhavnani SK, Dang B, Kudlicki A, Sinha M, Kong F, Wood TG, Luxon BA, Brasier AR. Analysis of the TGFβ-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition. BMC Genomics 2015;16:529. [PMID: 26187636 DOI: 10.1186/s12864-015-1707-x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
410 Bebee TW, Cieply BW, Carstens RP. Genome-wide activities of RNA binding proteins that regulate cellular changes in the epithelial to mesenchymal transition (EMT). Adv Exp Med Biol 2014;825:267-302. [PMID: 25201109 DOI: 10.1007/978-1-4939-1221-6_8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
411 Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, Jin Y, Jansson M, Alexander JS, Nelson CM. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene. 2015; May 11. [Epub ahead of print]. [PMID: 25961925 DOI: 10.1038/onc.2015.133] [Cited by in Crossref: 167] [Cited by in F6Publishing: 170] [Article Influence: 23.9] [Reference Citation Analysis]
412 Kim S, Ham S, Yang K, Kim K. Protein kinase CK2 activation is required for transforming growth factor β-induced epithelial-mesenchymal transition. Mol Oncol 2018;12:1811-26. [PMID: 30171795 DOI: 10.1002/1878-0261.12378] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
413 Mallikarjuna P, Raviprakash TS, Aripaka K, Ljungberg B, Landström M. Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle 2019;18:2141-56. [PMID: 31339433 DOI: 10.1080/15384101.2019.1642069] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
414 Scharl M, Weber A, Fürst A, Farkas S, Jehle E, Pesch T, Kellermeier S, Fried M, Rogler G. Potential role for SNAIL family transcription factors in the etiology of Crohn’s disease-associated fistulae. Inflamm Bowel Dis. 2011;17:1907-1916. [PMID: 21830269 DOI: 10.1002/ibd.21555] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
415 Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2010;2:154-9. [PMID: 22263037 DOI: 10.3978/j.issn.2072-1439.2010.02.03.7] [Cited by in F6Publishing: 76] [Reference Citation Analysis]
416 Sharma P, Kolawole AO, Core SB, Kajon AE, Excoffon KJ. Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection. PLoS One 2012;7:e49930. [PMID: 23166798 DOI: 10.1371/journal.pone.0049930] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
417 Strippoli R, Benedicto I, Perez Lozano ML, Pellinen T, Sandoval P, Lopez-Cabrera M, del Pozo MA. Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells. PLoS One 2012;7:e31492. [PMID: 22384029 DOI: 10.1371/journal.pone.0031492] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 3.6] [Reference Citation Analysis]
418 Hwang I, Seo EY, Ha H. Wnt/beta-catenin signaling: a novel target for therapeutic intervention of fibrotic kidney disease. Arch Pharm Res. 2009;32:1653-1662. [PMID: 20162391 DOI: 10.1007/s12272-009-2200-3] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
419 Prakash V, Carson BB, Feenstra JM, Dass RA, Sekyrova P, Hoshino A, Petersen J, Guo Y, Parks MM, Kurylo CM, Batchelder JE, Haller K, Hashimoto A, Rundqivst H, Condeelis JS, Allis CD, Drygin D, Nieto MA, Andäng M, Percipalle P, Bergh J, Adameyko I, Farrants AÖ, Hartman J, Lyden D, Pietras K, Blanchard SC, Vincent CT. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat Commun 2019;10:2110. [PMID: 31068593 DOI: 10.1038/s41467-019-10100-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 15.0] [Reference Citation Analysis]
420 Wang B, Liu T, Wu J, Luo S, Chen R, Lu L, Xu M. STAT3 aggravates TGF-β1-induced hepatic epithelial-to-mesenchymal transition and migration. Biomedicine & Pharmacotherapy 2018;98:214-21. [DOI: 10.1016/j.biopha.2017.12.035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]