BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dudek H, Wong DH, Arvan R, Shah A, Wortham K, Ying B, Diwanji R, Zhou W, Holmes B, Yang H, Cyr WA, Zhou Y, Shah A, Farkiwala R, Lee M, Li Y, Rettig GR, Collingwood MA, Basu SK, Behlke MA, Brown BD. Knockdown of β-catenin with dicer-substrate siRNAs reduces liver tumor burden in vivo. Mol Ther 2014;22:92-101. [PMID: 24089139 DOI: 10.1038/mt.2013.233] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.1] [Reference Citation Analysis]
Number Citing Articles
1 Lai C, Martin-higueras C, Salido E. siRNA Therapeutics to Treat Liver Disorders. In: Brunetti-pierri N, editor. Safety and Efficacy of Gene-Based Therapeutics for Inherited Disorders. Cham: Springer International Publishing; 2017. pp. 159-90. [DOI: 10.1007/978-3-319-53457-2_8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
2 Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: issues and future directions. Expert Opinion on Drug Delivery 2018;15:1053-65. [DOI: 10.1080/17425247.2018.1520836] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
3 He XY, Liu BY, Peng Y, Zhuo RX, Cheng SX. Multifunctional Vector for Delivery of Genome Editing Plasmid Targeting β-Catenin to Remodulate Cancer Cell Properties. ACS Appl Mater Interfaces 2019;11:226-37. [PMID: 30540162 DOI: 10.1021/acsami.8b17481] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
4 Miller JB, Siegwart DJ. Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing. Nano Res 2018;11:5310-37. [DOI: 10.1007/s12274-018-2099-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
5 Wittrup A, Lieberman J. Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 2015;16:543-52. [PMID: 26281785 DOI: 10.1038/nrg3978] [Cited by in Crossref: 482] [Cited by in F6Publishing: 459] [Article Influence: 68.9] [Reference Citation Analysis]
6 Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021;13:1792. [PMID: 33918653 DOI: 10.3390/cancers13081792] [Reference Citation Analysis]
7 Wang K, Kievit FM, Sham JG, Jeon M, Stephen ZR, Bakthavatsalam A, Park JO, Zhang M. Iron-Oxide-Based Nanovector for Tumor Targeted siRNA Delivery in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. Small 2016;12:477-87. [PMID: 26641029 DOI: 10.1002/smll.201501985] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
8 Du Y, Wu J, Luo L. Secreted Heat Shock Protein 90α Attenuated the Effect of Anticancer Drugs in Small-Cell Lung Cancer Cells Through AKT/GSK3β/β-Catenin Signaling. Cancer Control 2018;25:1073274818804489. [PMID: 30282477 DOI: 10.1177/1073274818804489] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Lorenzer C, Dirin M, Winkler AM, Baumann V, Winkler J. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J Control Release 2015;203:1-15. [PMID: 25660205 DOI: 10.1016/j.jconrel.2015.02.003] [Cited by in Crossref: 177] [Cited by in F6Publishing: 170] [Article Influence: 25.3] [Reference Citation Analysis]
10 Gordillo GM, Biswas A, Khanna S, Pan X, Sinha M, Roy S, Sen CK. Dicer knockdown inhibits endothelial cell tumor growth via microRNA 21a-3p targeting of Nox-4. J Biol Chem 2014;289:9027-38. [PMID: 24497637 DOI: 10.1074/jbc.M113.519264] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
11 Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opin Drug Discov 2018;13:709-25. [PMID: 29902093 DOI: 10.1080/17460441.2018.1480607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Shaikh MH, Clarke DTW, Johnson NW, McMillan NAJ. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol 2017;68:9-19. [PMID: 28438299 DOI: 10.1016/j.oraloncology.2017.02.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
13 Usher L, Theotokis PI, Moschos SA. RACE-SEQ and Population-Wide Polymorphism Susceptibility Testing for Endonucleolytically Active, RNA-Targeting Therapeutics. Methods Mol Biol 2019;2036:283-305. [PMID: 31410804 DOI: 10.1007/978-1-4939-9670-4_17] [Reference Citation Analysis]
14 Ganesh S, Koser ML, Cyr WA, Chopda GR, Tao J, Shui X, Ying B, Chen D, Pandya P, Chipumuro E, Siddiquee Z, Craig K, Lai C, Dudek H, Monga SP, Wang W, Brown BD, Abrams MT. Direct Pharmacological Inhibition of β-Catenin by RNA Interference in Tumors of Diverse Origin. Mol Cancer Ther 2016;15:2143-54. [PMID: 27390343 DOI: 10.1158/1535-7163.MCT-16-0309] [Cited by in Crossref: 26] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
15 Kubo T, Nishimura Y, Sato Y, Yanagihara K, Seyama T. Sixteen Different Types of Lipid-Conjugated siRNAs Containing Saturated and Unsaturated Fatty Acids and Exhibiting Enhanced RNAi Potency. ACS Chem Biol 2021;16:150-64. [PMID: 33346648 DOI: 10.1021/acschembio.0c00847] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bégin-Lavallée V, Midavaine É, Dansereau MA, Tétreault P, Longpré JM, Jacobi AM, Rose SD, Behlke MA, Beaudet N, Sarret P. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development. Mol Pain 2016;12:1744806916653969. [PMID: 27306408 DOI: 10.1177/1744806916653969] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
17 Zhang L, Chang L, Xu J, Meyers CA, Yan N, Zou E, Ding C, Ting K, Soo C, Pang S, James AW. Frontal Bone Healing Is Sensitive to Wnt Signaling Inhibition via Lentiviral-Encoded Beta-Catenin Short Hairpin RNA. Tissue Eng Part A 2018. [PMID: 29929440 DOI: 10.1089/ten.TEA.2017.0465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. Nano Lett 2018;18:3814-22. [PMID: 29694050 DOI: 10.1021/acs.nanolett.8b01101] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 17.0] [Reference Citation Analysis]
19 Rajasekaran D, Srivastava J, Ebeid K, Gredler R, Akiel M, Jariwala N, Robertson CL, Shen XN, Siddiq A, Fisher PB, Salem AK, Sarkar D. Combination of Nanoparticle-Delivered siRNA for Astrocyte Elevated Gene-1 (AEG-1) and All-trans Retinoic Acid (ATRA): An Effective Therapeutic Strategy for Hepatocellular Carcinoma (HCC). Bioconjug Chem 2015;26:1651-61. [PMID: 26079152 DOI: 10.1021/acs.bioconjchem.5b00254] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
20 Zhang W, Chen E, Chen M, Ye C, Qi Y, Ding Q, Li H, Xue D, Gao X, Pan Z. IGFBP7 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via Wnt/β-catenin signaling pathway. FASEB J 2018;32:2280-91. [PMID: 29242275 DOI: 10.1096/fj.201700998RR] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
21 Arruda DC, Hoffmann C, Charrueau C, Bigey P, Escriou V. Innovative nonviral vectors for small-interfering RNA delivery and therapy. Nanostructures for Novel Therapy. Elsevier; 2017. pp. 713-40. [DOI: 10.1016/b978-0-323-46142-9.00026-8] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
22 Ding Z, Shi C, Jiang L, Tolstykh T, Cao H, Bangari DS, Ryan S, Levit M, Jin T, Mamaat K, Yu Q, Qu H, Hopke J, Cindhuchao M, Hoffmann D, Sun F, Helms MW, Jahn-Hofmann K, Scheidler S, Schweizer L, Fang DD, Pollard J, Winter C, Wiederschain D. Oncogenic dependency on β-catenin in liver cancer cell lines correlates with pathway activation. Oncotarget 2017;8:114526-39. [PMID: 29383099 DOI: 10.18632/oncotarget.21298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
23 Ganesh S, Shui X, Craig KP, Koser ML, Chopda GR, Cyr WA, Lai C, Dudek H, Wang W, Brown BD, Abrams MT. β-Catenin mRNA Silencing and MEK Inhibition Display Synergistic Efficacy in Preclinical Tumor Models. Mol Cancer Ther 2018;17:544-53. [PMID: 29282298 DOI: 10.1158/1535-7163.MCT-17-0605] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
24 Krutsenko Y, Singhi AD, Monga SP. β-Catenin Activation in Hepatocellular Cancer: Implications in Biology and Therapy. Cancers (Basel) 2021;13:1830. [PMID: 33921282 DOI: 10.3390/cancers13081830] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Press AT, Traeger A, Pietsch C, Mosig A, Wagner M, Clemens MG, Jbeily N, Koch N, Gottschaldt M, Bézière N, Ermolayev V, Ntziachristos V, Popp J, Kessels MM, Qualmann B, Schubert US, Bauer M. Cell type-specific delivery of short interfering RNAs by dye-functionalised theranostic nanoparticles. Nat Commun 2014;5:5565. [PMID: 25470305 DOI: 10.1038/ncomms6565] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 5.4] [Reference Citation Analysis]
26 Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015;200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Cited by in Crossref: 979] [Cited by in F6Publishing: 877] [Article Influence: 122.4] [Reference Citation Analysis]
27 Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev 2021;41:2109-29. [PMID: 33475177 DOI: 10.1002/med.21787] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
28 Dutta C, Avitahl-Curtis N, Pursell N, Larsson Cohen M, Holmes B, Diwanji R, Zhou W, Apponi L, Koser M, Ying B, Chen D, Shui X, Saxena U, Cyr WA, Shah A, Nazef N, Wang W, Abrams M, Dudek H, Salido E, Brown BD, Lai C. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1. Mol Ther 2016;24:770-8. [PMID: 26758691 DOI: 10.1038/mt.2016.4] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 8.8] [Reference Citation Analysis]
29 Kubo T, Nishimura Y, Hatori Y, Akagi R, Mihara K, Yanagihara K, Seyama T. Antitumor effect of palmitic acid‐conjugated Dsi RNA for colon cancer in a mouse subcutaneous tumor model. Chem Biol Drug Des 2019;93:570-81. [DOI: 10.1111/cbdd.13454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Deshantri AK, Varela Moreira A, Ecker V, Mandhane SN, Schiffelers RM, Buchner M, Fens MHAM. Nanomedicines for the treatment of hematological malignancies. J Control Release 2018;287:194-215. [PMID: 30165140 DOI: 10.1016/j.jconrel.2018.08.034] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 11.5] [Reference Citation Analysis]
31 Ohtsuka M, Ling H, Doki Y, Mori M, Calin GA. MicroRNA Processing and Human Cancer. J Clin Med. 2015;4:1651-1667. [PMID: 26308063 DOI: 10.3390/jcm4081651] [Cited by in Crossref: 108] [Cited by in F6Publishing: 112] [Article Influence: 15.4] [Reference Citation Analysis]
32 Barba AA, Bochicchio S, Dalmoro A, Lamberti G. Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics 2019;11:E360. [PMID: 31344836 DOI: 10.3390/pharmaceutics11080360] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
33 Liu M, Bamodu OA, Kuo KT, Lee WH, Lin YK, Wu ATH, M H, Tzeng YM, Yeh CT, Tsai JT. Downregulation of Cancer Stemness by Novel Diterpenoid Ovatodiolide Inhibits Hepatic Cancer Stem Cell-Like Traits by Repressing Wnt/[Formula: see text]-Catenin Signaling. Am J Chin Med 2018;46:891-910. [PMID: 29792038 DOI: 10.1142/S0192415X18500477] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
34 Duan W, Wang T, Shigdar S, Tran P. RNA Aptamers-Guided Precision Cancer Medicine. In: Vo Van T, Nguyen Le TA, Nguyen Duc T, editors. 6th International Conference on the Development of Biomedical Engineering in Vietnam (BME6). Singapore: Springer; 2018. pp. 529-35. [DOI: 10.1007/978-981-10-4361-1_90] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
35 Banerjee I, Fisher PB, Sarkar D. Astrocyte elevated gene-1 (AEG-1): A key driver of hepatocellular carcinoma (HCC). Adv Cancer Res 2021;152:329-81. [PMID: 34353442 DOI: 10.1016/bs.acr.2021.05.003] [Reference Citation Analysis]
36 France MM, Rio TD, Travers H, Raftery E, Langer R, Traverso G, Schoellhammer CM. Platform for the Delivery of Unformulated RNA In Vivo. J Pharm Sci 2021:S0022-3549(21)00681-X. [PMID: 34906584 DOI: 10.1016/j.xphs.2021.12.008] [Reference Citation Analysis]
37 Forbes TA, Brown BD, Lai C. Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. Br J Clin Pharmacol 2021. [PMID: 34022071 DOI: 10.1111/bcp.14925] [Reference Citation Analysis]
38 Miller AD. Delivering the promise of small ncRNA therapeutics. Therapeutic Delivery 2014;5:569-89. [DOI: 10.4155/tde.14.23] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
39 Lennox KA, Behlke MA. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016;44:863-877. [PMID: 26578588 DOI: 10.1093/nar/gkv1206] [Cited by in Crossref: 236] [Cited by in F6Publishing: 230] [Article Influence: 33.7] [Reference Citation Analysis]
40 Hu T, Phiwpan K, Guo J, Zhang W, Guo J, Zhang Z, Zou M, Zhang X, Zhang J, Zhou X. MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway. PLoS One 2016;11:e0158432. [PMID: 27348426 DOI: 10.1371/journal.pone.0158432] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
41 Theotokis PI, Usher L, Kortschak CK, Schwalbe E, Moschos SA. Profiling the Mismatch Tolerance of Argonaute 2 through Deep Sequencing of Sliced Polymorphic Viral RNAs. Mol Ther Nucleic Acids 2017;9:22-33. [PMID: 29246301 DOI: 10.1016/j.omtn.2017.08.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
42 Deng R, Liu B, Wang Y, Yan F, Hu S, Wang H, Wang T, Li B, Deng X, Xiang S, Yang Y, Zhang J. High Expression of the Newly Found Long Noncoding RNA Z38 Promotes Cell Proliferation and Oncogenic Activity in Breast Cancer. J Cancer 2016;7:576-86. [PMID: 27053956 DOI: 10.7150/jca.13117] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
43 Lytton-jean AKR, Kauffman KJ, Kaczmarek JC, Langer R. Cancer Nanotherapeutics in Clinical Trials. In: Mirkin CA, Meade TJ, Petrosko SH, Stegh AH, editors. Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cham: Springer International Publishing; 2015. pp. 293-322. [DOI: 10.1007/978-3-319-16555-4_13] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
44 Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2019;120:4783-93. [PMID: 30450580 DOI: 10.1002/jcb.27857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
45 Ngamcherdtrakul W, Castro DJ, Gu S, Morry J, Reda M, Gray JW, Yantasee W. Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treat Rev 2016;45:19-29. [PMID: 26930249 DOI: 10.1016/j.ctrv.2016.02.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
46 Ionov M, Lazniewska J, Dzmitruk V, Halets I, Loznikova S, Novopashina D, Apartsin E, Krasheninina O, Venyaminova A, Milowska K, Nowacka O, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Shcharbin D, Bryszewska M. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. Int J Pharm 2015;485:261-9. [PMID: 25791760 DOI: 10.1016/j.ijpharm.2015.03.024] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 5.3] [Reference Citation Analysis]
47 Salomon A, Keramidas M, Maisin C, Thomas M. Loss of β-catenin in adrenocortical cancer cells causes growth inhibition and reversal of epithelial-to-mesenchymal transition. Oncotarget 2015;6:11421-33. [PMID: 25823656 DOI: 10.18632/oncotarget.3222] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]