BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, Peng Y, Mao H, Yi L, Ghoshal K, He X, Devine SM, Zhang X, Caligiuri MA, Hofmeister CC, Yu J. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 2014;28:917-27. [PMID: 24067492 DOI: 10.1038/leu.2013.279] [Cited by in Crossref: 238] [Cited by in F6Publishing: 239] [Article Influence: 26.4] [Reference Citation Analysis]
Number Citing Articles
1 Cooke RE, Koldej R, Ritchie D. Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? J Oncol 2019;2019:2186494. [PMID: 31093282 DOI: 10.1155/2019/2186494] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
2 Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, Victor A, Meisen WH, Kim SH, Grandi P, Wang QE, He X, Nakano I, Chiocca EA, Glorioso Iii JC, Kaur B, Caligiuri MA, Yu J. CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Sci Rep 2015;5:11483. [PMID: 26155832 DOI: 10.1038/srep11483] [Cited by in Crossref: 156] [Cited by in F6Publishing: 153] [Article Influence: 22.3] [Reference Citation Analysis]
3 Yong CS, John LB, Devaud C, Prince MH, Johnstone RW, Trapani JA, Darcy PK, Kershaw MH. A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget 2016;7:34582-98. [PMID: 27153556 DOI: 10.18632/oncotarget.9149] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
4 Mirzaei HR, Jamali A, Jafarzadeh L, Masoumi E, Alishah K, Fallah Mehrjardi K, Emami SAH, Noorbakhsh F, Till BG, Hadjati J. Construction and functional characterization of a fully human anti‐CD19 chimeric antigen receptor (huCAR)‐expressing primary human T cells. J Cell Physiol 2019;234:9207-15. [DOI: 10.1002/jcp.27599] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
5 Wang Y, Zhang Y, Hughes T, Zhang J, Caligiuri MA, Benson DM, Yu J. Fratricide of NK Cells in Daratumumab Therapy for Multiple Myeloma Overcome by Ex Vivo-Expanded Autologous NK Cells. Clin Cancer Res 2018;24:4006-17. [PMID: 29666301 DOI: 10.1158/1078-0432.CCR-17-3117] [Cited by in Crossref: 53] [Cited by in F6Publishing: 34] [Article Influence: 13.3] [Reference Citation Analysis]
6 Sayitoglu EC, Georgoudaki AM, Chrobok M, Ozkazanc D, Josey BJ, Arif M, Kusser K, Hartman M, Chinn TM, Potens R, Pamukcu C, Krueger R, Zhang C, Mardinoglu A, Alici E, Temple HT, Sutlu T, Duru AD. Boosting Natural Killer Cell-Mediated Targeting of Sarcoma Through DNAM-1 and NKG2D. Front Immunol 2020;11:40. [PMID: 32082316 DOI: 10.3389/fimmu.2020.00040] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
7 Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma 2018;59:2056-67. [PMID: 29105517 DOI: 10.1080/10428194.2017.1393668] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 6.2] [Reference Citation Analysis]
8 Pazina T, MacFarlane AW 4th, Bernabei L, Dulaimi E, Kotcher R, Yam C, Bezman NA, Robbins MD, Ross EA, Campbell KS, Cohen AD. Alterations of NK Cell Phenotype in the Disease Course of Multiple Myeloma. Cancers (Basel) 2021;13:E226. [PMID: 33435153 DOI: 10.3390/cancers13020226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
9 Glienke W, Esser R, Priesner C, Suerth JD, Schambach A, Wels WS, Grez M, Kloess S, Arseniev L, Koehl U. Advantages and applications of CAR-expressing natural killer cells. Front Pharmacol 2015;6:21. [PMID: 25729364 DOI: 10.3389/fphar.2015.00021] [Cited by in Crossref: 136] [Cited by in F6Publishing: 130] [Article Influence: 19.4] [Reference Citation Analysis]
10 Einsele H, Schreder M. Treatment of multiple myeloma with the immunostimulatory SLAMF7 antibody elotuzumab. Ther Adv Hematol 2016;7:288-301. [PMID: 27695618 DOI: 10.1177/2040620716657993] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
11 Bladé J, Rosiñol L, Fernández de Larrea C. How I treat relapsed myeloma. Blood 2015;125:1532-40. [PMID: 25587037 DOI: 10.1182/blood-2014-10-551531] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
12 Afolabi LO, Afolabi MO, Sani MM, Okunowo WO, Yan D, Chen L, Zhang Y, Wan X. Exploiting the CRISPR-Cas9 gene-editing system for human cancers and immunotherapy. Clin Transl Immunology 2021;10:e1286. [PMID: 34188916 DOI: 10.1002/cti2.1286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Raikar SS, Fleischer LC, Moot R, Fedanov A, Paik NY, Knight KA, Doering CB, Spencer HT. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. Oncoimmunology 2018;7:e1407898. [PMID: 29399409 DOI: 10.1080/2162402X.2017.1407898] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
14 Poels R, Drent E, Lameris R, Katsarou A, Themeli M, van der Vliet HJ, de Gruijl TD, van de Donk NWCJ, Mutis T. Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma. Int J Mol Sci 2021;22:1096. [PMID: 33499253 DOI: 10.3390/ijms22031096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020;38:473-88. [DOI: 10.1016/j.ccell.2020.07.005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 22.5] [Reference Citation Analysis]
16 Kumar A, Lee SJ, Liu Q, Chan AKN, Pokharel SP, Yu J, Chen CW, Swaminathan S. Generation and validation of CRISPR-engineered human natural killer cell lines for research and therapeutic applications. STAR Protoc 2021;2:100874. [PMID: 34746857 DOI: 10.1016/j.xpro.2021.100874] [Reference Citation Analysis]
17 Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E, Multhoff G. NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells 2021;10:3390. [PMID: 34943898 DOI: 10.3390/cells10123390] [Reference Citation Analysis]
18 Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol 2021;14:73. [PMID: 33933160 DOI: 10.1186/s13045-021-01083-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Shibaguchi H, Luo N, Shirasu N, Kuroki M, Kuroki M. Enhancement of antitumor activity by using a fully human gene encoding a single-chain fragmented antibody specific for carcinoembryonic antigen. Onco Targets Ther 2017;10:3979-90. [PMID: 28860806 DOI: 10.2147/OTT.S140174] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Khan AM, Devarakonda S, Bumma N, Chaudhry M, Benson DM Jr. Potential of NK cells in multiple Myeloma therapy. Expert Rev Hematol 2019;12:425-35. [PMID: 31070067 DOI: 10.1080/17474086.2019.1617128] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
21 Berrien-Elliott MM, Romee R, Fehniger TA. Improving natural killer cell cancer immunotherapy. Curr Opin Organ Transplant 2015;20:671-80. [PMID: 26414502 DOI: 10.1097/MOT.0000000000000243] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
22 Wang L, Zhang S, Ou J, Bai H. [Cytotoxity of pomalidomide combined CAR-T cell for multiple myeloma cell RPMI8226 and U266]. Zhonghua Xue Ye Xue Za Zhi 2015;36:497-500. [PMID: 26134016 DOI: 10.3760/cma.j.issn.0253-2727.2015.06.011] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Cirillo M, Tan P, Sturm M, Cole C. Cellular Immunotherapy for Hematologic Malignancies: Beyond Bone Marrow Transplantation. Biol Blood Marrow Transplant 2018;24:433-42. [PMID: 29102721 DOI: 10.1016/j.bbmt.2017.10.035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
24 Xu Y, Liu Q, Zhong M, Wang Z, Chen Z, Zhang Y, Xing H, Tian Z, Tang K, Liao X, Rao Q, Wang M, Wang J. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J Hematol Oncol 2019;12:49. [PMID: 31097020 DOI: 10.1186/s13045-019-0732-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 12.0] [Reference Citation Analysis]
25 Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol 2019;10:168. [PMID: 30800125 DOI: 10.3389/fimmu.2019.00168] [Cited by in Crossref: 227] [Cited by in F6Publishing: 222] [Article Influence: 75.7] [Reference Citation Analysis]
26 Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014;123:2625-35. [PMID: 24578504 DOI: 10.1182/blood-2013-11-492231] [Cited by in Crossref: 421] [Cited by in F6Publishing: 392] [Article Influence: 52.6] [Reference Citation Analysis]
27 Torelli GF, Peragine N, Mariglia P, Foà R. The antileukemic potential of natural killer cells. Immunotherapy 2016;8:425-34. [PMID: 26973124 DOI: 10.2217/imt-2015-0009] [Reference Citation Analysis]
28 Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 2015;7:1187-99. [PMID: 26370838 DOI: 10.2217/imt.15.77] [Cited by in Crossref: 84] [Cited by in F6Publishing: 84] [Article Influence: 12.0] [Reference Citation Analysis]
29 Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273-290. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Cited by in Crossref: 544] [Cited by in F6Publishing: 503] [Article Influence: 90.7] [Reference Citation Analysis]
30 Morandi F, Sabatini F, Podestà M, Airoldi I. Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel) 2021;9:43. [PMID: 33450862 DOI: 10.3390/vaccines9010043] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Marofi F, Saleh MM, Rahman HS, Suksatan W, Al-Gazally ME, Abdelbasset WK, Thangavelu L, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Pathak Y, Naimi A, Baradaran B, Nikoo M, Khiavi FM. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Res Ther 2021;12:374. [PMID: 34215336 DOI: 10.1186/s13287-021-02462-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Mardiana S, Lai J, House IG, Beavis PA, Darcy PK. Switching on the green light for chimeric antigen receptor T-cell therapy. Clin Transl Immunology 2019;8:e1046. [PMID: 31073403 DOI: 10.1002/cti2.1046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
33 Roeven MW, Hobo W, Schaap N, Dolstra H. Immunotherapeutic approaches to treat multiple myeloma. Hum Vaccin Immunother 2014;10:896-910. [PMID: 24335570 DOI: 10.4161/hv.27380] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
34 Rasche L, Hudecek M, Einsele H. What is the future of immunotherapy in multiple myeloma? Blood 2020;136:2491-7. [PMID: 32735639 DOI: 10.1182/blood.2019004176] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
35 Martín-Antonio B, Suñe G, Perez-Amill L, Castella M, Urbano-Ispizua A. Natural Killer Cells: Angels and Devils for Immunotherapy. Int J Mol Sci 2017;18:E1868. [PMID: 28850071 DOI: 10.3390/ijms18091868] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
36 Li X, Guo X, Zhu Y, Wei G, Zhang Y, Li X, Xu H, Cui J, Wu W, He J, Ritchie ME, Weiskittel TM, Li H, Yu H, Ding L, Shao M, Luo Q, Xu X, Teng X, Chang AH, Zhang J, Huang H, Hu Y. Single-Cell Transcriptomic Analysis Reveals BCMA CAR-T Cell Dynamics in a Patient with Refractory Primary Plasma Cell Leukemia. Mol Ther 2021;29:645-57. [PMID: 33278564 DOI: 10.1016/j.ymthe.2020.11.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
37 Shay G, Hazlehurst L, Lynch CC. Dissecting the multiple myeloma-bone microenvironment reveals new therapeutic opportunities. J Mol Med (Berl) 2016;94:21-35. [PMID: 26423531 DOI: 10.1007/s00109-015-1345-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
38 Harrer DC, Dörrie J, Schaft N. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race. Hum Gene Ther 2018;29:547-58. [PMID: 29320890 DOI: 10.1089/hum.2017.236] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
39 Bonavida B, Chouaib S. Resistance to anticancer immunity in cancer patients: potential strategies to reverse resistance. Ann Oncol 2017;28:457-67. [PMID: 27864216 DOI: 10.1093/annonc/mdw615] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
40 Mariotti FR, Quatrini L, Munari E, Vacca P, Tumino N, Pietra G, Mingari MC, Moretta L. Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. Br J Pharmacol 2020;177:2889-903. [PMID: 32335915 DOI: 10.1111/bph.15081] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
41 Rotolo R, Leuci V, Donini C, Cykowska A, Gammaitoni L, Medico G, Valabrega G, Aglietta M, Sangiolo D. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci 2019;20:E2839. [PMID: 31212634 DOI: 10.3390/ijms20112839] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
42 Zenere G, Olwenyi OA, Byrareddy SN, Braun SE. Optimizing intracellular signaling domains for CAR NK cells in HIV immunotherapy: a comprehensive review. Drug Discov Today 2019;24:983-91. [PMID: 30771481 DOI: 10.1016/j.drudis.2019.02.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
43 Habib R, Nagrial A, Micklethwaite K, Gowrishankar K. Chimeric Antigen Receptors for the Tumour Microenvironment. Adv Exp Med Biol 2020;1263:117-43. [PMID: 32588326 DOI: 10.1007/978-3-030-44518-8_8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
44 Liu D, Tian S, Zhang K, Xiong W, Lubaki NM, Chen Z, Han W. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 2017;8:861-77. [PMID: 28488245 DOI: 10.1007/s13238-017-0415-5] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 7.8] [Reference Citation Analysis]
45 Teng KY, Mansour AG, Zhu Z, Li Z, Tian L, Ma S, Xu B, Lu T, Chen H, Hou D, Zhang J, Priceman SJ, Caligiuri MA, Yu J. Off-the-Shelf Prostate Stem Cell Antigen-Directed Chimeric Antigen Receptor Natural Killer Cell Therapy to Treat Pancreatic Cancer. Gastroenterology 2022:S0016-5085(22)00001-4. [PMID: 34999097 DOI: 10.1053/j.gastro.2021.12.281] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Garfall AL, Stadtmauer EA. Cellular and vaccine immunotherapy for multiple myeloma. Hematology Am Soc Hematol Educ Program 2016;2016:521-7. [PMID: 27913524 DOI: 10.1182/asheducation-2016.1.521] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
47 Kriegsmann K, Kriegsmann M, von Bergwelt-Baildon M, Cremer M, Witzens-Harig M. NKT cells - New players in CAR cell immunotherapy? Eur J Haematol 2018;101:750-7. [PMID: 30187578 DOI: 10.1111/ejh.13170] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
48 Nethi SK, Bhatnagar S, Prabha S. Synthetic Receptor-Based Targeting Strategies to Improve Tumor Drug Delivery. AAPS PharmSciTech 2021;22:93. [PMID: 33683499 DOI: 10.1208/s12249-021-01919-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Boudreault JS, Touzeau C, Moreau P. The role of SLAMF7 in multiple myeloma: impact on therapy. Expert Rev Clin Immunol 2017;13:67-75. [PMID: 27376202 DOI: 10.1080/1744666X.2016.1209112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
50 Liegel J, Avigan D, Rosenblatt J. Cellular immunotherapy as a therapeutic approach in multiple myeloma. Expert Rev Hematol 2018;11:525-36. [PMID: 29856648 DOI: 10.1080/17474086.2018.1483718] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
51 Yang WC, Lin SF. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma. Biomed Res Int 2015;2015:341430. [PMID: 26649299 DOI: 10.1155/2015/341430] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
52 Tarannum M, Romee R. Cytokine-induced memory-like natural killer cells for cancer immunotherapy. Stem Cell Res Ther 2021;12:592. [PMID: 34863287 DOI: 10.1186/s13287-021-02655-5] [Reference Citation Analysis]
53 Fionda C, Stabile H, Molfetta R, Soriani A, Bernardini G, Zingoni A, Gismondi A, Paolini R, Cippitelli M, Santoni A. Translating the anti-myeloma activity of Natural Killer cells into clinical application. Cancer Treat Rev 2018;70:255-64. [PMID: 30326421 DOI: 10.1016/j.ctrv.2018.10.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
54 Salman H, Pinz KG, Wada M, Shuai X, Yan LE, Petrov JC, Ma Y. Preclinical Targeting of Human Acute Myeloid Leukemia Using CD4-specific Chimeric Antigen Receptor (CAR) T Cells and NK Cells. J Cancer 2019;10:4408-19. [PMID: 31413761 DOI: 10.7150/jca.28952] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
55 Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F, Moretta L. NK cells and ILCs in tumor immunotherapy. Mol Aspects Med 2021;80:100870. [PMID: 32800530 DOI: 10.1016/j.mam.2020.100870] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
56 Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, Schmetzer H, Jochem-Kolb H. Graft-versus-Leukemia Effect Following Hematopoietic Stem Cell Transplantation for Leukemia. Front Immunol 2017;8:496. [PMID: 28638379 DOI: 10.3389/fimmu.2017.00496] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 16.8] [Reference Citation Analysis]
57 Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16:7-19. [PMID: 26694935 DOI: 10.1038/nrc.2015.5] [Cited by in Crossref: 501] [Cited by in F6Publishing: 497] [Article Influence: 83.5] [Reference Citation Analysis]
58 Shevtsov M, Multhoff G. Immunological and Translational Aspects of NK Cell-Based Antitumor Immunotherapies. Front Immunol 2016;7:492. [PMID: 27891129 DOI: 10.3389/fimmu.2016.00492] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
59 Atanackovic D, Radhakrishnan SV, Bhardwaj N, Luetkens T. Chimeric Antigen Receptor (CAR) therapy for multiple myeloma. Br J Haematol 2016;172:685-98. [DOI: 10.1111/bjh.13889] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 6.7] [Reference Citation Analysis]
60 Gunduz M, Ataca Atilla P, Atilla E. New Orders to an Old Soldier: Optimizing NK Cells for Adoptive Immunotherapy in Hematology. Biomedicines 2021;9:1201. [PMID: 34572387 DOI: 10.3390/biomedicines9091201] [Reference Citation Analysis]
61 Yu M, Luo H, Fan M, Wu X, Shi B, Di S, Liu Y, Pan Z, Jiang H, Li Z. Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma. Mol Ther. 2018;26:366-378. [PMID: 29339014 DOI: 10.1016/j.ymthe.2017.12.012] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 11.4] [Reference Citation Analysis]
62 Lin WY, Wang HH, Chen YW, Lin CF, Fan HC, Lee YY. Gene Modified CAR-T Cellular Therapy for Hematologic Malignancies. Int J Mol Sci 2020;21:E8655. [PMID: 33212810 DOI: 10.3390/ijms21228655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
63 Töpfer K, Cartellieri M, Michen S, Wiedemuth R, Müller N, Lindemann D, Bachmann M, Füssel M, Schackert G, Temme A. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J Immunol 2015;194:3201-12. [PMID: 25740942 DOI: 10.4049/jimmunol.1400330] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 13.7] [Reference Citation Analysis]
64 Thumallapally N, Yu H, Asti D, Vennepureddy A, Terjanian T. Salvage therapies in relapsed and/or refractory myeloma: what is current and what is the future? Onco Targets Ther 2016;9:4843-58. [PMID: 27540299 DOI: 10.2147/OTT.S110189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
65 Burga RA, Nguyen T, Zulovich J, Madonna S, Ylisastigui L, Fernandes R, Yvon E. Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells. Cytotherapy 2016;18:1410-21. [PMID: 27421740 DOI: 10.1016/j.jcyt.2016.05.018] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
66 Wang D, Chen J, Li R, Wu G, Sun Z, Wang Z, Zhai Z, Fang F, Guo Y, Zhong Y, Jiang M, Xu H, Chen M, Shen G, Sun J, Yan B, Yu C, Tian Z, Xiao W. PAX5 interacts with RIP2 to promote NF-κB activation and drug-resistance of B-lymphoproliferative disorders. Journal of Cell Science. [DOI: 10.1242/jcs.183889] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
67 Buller CW, Mathew PA, Mathew SO. Roles of NK Cell Receptors 2B4 (CD244), CS1 (CD319), and LLT1 (CLEC2D) in Cancer. Cancers (Basel) 2020;12:E1755. [PMID: 32630303 DOI: 10.3390/cancers12071755] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
68 Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, Wels WS, Ottmann OG, Tonn T. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med 2016;20:1287-94. [PMID: 27008316 DOI: 10.1111/jcmm.12810] [Cited by in Crossref: 112] [Cited by in F6Publishing: 103] [Article Influence: 18.7] [Reference Citation Analysis]
69 Timmers M, Roex G, Wang Y, Campillo-Davo D, Van Tendeloo VFI, Chu Y, Berneman ZN, Luo F, Van Acker HH, Anguille S. Chimeric Antigen Receptor-Modified T Cell Therapy in Multiple Myeloma: Beyond B Cell Maturation Antigen. Front Immunol 2019;10:1613. [PMID: 31379824 DOI: 10.3389/fimmu.2019.01613] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 13.0] [Reference Citation Analysis]
70 Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021;10:343-71. [PMID: 34527606 DOI: 10.2147/ITT.S306103] [Reference Citation Analysis]
71 Nagle SJ, Garfall AL, Stadtmauer EA. The Promise of Chimeric Antigen Receptor Engineered T Cells in the Treatment of Hematologic Malignancies. Cancer J 2016;22:27-33. [PMID: 26841014 DOI: 10.1097/PPO.0000000000000166] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 An N, Hou YN, Zhang QX, Li T, Zhang QL, Fang C, Chen H, Lee HC, Zhao YJ, Du X. Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells. Mol Pharm 2018;15:4577-88. [PMID: 30185037 DOI: 10.1021/acs.molpharmaceut.8b00584] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
73 Zhang Q, Tian K, Xu J, Zhang H, Li L, Fu Q, Chai D, Li H, Zheng J. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma. J Immunol Res 2017;2017:6915912. [PMID: 29423418 DOI: 10.1155/2017/6915912] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
74 Jeong JU, Uong TNT, Chung WK, Nam TK, Ahn SJ, Song JY, Kim SK, Shin DJ, Cho E, Kim KW, Cho D, Yoon MS. Effect of irradiation-induced intercellular adhesion molecule-1 expression on natural killer cell-mediated cytotoxicity toward human cancer cells. Cytotherapy 2018;20:715-27. [PMID: 29572116 DOI: 10.1016/j.jcyt.2018.01.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
75 Chang L, Gallego-Perez D, Zhao X, Bertani P, Yang Z, Chiang CL, Malkoc V, Shi J, Sen CK, Odonnell L, Yu J, Lu W, Lee LJ. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab Chip 2015;15:3147-53. [PMID: 26105628 DOI: 10.1039/c5lc00553a] [Cited by in Crossref: 65] [Cited by in F6Publishing: 26] [Article Influence: 10.8] [Reference Citation Analysis]
76 Maus MV, June CH. CARTs on the road for myeloma. Clin Cancer Res 2014;20:3899-901. [PMID: 24919574 DOI: 10.1158/1078-0432.CCR-14-0721] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
77 Rafei H, Daher M, Rezvani K. Chimeric antigen receptor (CAR) natural killer (NK)-cell therapy: leveraging the power of innate immunity. Br J Haematol 2021;193:216-30. [PMID: 33216984 DOI: 10.1111/bjh.17186] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
78 Carlsten M, Childs RW. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications. Front Immunol 2015;6:266. [PMID: 26113846 DOI: 10.3389/fimmu.2015.00266] [Cited by in Crossref: 103] [Cited by in F6Publishing: 103] [Article Influence: 14.7] [Reference Citation Analysis]
79 Khawar MB, Sun H. CAR-NK Cells: From Natural Basis to Design for Kill. Front Immunol 2021;12:707542. [PMID: 34970253 DOI: 10.3389/fimmu.2021.707542] [Reference Citation Analysis]
80 Pinz KG, Yakaboski E, Jares A, Liu H, Firor AE, Chen KH, Wada M, Salman H, Tse W, Hagag N, Lan F, Leung EL, Jiang X, Ma Y. Targeting T-cell malignancies using anti-CD4 CAR NK-92 cells. Oncotarget 2017;8:112783-96. [PMID: 29348865 DOI: 10.18632/oncotarget.22626] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 7.4] [Reference Citation Analysis]
81 Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. Adv Exp Med Biol 2016;909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
82 Chen Y, You F, Jiang L, Li J, Zhu X, Bao Y, Sun X, Tang X, Meng H, An G, Zhang B, Yang L. Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Oncotarget 2017;8:37128-39. [PMID: 28415754 DOI: 10.18632/oncotarget.16201] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
83 Dehbashi M, Hojati Z, Motovali-Bashi M, Ganjalikhany MR, Cho WC, Shimosaka A, Navabi P, Ganjalikhani-Hakemi M. A Novel CAR Expressing NK Cell Targeting CD25 With the Prospect of Overcoming Immune Escape Mechanism in Cancers. Front Oncol 2021;11:649710. [PMID: 34055618 DOI: 10.3389/fonc.2021.649710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 van de Donk NWCJ, Themeli M, Usmani SZ. Determinants of response and mechanisms of resistance of CAR T-cell therapy in multiple myeloma. Blood Cancer Discov 2021;2:302-18. [PMID: 34386775 DOI: 10.1158/2643-3230.bcd-20-0227] [Reference Citation Analysis]
85 Ji T, Lang J, Ning B, Qi F, Wang H, Zhang Y, Zhao R, Yang X, Zhang L, Li W, Shi X, Qin Z, Zhao Y, Nie G. Enhanced Natural Killer Cell Immunotherapy by Rationally Assembling Fc Fragments of Antibodies onto Tumor Membranes. Adv Mater 2018. [DOI: 10.1002/adma.201804395] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
86 Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res 2021;8:9. [PMID: 33504363 DOI: 10.1186/s40779-021-00302-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
87 Chan WK, Kang S, Youssef Y, Glankler EN, Barrett ER, Carter AM, Ahmed EH, Prasad A, Chen L, Zhang J, Benson DM Jr, Caligiuri MA, Yu J. A CS1-NKG2D Bispecific Antibody Collectively Activates Cytolytic Immune Cells against Multiple Myeloma. Cancer Immunol Res 2018;6:776-87. [PMID: 29769244 DOI: 10.1158/2326-6066.CIR-17-0649] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 9.3] [Reference Citation Analysis]
88 Schönfeld K, Sahm C, Zhang C, Naundorf S, Brendel C, Odendahl M, Nowakowska P, Bönig H, Köhl U, Kloess S, Köhler S, Holtgreve-Grez H, Jauch A, Schmidt M, Schubert R, Kühlcke K, Seifried E, Klingemann HG, Rieger MA, Tonn T, Grez M, Wels WS. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther 2015;23:330-8. [PMID: 25373520 DOI: 10.1038/mt.2014.219] [Cited by in Crossref: 154] [Cited by in F6Publishing: 146] [Article Influence: 19.3] [Reference Citation Analysis]
89 Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18:671-688. [PMID: 30209347 DOI: 10.1038/s41577-018-0061-z] [Cited by in Crossref: 298] [Cited by in F6Publishing: 302] [Article Influence: 99.3] [Reference Citation Analysis]
90 Wang WN, Zhou GY, Zhang WL. NK-92 cell, another ideal carrier for chimeric antigen receptor. Immunotherapy 2017;9:753-65. [PMID: 28771105 DOI: 10.2217/imt-2017-0022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
91 Ding L, Hu Y, Huang H. Novel progresses of chimeric antigen receptor (CAR) T cell therapy in multiple myeloma. Stem Cell Investig 2021;8:1. [PMID: 33575314 DOI: 10.21037/sci-2020-029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
92 Childs RW, Carlsten M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat Rev Drug Discov 2015;14:487-98. [PMID: 26000725 DOI: 10.1038/nrd4506] [Cited by in Crossref: 149] [Cited by in F6Publishing: 140] [Article Influence: 21.3] [Reference Citation Analysis]
93 Lee M, Kim D, Kwon S. Hypergravity-induced changes in actin response of breast cancer cells to natural killer cells. Sci Rep 2021;11:7267. [PMID: 33790394 DOI: 10.1038/s41598-021-86799-7] [Reference Citation Analysis]
94 Lowe E, Truscott LC, De Oliveira SN. In Vitro Generation of Human NK Cells Expressing Chimeric Antigen Receptor Through Differentiation of Gene-Modified Hematopoietic Stem Cells. Methods Mol Biol 2016;1441:241-51. [PMID: 27177671 DOI: 10.1007/978-1-4939-3684-7_20] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
95 Alfarra H, Weir J, Grieve S, Reiman T. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Front Immunol 2020;11:575609. [PMID: 33304346 DOI: 10.3389/fimmu.2020.575609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
96 Drent E, Groen RW, Noort WA, Themeli M, Lammerts van Bueren JJ, Parren PW, Kuball J, Sebestyen Z, Yuan H, de Bruijn J, van de Donk NW, Martens AC, Lokhorst HM, Mutis T. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica 2016;101:616-25. [PMID: 26858358 DOI: 10.3324/haematol.2015.137620] [Cited by in Crossref: 84] [Cited by in F6Publishing: 81] [Article Influence: 14.0] [Reference Citation Analysis]
97 Allegra A, Innao V, Gerace D, Vaddinelli D, Musolino C. Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells, Molecules, and Diseases 2016;62:49-63. [DOI: 10.1016/j.bcmd.2016.11.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
98 Rezvani K, Rouce R, Liu E, Shpall E. Engineering Natural Killer Cells for Cancer Immunotherapy. Mol Ther 2017;25:1769-81. [PMID: 28668320 DOI: 10.1016/j.ymthe.2017.06.012] [Cited by in Crossref: 183] [Cited by in F6Publishing: 177] [Article Influence: 36.6] [Reference Citation Analysis]
99 Kim KW, Jeong JU, Lee KH, Uong TNT, Rhee JH, Ahn SJ, Kim SK, Cho D, Quang Nguyen HP, Pham CT, Yoon MS. Combined NK Cell Therapy and Radiation Therapy Exhibit Long-Term Therapeutic and Antimetastatic Effects in a Human Triple Negative Breast Cancer Model. Int J Radiat Oncol Biol Phys 2020;108:115-25. [PMID: 31605787 DOI: 10.1016/j.ijrobp.2019.09.041] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
100 Daher M, Rezvani K. Outlook for New CAR-Based Therapies with a Focus on CAR NK Cells: What Lies Beyond CAR-Engineered T Cells in the Race against Cancer. Cancer Discov 2021;11:45-58. [PMID: 33277313 DOI: 10.1158/2159-8290.CD-20-0556] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
101 Binsfeld M, Fostier K, Muller J, Baron F, Schots R, Beguin Y, Heusschen R, Caers J. Cellular immunotherapy in multiple myeloma: lessons from preclinical models. Biochim Biophys Acta 2014;1846:392-404. [PMID: 25109893 DOI: 10.1016/j.bbcan.2014.08.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
102 D'Agostino M, Boccadoro M, Smith EL. Novel Immunotherapies for Multiple Myeloma. Curr Hematol Malig Rep 2017;12:344-57. [PMID: 28819882 DOI: 10.1007/s11899-017-0397-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
103 Benson DM Jr, Cohen AD, Jagannath S, Munshi NC, Spitzer G, Hofmeister CC, Efebera YA, Andre P, Zerbib R, Caligiuri MA. A Phase I Trial of the Anti-KIR Antibody IPH2101 and Lenalidomide in Patients with Relapsed/Refractory Multiple Myeloma. Clin Cancer Res 2015;21:4055-61. [PMID: 25999435 DOI: 10.1158/1078-0432.CCR-15-0304] [Cited by in Crossref: 108] [Cited by in F6Publishing: 79] [Article Influence: 15.4] [Reference Citation Analysis]
104 Haworth KB, Leddon JL, Chen CY, Horwitz EM, Mackall CL, Cripe TP. Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer 2015;62:571-6. [PMID: 25524394 DOI: 10.1002/pbc.25359] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
105 Mamonkin M, Mukherjee M, Srinivasan M, Sharma S, Gomes-Silva D, Mo F, Krenciute G, Orange JS, Brenner MK. Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol Res 2018;6:47-58. [PMID: 29079655 DOI: 10.1158/2326-6066.CIR-17-0126] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
106 Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021;12:692360. [PMID: 34248988 DOI: 10.3389/fimmu.2021.692360] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
107 Klingemann H, Boissel L, Toneguzzo F. Natural Killer Cells for Immunotherapy - Advantages of the NK-92 Cell Line over Blood NK Cells. Front Immunol 2016;7:91. [PMID: 27014270 DOI: 10.3389/fimmu.2016.00091] [Cited by in Crossref: 176] [Cited by in F6Publishing: 180] [Article Influence: 29.3] [Reference Citation Analysis]
108 Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, Sun JC, Chen J, Caligiuri MA, Yu J. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 2021;218:e20210279. [PMID: 34160549 DOI: 10.1084/jem.20210279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
109 Wang Y, Chu J, Yi P, Dong W, Saultz J, Wang Y, Wang H, Scoville S, Zhang J, Wu LC, Deng Y, He X, Mundy-Bosse B, Freud AG, Wang LS, Caligiuri MA, Yu J. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest 2018;128:5123-36. [PMID: 30183689 DOI: 10.1172/JCI121227] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 6.5] [Reference Citation Analysis]
110 Tanaka J. Recent advances in chimeric antigen receptor natural killer cell therapy for overcoming intractable hematological malignancies. Hematol Oncol 2021;39:11-9. [PMID: 32905618 DOI: 10.1002/hon.2802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
111 Marofi F, Rahman HS, Thangavelu L, Dorofeev A, Bayas-Morejón F, Shirafkan N, Shomali N, Chartrand MS, Jarahian M, Vahedi G, Mohammed RN, Shahrokh S, Akbari M, Khiavi FM. Renaissance of armored immune effector cells, CAR-NK cells, brings the higher hope for successful cancer therapy. Stem Cell Res Ther 2021;12:200. [PMID: 33752707 DOI: 10.1186/s13287-021-02251-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
112 Kriegsmann K, Kriegsmann M, Cremer M, Schmitt M, Dreger P, Goldschmidt H, Müller-Tidow C, Hundemer M. Cell-based immunotherapy approaches for multiple myeloma. Br J Cancer 2019;120:38-44. [PMID: 30518815 DOI: 10.1038/s41416-018-0346-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
113 Al Malki MM, Jones R, Ma Q, Lee D, Reisner Y, Miller JS, Lang P, Hongeng S, Hari P, Strober S, Yu J, Maziarz R, Mavilio D, Roy DC, Bonini C, Champlin RE, Fuchs EJ, Ciurea SO. Proceedings From the Fourth Haploidentical Stem Cell Transplantation Symposium (HAPLO2016), San Diego, California, December 1, 2016. Biol Blood Marrow Transplant 2018;24:895-908. [PMID: 29339270 DOI: 10.1016/j.bbmt.2018.01.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
114 Vahidian F, Khosroshahi LM, Akbarzadeh M, Jahanban-esfahlan A, Baghbanzadeh A, Ali-hassanzadeh M, Safarzadeh E. The tricks for fighting against cancer using CAR NK cells: A review. Molecular and Cellular Probes 2022. [DOI: 10.1016/j.mcp.2022.101817] [Reference Citation Analysis]
115 Oberschmidt O, Kloess S, Koehl U. Redirected Primary Human Chimeric Antigen Receptor Natural Killer Cells As an "Off-the-Shelf Immunotherapy" for Improvement in Cancer Treatment. Front Immunol 2017;8:654. [PMID: 28649246 DOI: 10.3389/fimmu.2017.00654] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
116 Chang L, Chitrakar C, Nouri M. 3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery. Methods Mol Biol 2020;2050:69-77. [PMID: 31468480 DOI: 10.1007/978-1-4939-9740-4_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
117 Atrash S, Ali SA, Usmani SZ. Chimeric Antigen Receptor T-cell Therapy for Multiple Myeloma. Clin Lymphoma Myeloma Leuk 2021;21:21-34. [PMID: 33046423 DOI: 10.1016/j.clml.2020.08.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
118 Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, Tian Z, Wei H. Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab 2018;28:243-255.e5. [PMID: 30033198 DOI: 10.1016/j.cmet.2018.06.021] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 22.5] [Reference Citation Analysis]
119 Devillier R, Chrétien AS, Pagliardini T, Salem N, Blaise D, Olive D. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. J Leukoc Biol 2021;109:1071-88. [PMID: 32991746 DOI: 10.1002/JLB.5MR0920-198RR] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
120 Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. [PMID: 32853984 DOI: 10.1016/j.ebiom.2020.102975] [Cited by in Crossref: 73] [Cited by in F6Publishing: 84] [Article Influence: 36.5] [Reference Citation Analysis]
121 Hu Z, Zheng X, Jiao D, Zhou Y, Sun R, Wang B, Tian Z, Wei H. LunX-CAR T Cells as a Targeted Therapy for Non-Small Cell Lung Cancer. Mol Ther Oncolytics 2020;17:361-70. [PMID: 32405534 DOI: 10.1016/j.omto.2020.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
122 Chaudhry K, Dowlati E, Bollard CM. Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Rev Clin Immunol 2021;17:643-59. [PMID: 33821731 DOI: 10.1080/1744666X.2021.1911648] [Reference Citation Analysis]
123 Wang W, Jiang J, Wu C. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett 2020;472:175-80. [PMID: 31790761 DOI: 10.1016/j.canlet.2019.11.033] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 18.7] [Reference Citation Analysis]
124 Wang Y, Zhang Y, Yi P, Dong W, Nalin AP, Zhang J, Zhu Z, Chen L, Benson DM, Mundy-Bosse BL, Freud AG, Caligiuri MA, Yu J. The IL-15-AKT-XBP1s signaling pathway contributes to effector functions and survival in human NK cells. Nat Immunol 2019;20:10-7. [PMID: 30538328 DOI: 10.1038/s41590-018-0265-1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 7.8] [Reference Citation Analysis]
125 Perales MA, Sauter CS, Armand P. Reprint of: Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2016;22:S9-S14. [PMID: 26899275 DOI: 10.1016/j.bbmt.2016.01.005] [Reference Citation Analysis]
126 Xu X, Li T, Shen S, Wang J, Abdou P, Gu Z, Mo R. Advances in Engineering Cells for Cancer Immunotherapy. Theranostics 2019;9:7889-905. [PMID: 31695806 DOI: 10.7150/thno.38583] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
127 Stephenson R, Singh A. Drug discovery and therapeutic delivery for the treatment of B and T cell tumors. Adv Drug Deliv Rev 2017;114:285-300. [PMID: 28625826 DOI: 10.1016/j.addr.2017.06.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
128 Chen L, Mao H, Zhang J, Chu J, Devine S, Caligiuri MA, Yu J. Targeting FLT3 by chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Leukemia 2017;31:1830-4. [PMID: 28496177 DOI: 10.1038/leu.2017.147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
129 Perales MA, Sauter CS, Armand P. Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2016;22:17-22. [PMID: 26485445 DOI: 10.1016/j.bbmt.2015.10.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
130 Cao B, Liu M, Wang L, Liang B, Feng Y, Chen X, Shi Y, Zhang J, Ye X, Tian Y, Zhi C, Li J, Lian H, Wu Q, Zhang Z. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem Biophys Res Commun 2020;524:96-102. [PMID: 31980173 DOI: 10.1016/j.bbrc.2020.01.053] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
131 Lendvai N, Cohen AD, Cho HJ. Beyond consolidation: auto-SCT and immunotherapy for plasma cell myeloma. Bone Marrow Transplant 2015;50:770-80. [PMID: 25751647 DOI: 10.1038/bmt.2015.5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
132 Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz J. The Rise of Allogeneic Natural Killer Cells As a Platform for Cancer Immunotherapy: Recent Innovations and Future Developments. Front Immunol. 2017;8:631. [PMID: 28620386 DOI: 10.3389/fimmu.2017.00631] [Cited by in Crossref: 82] [Cited by in F6Publishing: 81] [Article Influence: 16.4] [Reference Citation Analysis]
133 Boussi L, Niesvizky R. Advances in immunotherapy in multiple myeloma. Curr Opin Oncol 2017;29:460-6. [PMID: 28877078 DOI: 10.1097/CCO.0000000000000407] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
134 Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, Ferguson A, Emerling A, Luznik L, Matsui W, Powell J, Fuchs E, Rosner GL, Epstein C, Rudraraju L, Ambinder RF, Jones RJ, Pardoll D, Borrello I. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med 2015;7:288ra78. [PMID: 25995224 DOI: 10.1126/scitranslmed.aaa7014] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 13.3] [Reference Citation Analysis]
135 Mantesso S, Geerts D, Spanholtz J, Kučerová L. Genetic Engineering of Natural Killer Cells for Enhanced Antitumor Function. Front Immunol 2020;11:607131. [PMID: 33391277 DOI: 10.3389/fimmu.2020.607131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Yousef S, Kovacsovics-Bankowski M, Salama ME, Bhardwaj N, Steinbach M, Langemo A, Kovacsovics T, Marvin J, Binder M, Panse J, Kröger N, Luetkens T, Atanackovic D. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma. Hum Vaccin Immunother 2015;11:1606-11. [PMID: 26001047 DOI: 10.1080/21645515.2015.1046658] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
137 Ng YY, Du Z, Zhang X, Chng WJ, Wang S. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther 2021. [PMID: 34471234 DOI: 10.1038/s41417-021-00365-x] [Reference Citation Analysis]
138 Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol 2015;6:578. [PMID: 26635792 DOI: 10.3389/fimmu.2015.00578] [Cited by in Crossref: 141] [Cited by in F6Publishing: 143] [Article Influence: 20.1] [Reference Citation Analysis]
139 Yang S, Wen J, Li H, Xu L, Liu Y, Zhao N, Zeng Z, Qi J, Jiang W, Han W, Zu Y. Aptamer-Engineered Natural Killer Cells for Cell-Specific Adaptive Immunotherapy. Small 2019;15:e1900903. [PMID: 31026116 DOI: 10.1002/smll.201900903] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
140 Rotolo A, Karadimitris A, Ruella M. Building upon the success of CART19: chimeric antigen receptor T cells for hematologic malignancies. Leuk Lymphoma 2018;59:2040-55. [PMID: 29165008 DOI: 10.1080/10428194.2017.1403024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
141 Harding T, Baughn L, Kumar S, Van Ness B. The future of myeloma precision medicine: integrating the compendium of known drug resistance mechanisms with emerging tumor profiling technologies. Leukemia 2019;33:863-83. [PMID: 30683909 DOI: 10.1038/s41375-018-0362-z] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
142 Khurana A, Lin Y. Allogeneic Chimeric Antigen Receptor Therapy in Lymphoma. Curr Treat Options Oncol 2022. [PMID: 35212892 DOI: 10.1007/s11864-021-00920-6] [Reference Citation Analysis]
143 Xu K, Cheng H. CAR-NK cell therapeutics for hematologic malignancies: hope is on the horizon. Blood Science 2019;1:156-60. [DOI: 10.1097/bs9.0000000000000028] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
144 Chen KH, Wada M, Firor AE, Pinz KG, Jares A, Liu H, Salman H, Golightly M, Lan F, Jiang X, Ma Y. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies. Oncotarget 2016;7:56219-32. [PMID: 27494836 DOI: 10.18632/oncotarget.11019] [Cited by in Crossref: 46] [Cited by in F6Publishing: 54] [Article Influence: 11.5] [Reference Citation Analysis]
145 Biederstädt A, Rezvani K. Engineering the next generation of CAR-NK immunotherapies. Int J Hematol 2021;114:554-71. [PMID: 34453686 DOI: 10.1007/s12185-021-03209-4] [Reference Citation Analysis]
146 Fabian KP, Hodge JW. The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy. Mol Ther Oncolytics 2021;23:266-76. [PMID: 34761106 DOI: 10.1016/j.omto.2021.10.001] [Reference Citation Analysis]
147 Hermanson DL, Kaufman DS. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front Immunol 2015;6:195. [PMID: 25972867 DOI: 10.3389/fimmu.2015.00195] [Cited by in Crossref: 88] [Cited by in F6Publishing: 81] [Article Influence: 12.6] [Reference Citation Analysis]
148 Swaminathan S, Hansen AS, Heftdal LD, Dhanasekaran R, Deutzmann A, Fernandez WDM, Liefwalker DF, Horton C, Mosley A, Liebersbach M, Maecker HT, Felsher DW. MYC functions as a switch for natural killer cell-mediated immune surveillance of lymphoid malignancies. Nat Commun 2020;11:2860. [PMID: 32503978 DOI: 10.1038/s41467-020-16447-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
149 Hu A, Chen H, Liang J, Liu C, Li F, Mu C. Cell-based therapeutics for the treatment of hematologic diseases inside the bone marrow. J Control Release 2021;339:1-13. [PMID: 34536449 DOI: 10.1016/j.jconrel.2021.09.018] [Reference Citation Analysis]
150 Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2017;222:11-20. [PMID: 26264743 DOI: 10.1016/j.imbio.2015.07.012] [Cited by in Crossref: 93] [Cited by in F6Publishing: 95] [Article Influence: 13.3] [Reference Citation Analysis]
151 Zhang L, Meng Y, Feng X, Han Z. CAR-NK cells for cancer immunotherapy: from bench to bedside. Biomark Res 2022;10:12. [PMID: 35303962 DOI: 10.1186/s40364-022-00364-6] [Reference Citation Analysis]
152 Muhammad N, Mao Q, Xia H. CAR T-cells for cancer therapy. Biotechnol Genet Eng Rev 2017;33:190-226. [PMID: 29431047 DOI: 10.1080/02648725.2018.1430465] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
153 Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunology Letters 2020;226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Ebrahimiyan H, Tamimi A, Shokoohian B, Minaei N, Memarnejadian A, Hossein-Khannazer N, Hassan M, Vosough M. Novel insights in CAR-NK cells beyond CAR-T cell technology; promising advantages. Int Immunopharmacol 2022;106:108587. [PMID: 35149294 DOI: 10.1016/j.intimp.2022.108587] [Reference Citation Analysis]
155 Festuccia M, Martino M, Ferrando F, Messina G, Moscato T, Fedele R, Boccadoro M, Giaccone L, Bruno B. Allogeneic stem cell transplantation in multiple myeloma: immunotherapy and new drugs. Expert Opin Biol Ther 2015;15:857-72. [PMID: 25865214 DOI: 10.1517/14712598.2015.1036735] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
156 Lehners N, Hayden PJ, Goldschmidt H, Raab MS. Management of high-risk Myeloma: an evidence-based review of treatment strategies. Expert Rev Hematol 2016;9:753-65. [PMID: 27337562 DOI: 10.1080/17474086.2016.1204908] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
157 Redondo-Muñoz J, García-Pardo A, Teixidó J. Molecular Players in Hematologic Tumor Cell Trafficking. Front Immunol 2019;10:156. [PMID: 30787933 DOI: 10.3389/fimmu.2019.00156] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
158 Ali AK, Tarannum M, Romee R. Is Adoptive Cellular Therapy With Non-T-Cell Immune Effectors the Future? Cancer J 2021;27:168-75. [PMID: 33750077 DOI: 10.1097/PPO.0000000000000517] [Reference Citation Analysis]
159 Ramos-mejia V, Arellano-galindo J, Mejía-arangure JM, Cruz-munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022;13:803995. [DOI: 10.3389/fimmu.2022.803995] [Reference Citation Analysis]
160 Elmaagacli AH, Salwender H, Jehn C, Dahmash F, Singh A, Wilson O, Pannenbeckers M, Niggemann C, Vierbuchen M. Strong expression of SLAMF7 in natural killer/T-cell lymphoma and large granular lymphocyte leukemia - a prominent biomarker and potential target for anti-SLAMF7 antibody therapy. Leuk Lymphoma 2019;60:3335-8. [PMID: 31164030 DOI: 10.1080/10428194.2019.1623887] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
161 Gay F, Engelhardt M, Terpos E, Wäsch R, Giaccone L, Auner HW, Caers J, Gramatzki M, van de Donk N, Oliva S, Zamagni E, Garderet L, Straka C, Hajek R, Ludwig H, Einsele H, Dimopoulos M, Boccadoro M, Kröger N, Cavo M, Goldschmidt H, Bruno B, Sonneveld P. From transplant to novel cellular therapies in multiple myeloma: European Myeloma Network guidelines and future perspectives. Haematologica 2018;103:197-211. [PMID: 29217780 DOI: 10.3324/haematol.2017.174573] [Cited by in Crossref: 78] [Cited by in F6Publishing: 66] [Article Influence: 15.6] [Reference Citation Analysis]
162 Vo MC, Lakshmi TJ, Jung SH, Cho D, Park HS, Chu TH, Lee HJ, Kim HJ, Kim SK, Lee JJ. Cellular immunotherapy in multiple myeloma. Korean J Intern Med 2019;34:954-65. [PMID: 30754964 DOI: 10.3904/kjim.2018.325] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
163 Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies. Front Oncol 2021;11:720501. [PMID: 34422667 DOI: 10.3389/fonc.2021.720501] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
164 Radhakrishnan SV, Bhardwaj N, Luetkens T, Atanackovic D. Novel anti-myeloma immunotherapies targeting the SLAM family of receptors. Oncoimmunology 2017;6:e1308618. [PMID: 28638731 DOI: 10.1080/2162402X.2017.1308618] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
165 Giuliani M, Poggi A. Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020;9:E1578. [PMID: 32610578 DOI: 10.3390/cells9071578] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Manier S, Ingegnere T, Escure G, Prodhomme C, Nudel M, Mitra S, Facon T. Current state and next-generation CAR-T cells in multiple myeloma. Blood Reviews 2022. [DOI: 10.1016/j.blre.2022.100929] [Reference Citation Analysis]
167 Sun C, Dotti G, Savoldo B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood 2016;127:3350-9. [PMID: 27207792 DOI: 10.1182/blood-2015-12-629089] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
168 Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017;8:315. [PMID: 28377768 DOI: 10.3389/fimmu.2017.00315] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
169 Fehniger TA, Cooper MA. Harnessing NK Cell Memory for Cancer Immunotherapy. Trends Immunol 2016;37:877-88. [PMID: 27773685 DOI: 10.1016/j.it.2016.09.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
170 Zhi L, Su X, Yin M, Zhang Z, Lu H, Niu Z, Guo C, Zhu W, Zhang X. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cell Immunol 2021;369:104436. [PMID: 34500148 DOI: 10.1016/j.cellimm.2021.104436] [Reference Citation Analysis]
171 Bollino D, Webb TJ. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res 2017;187:32-43. [PMID: 28651074 DOI: 10.1016/j.trsl.2017.06.003] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 7.4] [Reference Citation Analysis]
172 Mata M, Gottschalk S. Adoptive cell therapy for sarcoma. Immunotherapy 2015;7:21-35. [PMID: 25572477 DOI: 10.2217/imt.14.98] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
173 Dahlhoff J, Manz H, Steinfatt T, Delgado-Tascon J, Seebacher E, Schneider T, Wilnit A, Mokhtari Z, Tabares P, Böckle D, Rasche L, Martin Kortüm K, Lutz MB, Einsele H, Brandl A, Beilhack A. Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression. Leukemia 2021. [PMID: 34584204 DOI: 10.1038/s41375-021-01422-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Dosani T, Carlsten M, Maric I, Landgren O. The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies. Blood Cancer J 2015;5:e306. [PMID: 25885426 DOI: 10.1038/bcj.2015.32] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 7.3] [Reference Citation Analysis]
175 Lin C, Zhang J. Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2018;1869:200-15. [DOI: 10.1016/j.bbcan.2018.01.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
176 Martínez-Cingolani C, Bories JC. Development of chimeric antigen receptors for multiple myeloma. Biochem Soc Trans 2016;44:397-405. [PMID: 27068946 DOI: 10.1042/BST20150280] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
177 Afolabi LO, Adeshakin AO, Sani MM, Bi J, Wan X. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology 2019;158:63-9. [PMID: 31315144 DOI: 10.1111/imm.13094] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
178 Di Vito C, Mikulak J, Zaghi E, Pesce S, Marcenaro E, Mavilio D. NK cells to cure cancer. Semin Immunol 2019;41:101272. [PMID: 31085114 DOI: 10.1016/j.smim.2019.03.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
179 Eguizabal C, Zenarruzabeitia O, Monge J, Santos S, Vesga MA, Maruri N, Arrieta A, Riñón M, Tamayo-Orbegozo E, Amo L, Larrucea S, Borrego F. Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Front Immunol 2014;5:439. [PMID: 25309538 DOI: 10.3389/fimmu.2014.00439] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
180 Ma S, Xu Y, Song W. Functional bionanomaterials for cell surface engineering in cancer immunotherapy. APL Bioeng 2021;5:021506. [PMID: 33981940 DOI: 10.1063/5.0045945] [Reference Citation Analysis]
181 Oelsner S, Friede ME, Zhang C, Wagner J, Badura S, Bader P, Ullrich E, Ottmann OG, Klingemann H, Tonn T, Wels WS. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy 2017;19:235-49. [PMID: 27887866 DOI: 10.1016/j.jcyt.2016.10.009] [Cited by in Crossref: 89] [Cited by in F6Publishing: 81] [Article Influence: 14.8] [Reference Citation Analysis]
182 Malaer JD, Marrufo AM, Mathew PA. 2B4 (CD244, SLAMF4) and CS1 (CD319, SLAMF7) in systemic lupus erythematosus and cancer. Clin Immunol 2019;204:50-6. [PMID: 30347240 DOI: 10.1016/j.clim.2018.10.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
183 Hu Y, Tian ZG, Zhang C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacol Sin 2018;39:167-76. [PMID: 28880014 DOI: 10.1038/aps.2017.125] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 13.8] [Reference Citation Analysis]
184 Dhodapkar MV, Borrello I, Cohen AD, Stadtmauer EA. Hematologic Malignancies: Plasma Cell Disorders. Am Soc Clin Oncol Educ Book 2017;37:561-8. [PMID: 28561703 DOI: 10.1200/EDBK_175546] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
185 Haji-Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. CAR-modified T-cell therapy for cancer: an updated review. Artif Cells Nanomed Biotechnol 2016;44:1339-49. [PMID: 26068778 DOI: 10.3109/21691401.2015.1052465] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
186 Kim JR, Mathew SO, Mathew PA. Blimp-1/PRDM1 regulates the transcription of human CS1 (SLAMF7) gene in NK and B cells. Immunobiology 2016;221:31-9. [PMID: 26310579 DOI: 10.1016/j.imbio.2015.08.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
187 Chicaybam L, Bonamino MH, Luckow Invitti A, Bortman Rozenchan P, de Luna Vieira I, Strauss BE. Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers (Basel) 2020;12:E2360. [PMID: 32825533 DOI: 10.3390/cancers12092360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
188 Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015;263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Cited by in Crossref: 220] [Cited by in F6Publishing: 198] [Article Influence: 31.4] [Reference Citation Analysis]
189 Nishida H. Rapid Progress in Immunotherapies for Multiple Myeloma: An Updated Comprehensive Review. Cancers (Basel) 2021;13:2712. [PMID: 34072645 DOI: 10.3390/cancers13112712] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
190 Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunology 2021;10:e1274. [PMID: 33959279 DOI: 10.1002/cti2.1274] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
191 Elahi R, Heidary AH, Hadiloo K, Esmaeilzadeh A. Chimeric Antigen Receptor-Engineered Natural Killer (CAR NK) Cells in Cancer Treatment; Recent Advances and Future Prospects. Stem Cell Rev Rep 2021. [PMID: 34472037 DOI: 10.1007/s12015-021-10246-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
192 Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol 2019;37:1425-34. [DOI: 10.1038/s41587-019-0137-8] [Cited by in Crossref: 75] [Cited by in F6Publishing: 63] [Article Influence: 25.0] [Reference Citation Analysis]
193 Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020;12:E3139. [PMID: 33120910 DOI: 10.3390/cancers12113139] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
194 Zou MZ, Liu WL, Gao F, Bai XF, Chen HS, Zeng X, Zhang XZ. Artificial Natural Killer Cells for Specific Tumor Inhibition and Renegade Macrophage Re-Education. Adv Mater 2019;31:e1904495. [PMID: 31497903 DOI: 10.1002/adma.201904495] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
195 Reina-Ortiz C, Constantinides M, Fayd-Herbe-de-Maudave A, Présumey J, Hernandez J, Cartron G, Giraldos D, Díez R, Izquierdo I, Azaceta G, Palomera L, Marzo I, Naval J, Anel A, Villalba M. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 2020;10:1853314. [PMID: 33457074 DOI: 10.1080/2162402X.2020.1853314] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
196 Liu K, Cui J, Zhan Y, Ouyang Q, Lu Q, Yang D, Li X, Yin J. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01561-5] [Reference Citation Analysis]
197 Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Seminars in Immunology 2017;31:37-54. [DOI: 10.1016/j.smim.2017.07.009] [Cited by in Crossref: 125] [Cited by in F6Publishing: 124] [Article Influence: 25.0] [Reference Citation Analysis]
198 Shah UA, Mailankody S. CAR T and CAR NK cells in multiple myeloma: Expanding the targets. Best Pract Res Clin Haematol 2020;33:101141. [PMID: 32139020 DOI: 10.1016/j.beha.2020.101141] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
199 Pittari G, Vago L, Festuccia M, Bonini C, Mudawi D, Giaccone L, Bruno B. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs. Front Immunol 2017;8:1444. [PMID: 29163516 DOI: 10.3389/fimmu.2017.01444] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
200 Mehta RS, Rezvani K. Can we make a better match or mismatch with KIR genotyping? Hematology Am Soc Hematol Educ Program 2016;2016:106-18. [PMID: 27913469 DOI: 10.1182/asheducation-2016.1.106] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
201 Guo X, Mahlakõiv T, Ye Q, Somanchi S, He S, Rana H, DiFiglia A, Gleason J, van der Touw W, Hariri R, Zhang X. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J Immunother Cancer 2021;9:e001975. [PMID: 33741730 DOI: 10.1136/jitc-2020-001975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Li Y, Sun R. Tumor immunotherapy: New aspects of natural killer cells. Chin J Cancer Res 2018;30:173-96. [PMID: 29861604 DOI: 10.21147/j.issn.1000-9604.2018.02.02] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
203 Sivori S, Meazza R, Quintarelli C, Carlomagno S, Della Chiesa M, Falco M, Moretta L, Locatelli F, Pende D. NK Cell-Based Immunotherapy for Hematological Malignancies. J Clin Med 2019;8:E1702. [PMID: 31623224 DOI: 10.3390/jcm8101702] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
204 Shankar K, Capitini CM, Saha K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Res Ther 2020;11:234. [PMID: 32546200 DOI: 10.1186/s13287-020-01741-4] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
205 Clara JA, Childs RW. Harnessing natural killer cells for the treatment of multiple myeloma. Seminars in Oncology 2022. [DOI: 10.1053/j.seminoncol.2022.01.004] [Reference Citation Analysis]
206 Goker H, Malkan UY, Demiroglu H, Buyukasik Y. Chimeric antigen receptor T cell treatment in hematologic malignancies. Transfusion and Apheresis Science 2016;54:35-40. [DOI: 10.1016/j.transci.2016.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
207 Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017;8:533. [PMID: 28572802 DOI: 10.3389/fimmu.2017.00533] [Cited by in Crossref: 134] [Cited by in F6Publishing: 126] [Article Influence: 26.8] [Reference Citation Analysis]
208 Parmar S, Ritchie DS. Allogeneic transplantation as anticancer immunotherapy. Current Opinion in Immunology 2014;27:38-45. [DOI: 10.1016/j.coi.2014.01.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
209 Yu B, Jiang T, Liu D. BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol 2020;13:125. [PMID: 32943087 DOI: 10.1186/s13045-020-00962-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
210 Morgan GJ, Rasche L. Maintaining therapeutic progress in multiple myeloma by integrating genetic and biological advances into the clinic. Expert Rev Hematol 2018;11:513-23. [PMID: 29944024 DOI: 10.1080/17474086.2018.1489718] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
211 Szmania S, Lapteva N, Garg T, Greenway A, Lingo J, Nair B, Stone K, Woods E, Khan J, Stivers J, Panozzo S, Campana D, Bellamy WT, Robbins M, Epstein J, Yaccoby S, Waheed S, Gee A, Cottler-Fox M, Rooney C, Barlogie B, van Rhee F. Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother 2015;38:24-36. [PMID: 25415285 DOI: 10.1097/CJI.0000000000000059] [Cited by in Crossref: 92] [Cited by in F6Publishing: 67] [Article Influence: 13.1] [Reference Citation Analysis]
212 Matosevic S. Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res 2018;2018:4054815. [PMID: 30306093 DOI: 10.1155/2018/4054815] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
213 Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 2021;14:7. [PMID: 33407739 DOI: 10.1186/s13045-020-01014-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 13.0] [Reference Citation Analysis]
214 Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 2020;13:168. [PMID: 33287875 DOI: 10.1186/s13045-020-00998-9] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 12.5] [Reference Citation Analysis]
215 Rotolo A, Caputo V, Karadimitris A. The prospects and promise of chimeric antigen receptor immunotherapy in multiple myeloma. Br J Haematol 2016;173:350-64. [DOI: 10.1111/bjh.13976] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
216 Walcher L, Kistenmacher AK, Sommer C, Böhlen S, Ziemann C, Dehmel S, Braun A, Tretbar US, Klöß S, Schambach A, Morgan M, Löffler D, Kämpf C, Blumert C, Reiche K, Beckmann J, König U, Standfest B, Thoma M, Makert GR, Ulbert S, Kossatz-Böhlert U, Köhl U, Dünkel A, Fricke S. Low Energy Electron Irradiation Is a Potent Alternative to Gamma Irradiation for the Inactivation of (CAR-)NK-92 Cells in ATMP Manufacturing. Front Immunol 2021;12:684052. [PMID: 34149724 DOI: 10.3389/fimmu.2021.684052] [Reference Citation Analysis]
217 Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity. Immunology 2015;146:369-78. [PMID: 26235210 DOI: 10.1111/imm.12516] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
218 Kim M, Kim D, Suh S, Park Z, Choi MJ, Oh Y. Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics. Arch Pharm Res 2016;39:437-52. [DOI: 10.1007/s12272-016-0719-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
219 Klingemann H. Are natural killer cells superior CAR drivers? Oncoimmunology 2014;3:e28147. [PMID: 25340009 DOI: 10.4161/onci.28147] [Cited by in Crossref: 124] [Cited by in F6Publishing: 123] [Article Influence: 15.5] [Reference Citation Analysis]
220 Shembrey C, Huntington ND, Hollande F. Impact of Tumor and Immunological Heterogeneity on the Anti-Cancer Immune Response. Cancers (Basel) 2019;11:E1217. [PMID: 31438563 DOI: 10.3390/cancers11091217] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
221 Liu P, Jin Y, Sattar H, Liu H, Xie W, Zhou F. Natural killer cell immunotherapy against multiple myeloma: Progress and possibilities. J Leukoc Biol 2018;103:821-8. [DOI: 10.1002/jlb.2ru0517-176rr] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
222 Liu YC, Szmania S, van Rhee F. Profile of elotuzumab and its potential in the treatment of multiple myeloma. Blood Lymphat Cancer 2014;2014:15-27. [PMID: 26005365 DOI: 10.2147/BLCTT.S49780] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
223 Morandi F, Yazdanifar M, Cocco C, Bertaina A, Airoldi I. Engineering the Bridge between Innate and Adaptive Immunity for Cancer Immunotherapy: Focus on γδ T and NK Cells. Cells 2020;9:E1757. [PMID: 32707982 DOI: 10.3390/cells9081757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
224 Pfefferle A, Huntington ND. You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers (Basel) 2020;12:E706. [PMID: 32192067 DOI: 10.3390/cancers12030706] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 17.5] [Reference Citation Analysis]
225 Ao X, Yang Y, Li W, Tan Y, Guo W, Ao L, He X, Wu X, Xia J, Xu X, Guo J. Anti-αFR CAR-engineered NK-92 Cells Display Potent Cytotoxicity Against αFR-positive Ovarian Cancer. J Immunother 2019;42:284-96. [PMID: 31261167 DOI: 10.1097/CJI.0000000000000286] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
226 Kailayangiri S, Altvater B, Spurny C, Jamitzky S, Schelhaas S, Jacobs AH, Wiek C, Roellecke K, Hanenberg H, Hartmann W, Wiendl H, Pankratz S, Meltzer J, Farwick N, Greune L, Fluegge M, Rossig C. Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. Oncoimmunology 2017;6:e1250050. [PMID: 28197367 DOI: 10.1080/2162402X.2016.1250050] [Cited by in Crossref: 45] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
227 Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, Ahmadi M, Cid-Arreguid A, Jarahian M. CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci 2021;112:3427-36. [PMID: 34050690 DOI: 10.1111/cas.14993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
228 Lim O, Jung MY, Hwang YK, Shin EC. Present and Future of Allogeneic Natural Killer Cell Therapy. Front Immunol. 2015;6:286. [PMID: 26089823 DOI: 10.3389/fimmu.2015.00286] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 6.0] [Reference Citation Analysis]
229 Amatya C, Pegues MA, Lam N, Vanasse D, Geldres C, Choi S, Hewitt SM, Feldman SA, Kochenderfer JN. Development of CAR T Cells Expressing a Suicide Gene Plus a Chimeric Antigen Receptor Targeting Signaling Lymphocytic-Activation Molecule F7. Mol Ther 2021;29:702-17. [PMID: 33129371 DOI: 10.1016/j.ymthe.2020.10.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
230 Guo Z, Tu S, Yu S, Wu L, Pan W, Chang N, Zhou X, Song C, Li Y, He Y. Preclinical and clinical advances in dual-target chimeric antigen receptor therapy for hematological malignancies. Cancer Sci 2021;112:1357-68. [PMID: 33416209 DOI: 10.1111/cas.14799] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
231 Herrera L, Santos S, Vesga MA, Carrascosa T, Garcia-Ruiz JC, Pérez-Martínez A, Juan M, Eguizabal C. The Race of CAR Therapies: CAR-NK Cells for Fighting B-Cell Hematological Cancers. Cancers (Basel) 2021;13:5418. [PMID: 34771581 DOI: 10.3390/cancers13215418] [Reference Citation Analysis]
232 Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018;9:283. [PMID: 29497427 DOI: 10.3389/fimmu.2018.00283] [Cited by in Crossref: 131] [Cited by in F6Publishing: 130] [Article Influence: 32.8] [Reference Citation Analysis]
233 Hu Y, Tian Z, Zhang C. Natural Killer Cell-Based Immunotherapy for Cancer: Advances and Prospects. Engineering 2019;5:106-14. [DOI: 10.1016/j.eng.2018.11.015] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
234 Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol 2019;12:141. [PMID: 31884955 DOI: 10.1186/s13045-019-0801-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
235 Bhaskar S, Benson DM. Current and future immunotherapeutic approaches to multiple myeloma therapy. International Journal of Hematologic Oncology 2015;4:23-31. [DOI: 10.2217/ijh.14.43] [Reference Citation Analysis]
236 Shah UA, Mailankody S. Emerging immunotherapies in multiple myeloma. BMJ 2020;370:m3176. [PMID: 32958461 DOI: 10.1136/bmj.m3176] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
237 Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev 2016;30:157-67. [PMID: 26574053 DOI: 10.1016/j.blre.2015.10.003] [Cited by in Crossref: 126] [Cited by in F6Publishing: 117] [Article Influence: 18.0] [Reference Citation Analysis]
238 Morandi F, Horenstein AL, Costa F, Giuliani N, Pistoia V, Malavasi F. CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Front Immunol 2018;9:2722. [PMID: 30546360 DOI: 10.3389/fimmu.2018.02722] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 15.5] [Reference Citation Analysis]
239 Hansrivijit P, Gale RP, Barrett J, Ciurea SO. Cellular therapy for acute myeloid Leukemia – Current status and future prospects. Blood Reviews 2019;37:100578. [DOI: 10.1016/j.blre.2019.05.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
240 Pittari G, Filippini P, Gentilcore G, Grivel JC, Rutella S. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies. Front Immunol. 2015;6:230. [PMID: 26029215 DOI: 10.3389/fimmu.2015.00230] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 7.1] [Reference Citation Analysis]
241 Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021;:1-18. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Reference Citation Analysis]
242 Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol 2017;8:1124. [PMID: 28955340 DOI: 10.3389/fimmu.2017.01124] [Cited by in Crossref: 158] [Cited by in F6Publishing: 158] [Article Influence: 31.6] [Reference Citation Analysis]
243 Ataca P, Arslan Ö. Chimeric Antigen Receptor T Cell Therapy in Hematology. Turk J Haematol 2015;32:285-94. [PMID: 26377367 DOI: 10.4274/tjh.2015.0049] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
244 Chen KH, Wada M, Pinz KG, Liu H, Lin KW, Jares A, Firor AE, Shuai X, Salman H, Golightly M, Lan F, Senzel L, Leung EL, Jiang X, Ma Y. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 2017;31:2151-60. [PMID: 28074066 DOI: 10.1038/leu.2017.8] [Cited by in Crossref: 71] [Cited by in F6Publishing: 76] [Article Influence: 14.2] [Reference Citation Analysis]
245 Lee SJ, Borrello I. Role of the Immune Response in Disease Progression and Therapy in Multiple Myeloma. Cancer Treat Res 2016;169:207-25. [PMID: 27696265 DOI: 10.1007/978-3-319-40320-5_12] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
246 Rosenblatt J, Avigan D. Cellular Immunotherapy for Multiple Myeloma. Cancer J 2019;25:38-44. [PMID: 30694858 DOI: 10.1097/PPO.0000000000000356] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
247 Cai Q, Zhang M, Li Z. Potential strategies against resistance to CAR T-cell therapy in haematological malignancies. Ther Adv Med Oncol 2020;12:1758835920962963. [PMID: 33133242 DOI: 10.1177/1758835920962963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
248 Kloess S, Kretschmer A, Stahl L, Fricke S, Koehl U. CAR-Expressing Natural Killer Cells for Cancer Retargeting. Transfus Med Hemother 2019;46:4-13. [PMID: 31244577 DOI: 10.1159/000495771] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 14.0] [Reference Citation Analysis]
249 Rasche L, Weinhold N, Morgan GJ, van Rhee F, Davies FE. Immunologic approaches for the treatment of multiple myeloma. Cancer Treat Rev 2017;55:190-9. [PMID: 28431262 DOI: 10.1016/j.ctrv.2017.03.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
250 Pegram HJ, Smith EL, Rafiq S, Brentjens RJ. CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies? Immunotherapy 2015;7:545-61. [PMID: 26065479 DOI: 10.2217/imt.15.6] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
251 Vallet S, Pecherstorfer M, Podar K. Adoptive cell therapy in multiple Myeloma. Expert Opin Biol Ther 2017;17:1511-22. [PMID: 28857616 DOI: 10.1080/14712598.2017.1375095] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
252 Szudy-Szczyrek A, Ahern S, Kozioł M, Majowicz D, Szczyrek M, Krawczyk J, Hus M. Therapeutic Potential of Innate Lymphoid Cells for Multiple Myeloma Therapy. Cancers (Basel) 2021;13:4806. [PMID: 34638291 DOI: 10.3390/cancers13194806] [Reference Citation Analysis]
253 Kenderian SS, Porter DL, Gill S. Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse. Biol Blood Marrow Transplant 2017;23:235-46. [PMID: 27638367 DOI: 10.1016/j.bbmt.2016.09.002] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 9.0] [Reference Citation Analysis]
254 Chen KH, Wada M, Pinz KG, Liu H, Shuai X, Chen X, Yan LE, Petrov JC, Salman H, Senzel L, Leung ELH, Jiang X, Ma Y. A compound chimeric antigen receptor strategy for targeting multiple myeloma. Leukemia 2018;32:402-12. [PMID: 28951562 DOI: 10.1038/leu.2017.302] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
255 Zhang J, Zheng H, Diao Y. Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int J Mol Sci 2019;20:E317. [PMID: 30646574 DOI: 10.3390/ijms20020317] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
256 Zhang L, Du T, Ma D, Guo F, Li Z, Yan H. Combined therapy using LHRH-PE40 and anti-CD40 dendritic cells substantially eliminate tumor cells. J Cell Biochem 2018. [PMID: 30485508 DOI: 10.1002/jcb.28088] [Reference Citation Analysis]
257 Sadtler K, Collins J, Byrne JD, Langer R. Parallel evolution of polymer chemistry and immunology: Integrating mechanistic biology with materials design. Advanced Drug Delivery Reviews 2020;156:65-79. [DOI: 10.1016/j.addr.2020.06.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]