BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, Chen C, Yan KW, Ponnusamy M, Zhang YH, Li PF. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 2017;24:1111-1120. [PMID: 28498369 DOI: 10.1038/cdd.2017.61] [Cited by in Crossref: 180] [Cited by in F6Publishing: 189] [Article Influence: 36.0] [Reference Citation Analysis]
Number Citing Articles
1 Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021;116:49. [PMID: 34392401 DOI: 10.1007/s00395-021-00889-1] [Reference Citation Analysis]
2 Xie R, Zhang Y, Zhang J, Li J, Zhou X. The Role of Circular RNAs in Immune-Related Diseases. Front Immunol 2020;11:545. [PMID: 32300345 DOI: 10.3389/fimmu.2020.00545] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
3 Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87-97. [PMID: 30575990 DOI: 10.1002/jnr.24356] [Cited by in Crossref: 94] [Cited by in F6Publishing: 105] [Article Influence: 23.5] [Reference Citation Analysis]
4 Fan S, Hu K, Zhang D, Liu F. Interference of circRNA HIPK3 alleviates cardiac dysfunction in lipopolysaccharide-induced mice models and apoptosis in H9C2 cardiomyocytes. Ann Transl Med 2020;8:1147. [PMID: 33240996 DOI: 10.21037/atm-20-5306] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
5 Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 2018;187:31-44. [PMID: 29406246 DOI: 10.1016/j.pharmthera.2018.01.010] [Cited by in Crossref: 238] [Cited by in F6Publishing: 271] [Article Influence: 59.5] [Reference Citation Analysis]
6 Chen TP, Zhang NJ, Wang HJ, Hu SG, Geng X. Knockdown of circROBO2 attenuates acute myocardial infarction through regulating the miR-1184/TRADD axis. Mol Med 2021;27:21. [PMID: 33658002 DOI: 10.1186/s10020-021-00275-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang K, Dong Y, Liu J, Qian L, Wang T, Gao X, Wang K, Zhou L. Effects of REDOX in Regulating and Treatment of Metabolic and Inflammatory Cardiovascular Diseases. Oxid Med Cell Longev 2020;2020:5860356. [PMID: 33282111 DOI: 10.1155/2020/5860356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
8 Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L, Sian S, Ackers-johnson MA, Foo RS. Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovascular Research 2019;115:1998-2007. [DOI: 10.1093/cvr/cvz130] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 16.3] [Reference Citation Analysis]
9 Zhang ZC, Guo XL, Li X. The novel roles of circular RNAs in metabolic organs. Genes Dis 2018;5:16-23. [PMID: 30258930 DOI: 10.1016/j.gendis.2017.12.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
10 Wang K, Gao XQ, Wang T, Zhou LY. The Function and Therapeutic Potential of Circular RNA in Cardiovascular Diseases. Cardiovasc Drugs Ther 2021. [PMID: 34269929 DOI: 10.1007/s10557-021-07228-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Xu X, Wang J, Wang X. Silencing of circHIPK3 Inhibits Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction by Sponging miR-185-3p. Drug Des Devel Ther 2020;14:5699-710. [PMID: 33402817 DOI: 10.2147/DDDT.S245199] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Chingale M, Zhu D, Cheng K, Huang K. Bioengineering Technologies for Cardiac Regenerative Medicine. Front Bioeng Biotechnol 2021;9:681705. [PMID: 34150737 DOI: 10.3389/fbioe.2021.681705] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sun L, Zhao J, Ge X, Zhang H, Wang C, Bie Z. Circ_LAS1L regulates cardiac fibroblast activation, growth, and migration through miR‐125b/SFRP5 pathway. Cell Biochem Funct 2020;38:443-50. [DOI: 10.1002/cbf.3486] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
14 Tang Y, Bao J, Hu J, Liu L, Xu DY. Circular RNA in cardiovascular disease: Expression, mechanisms and clinical prospects. J Cell Mol Med 2021;25:1817-24. [PMID: 33350091 DOI: 10.1111/jcmm.16203] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wei R, Cao J, Yao S. Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways. Cell Stress Chaperones 2018;23:1295-309. [PMID: 30209783 DOI: 10.1007/s12192-018-0937-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
16 Yaylak B, Erdogan I, Akgul B. Transcriptomics Analysis of Circular RNAs Differentially Expressed in Apoptotic HeLa Cells. Front Genet 2019;10:176. [PMID: 30918512 DOI: 10.3389/fgene.2019.00176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhang Y, Chen Y, Yao H, Lie Z, Chen G, Tan H, Zhou Y. Elevated serum circ_0068481 levels as a potential diagnostic and prognostic indicator in idiopathic pulmonary arterial hypertension. Pulm Circ 2019;9:2045894019888416. [PMID: 31827769 DOI: 10.1177/2045894019888416] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
18 Yin L, Tang Y, Jiang M. Research on the circular RNA bioinformatics in patients with acute myocardial infarction. J Clin Lab Anal 2021;35:e23621. [PMID: 33063376 DOI: 10.1002/jcla.23621] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
19 Xia W, Mao Q, Chen B, Wang L, Ma W, Liang Y, Zhang T, Dong G, Xu L, Jiang F. The TWIST1-centered competing endogenous RNA network promotes proliferation, invasion, and migration of lung adenocarcinoma. Oncogenesis 2019;8:62. [PMID: 31645542 DOI: 10.1038/s41389-019-0167-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
20 E S, Costa MC, Kurc S, Drożdż A, Cortez-Dias N, Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 2018;39:1085-99. [PMID: 29877319 DOI: 10.1038/aps.2018.35] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 12.8] [Reference Citation Analysis]
21 Wang X, Cheng Z, Xu J, Feng M, Zhang H, Zhang L, Qian L. Circular RNA Arhgap12 modulates doxorubicin-induced cardiotoxicity by sponging miR-135a-5p. Life Sci 2021;265:118788. [PMID: 33245966 DOI: 10.1016/j.lfs.2020.118788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Dori M, Bicciato S. Integration of Bioinformatic Predictions and Experimental Data to Identify circRNA-miRNA Associations. Genes (Basel) 2019;10:E642. [PMID: 31450634 DOI: 10.3390/genes10090642] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
23 Li M, Duan L, Li Y, Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci 2019;233:116440. [PMID: 31047893 DOI: 10.1016/j.lfs.2019.04.066] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 14.7] [Reference Citation Analysis]
24 Wei J, Xu H, Wei W, Wang Z, Zhang Q, De W, Shu Y. circHIPK3 Promotes Cell Proliferation and Migration of Gastric Cancer by Sponging miR-107 and Regulating BDNF Expression. Onco Targets Ther 2020;13:1613-24. [PMID: 32110057 DOI: 10.2147/OTT.S226300] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
25 Shi X, Wang B, Feng X, Xu Y, Lu K, Sun M. circRNAs and Exosomes: A Mysterious Frontier for Human Cancer. Mol Ther Nucleic Acids. 2020;19:384-392. [PMID: 31887549 DOI: 10.1016/j.omtn.2019.11.023] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 12.7] [Reference Citation Analysis]
26 Ala U. Competing Endogenous RNAs, Non-Coding RNAs and Diseases: An Intertwined Story. Cells 2020;9:E1574. [PMID: 32605220 DOI: 10.3390/cells9071574] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
27 Choudhuri S, Chowdhury IH, Garg NJ. Mitochondrial Regulation of Macrophage Response Against Pathogens. Front Immunol 2020;11:622602. [PMID: 33679710 DOI: 10.3389/fimmu.2020.622602] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, Chand G, Bedognetti D, El-Rifai W, Frenneaux MP, Macha MA, Ahmed I, Haris M. Insights Into the Role of CircRNAs: Biogenesis, Characterization, Functional, and Clinical Impact in Human Malignancies. Front Cell Dev Biol 2021;9:617281. [PMID: 33614648 DOI: 10.3389/fcell.2021.617281] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
29 Pan YH, Wu WP, Xiong XD. Circular RNAs: Promising Biomarkers for Age-related Diseases. Aging Dis 2020;11:1585-93. [PMID: 33269108 DOI: 10.14336/AD.2020.0309] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Zong L, Wang W. CircANXA2 Promotes Myocardial Apoptosis in Myocardial Ischemia-Reperfusion Injury via Inhibiting miRNA-133 Expression. Biomed Res Int 2020;2020:8590861. [PMID: 32685535 DOI: 10.1155/2020/8590861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Fan L, An G, Wang S, Chen X, Liu Y, Liu Z, Ma Q, Wang J. Circular RNA Expression Profiling and Selection of Key Circular RNAs in the Hypothalamus of Heat-Acclimated Rats. Front Physiol 2019;10:1112. [PMID: 31555146 DOI: 10.3389/fphys.2019.01112] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Martone J, Mariani D, Desideri F, Ballarino M. Non-coding RNAs Shaping Muscle. Front Cell Dev Biol 2019;7:394. [PMID: 32117954 DOI: 10.3389/fcell.2019.00394] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
33 Zhang YF, Xu HM, Yu F, Wang M, Li MY, Xu T, Gao YY, Wang JX, Li PF. Crosstalk between MicroRNAs and Peroxisome Proliferator-Activated Receptors and Their Emerging Regulatory Roles in Cardiovascular Pathophysiology. PPAR Res 2018;2018:8530371. [PMID: 30622558 DOI: 10.1155/2018/8530371] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
34 Deng R, Liu Y, He H, Zhang H, Zhao C, Cui Z, Hong Y, Li X, Lin F, Yuan D, Liang X, Zhang Y. Haemin pre-treatment augments the cardiac protection of mesenchymal stem cells by inhibiting mitochondrial fission and improving survival. J Cell Mol Med 2020;24:431-40. [PMID: 31660694 DOI: 10.1111/jcmm.14747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
35 Han D. Treatment with astragaloside IV reduced blood glucose, regulated blood lipids, and protected liver function in diabetic rats. J Int Med Res 2021;49:300060519841165. [PMID: 33706619 DOI: 10.1177/0300060519841165] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Zhang X, Yang H, Zhao L, Li G, Duan Y. Circular RNA PRKCI promotes glioma cell progression by inhibiting microRNA-545. Cell Death Dis 2019;10:616. [PMID: 31409777 DOI: 10.1038/s41419-019-1863-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
37 Yang R, Wang Z, Meng G, Hua L. Circular RNA CCDC66 facilitates abdominal aortic aneurysm through the overexpression of CCDC66. Cell Biochem Funct 2020;38:830-8. [PMID: 31997404 DOI: 10.1002/cbf.3494] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
38 Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. Mol Ther Nucleic Acids 2021;25:416-43. [PMID: 34484866 DOI: 10.1016/j.omtn.2021.06.006] [Reference Citation Analysis]
39 Aufiero S, Reckman YJ, Pinto YM, Creemers EE. Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 2019;16:503-14. [DOI: 10.1038/s41569-019-0185-2] [Cited by in Crossref: 114] [Cited by in F6Publishing: 115] [Article Influence: 38.0] [Reference Citation Analysis]
40 Zhang L, Zhang Y, Wang Y, Zhao Y, Ding H, Li P. Circular RNAs: Functions and Clinical Significance in Cardiovascular Disease. Front Cell Dev Biol 2020;8:584051. [PMID: 33134301 DOI: 10.3389/fcell.2020.584051] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
41 Chen J, Cui L, Yuan J, Zhang Y, Sang H. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochemical and Biophysical Research Communications 2017;494:126-32. [DOI: 10.1016/j.bbrc.2017.10.068] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 15.6] [Reference Citation Analysis]
42 Lu C, Wu B, Liao Z, Xue M, Zou Z, Feng J, Sheng J. DUSP1 overexpression attenuates renal tubular mitochondrial dysfunction by restoring Parkin-mediated mitophagy in diabetic nephropathy. Biochem Biophys Res Commun 2021;559:141-7. [PMID: 33940385 DOI: 10.1016/j.bbrc.2021.04.032] [Reference Citation Analysis]
43 Dong Y, Xu W, Liu C, Liu P, Li P, Wang K. Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. Int J Biol Sci 2019;15:680-7. [PMID: 30745854 DOI: 10.7150/ijbs.30464] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
44 Greco S, Cardinali B, Falcone G, Martelli F. Circular RNAs in Muscle Function and Disease. Int J Mol Sci 2018;19:E3454. [PMID: 30400273 DOI: 10.3390/ijms19113454] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
45 Shang F, Luo S, Liang X, Xia Y. Alterations of circular RNAs in hyperglycemic human endothelial cells. Biochemical and Biophysical Research Communications 2018;499:551-5. [DOI: 10.1016/j.bbrc.2018.03.187] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
46 Lu YW, Wang D. Non-coding RNA in Ischemic and Non-ischemic Cardiomyopathy. Curr Cardiol Rep 2018;20. [DOI: 10.1007/s11886-018-1055-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
47 Zhang L, Bian YF, Bai R, Song XS, Liang B, Xiao CS. Circ_BMP2K enhances the regulatory effects of miR-455-3p on its target gene SUMO1 and thereby inhibits the activation of cardiac fibroblasts. Biochem Cell Biol 2020;98:583-90. [PMID: 32413267 DOI: 10.1139/bcb-2019-0381] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Xie Y, Lv Y, Zhang Y, Liang Z, Han L, Xie Y. LATS2 promotes apoptosis in non-small cell lung cancer A549 cells via triggering Mff-dependent mitochondrial fission and activating the JNK signaling pathway. Biomed Pharmacother 2019;109:679-89. [PMID: 30551520 DOI: 10.1016/j.biopha.2018.10.097] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
49 Cardenas J, Balaji U, Gu J. Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions. Sci Rep 2020;10:22165. [PMID: 33335165 DOI: 10.1038/s41598-020-78469-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Xue J, Chen C, Luo F, Pan X, Xu H, Yang P, Sun Q, Liu X, Lu L, Yang Q, Xiao T, Dai X, Luo P, Lu J, Zhang A, Liu Q. CircLRP6 Regulation of ZEB1 via miR-455 Is Involved in the Epithelial-Mesenchymal Transition During Arsenite-Induced Malignant Transformation of Human Keratinocytes. Toxicological Sciences 2018;162:450-61. [DOI: 10.1093/toxsci/kfx269] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
51 Gabriel AF, Costa MC, Enguita FJ. Circular RNA-Centered Regulatory Networks in the Physiopathology of Cardiovascular Diseases. Int J Mol Sci 2020;21:E456. [PMID: 31936839 DOI: 10.3390/ijms21020456] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Gabriel AF, Costa MC, Enguita FJ. Interactions Among Regulatory Non-coding RNAs Involved in Cardiovascular Diseases. Adv Exp Med Biol 2020;1229:79-104. [PMID: 32285406 DOI: 10.1007/978-981-15-1671-9_4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, Meng P, Li J. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol 2019;20:261-74. [PMID: 30384260 DOI: 10.1016/j.redox.2018.10.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
54 Bayoumi AS, Aonuma T, Teoh JP, Tang YL, Kim IM. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacol Sin 2018;39:1100-9. [PMID: 29565037 DOI: 10.1038/aps.2017.196] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 12.3] [Reference Citation Analysis]
55 Jiang L, Wang X, Zhan X, Kang S, Liu H, Luo Y, Lin L. Advance in circular RNA modulation effects of heart failure. Gene 2020;763S:100036. [PMID: 34493370 DOI: 10.1016/j.gene.2020.100036] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Shrivastava A, Haase T, Zeller T, Schulte C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-coding RNAs. Front Cardiovasc Med 2020;7:601364. [PMID: 33330662 DOI: 10.3389/fcvm.2020.601364] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021;13:eabd0914. [PMID: 33568517 DOI: 10.1126/scitranslmed.abd0914] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2020;116:1805-19. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
59 Su Q, Lv X. Revealing new landscape of cardiovascular disease through circular RNA-miRNA-mRNA axis. Genomics 2020;112:1680-5. [PMID: 31626900 DOI: 10.1016/j.ygeno.2019.10.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
60 Zhou Z, Jiang R, Yang X, Guo H, Fang S, Zhang Y, Cheng Y, Wang J, Yao H, Chao J. circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination. Theranostics 2018;8:575-92. [PMID: 29290828 DOI: 10.7150/thno.21648] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
61 Costa MC, Gabriel AF, Enguita FJ. Bioinformatics Research Methodology of Non-coding RNAs in Cardiovascular Diseases. Adv Exp Med Biol 2020;1229:49-64. [PMID: 32285404 DOI: 10.1007/978-981-15-1671-9_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Li B, Li Y, Hu L, Liu Y, Zhou Q, Wang M, An Y, Li P. Role of Circular RNAs in the Pathogenesis of Cardiovascular Disease. J Cardiovasc Transl Res 2020;13:572-83. [PMID: 32399680 DOI: 10.1007/s12265-019-09912-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
63 Huang JL, Su M, Wu DP. Functional roles of circular RNAs in Alzheimer's disease. Ageing Res Rev 2020;60:101058. [PMID: 32234545 DOI: 10.1016/j.arr.2020.101058] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
64 Yan K, An T, Zhai M, Huang Y, Wang Q, Wang Y, Zhang R, Wang T, Liu J, Zhang Y, Zhang J, Wang K. Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death Dis 2019;10:500. [PMID: 31235686 DOI: 10.1038/s41419-019-1734-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
65 Min X, Liu DL, Xiong XD. Circular RNAs as Competing Endogenous RNAs in Cardiovascular and Cerebrovascular Diseases: Molecular Mechanisms and Clinical Implications. Front Cardiovasc Med 2021;8:682357. [PMID: 34307497 DOI: 10.3389/fcvm.2021.682357] [Reference Citation Analysis]
66 Zhang N, Wang X. Circular RNA ITCH mediates H2O2-induced myocardial cell apoptosis by targeting miR-17-5p via wnt/β-catenin signalling pathway. Int J Exp Pathol 2020. [PMID: 33350543 DOI: 10.1111/iep.12367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
67 Zhou M, Yang J, Xiong X. The emerging landscape of circular RNA in cardiovascular diseases. Journal of Molecular and Cellular Cardiology 2018;122:134-9. [DOI: 10.1016/j.yjmcc.2018.08.012] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 9.0] [Reference Citation Analysis]
68 Tang R, Long T, Lui KO, Chen Y, Huang ZP. A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease. Mol Ther Nucleic Acids 2020;20:673-86. [PMID: 32380417 DOI: 10.1016/j.omtn.2020.04.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
69 Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in Cardiovascular Disease. Front Mol Biosci 2020;7:622540. [PMID: 33644114 DOI: 10.3389/fmolb.2020.622540] [Reference Citation Analysis]
70 Cao K, Feng Z, Gao F, Zang W, Liu J. Mitoepigenetics: An intriguing regulatory layer in aging and metabolic-related diseases. Free Radic Biol Med 2021;177:337-46. [PMID: 34715295 DOI: 10.1016/j.freeradbiomed.2021.10.031] [Reference Citation Analysis]
71 Ma W, Xue N, Zhang J, Wang D, Yao X, Lin L, Xu Q. circUBAP2 regulates osteosarcoma progression via the miR‑204‑3p/HMGA2 axis. Int J Oncol 2021;58:298-311. [PMID: 33650644 DOI: 10.3892/ijo.2021.5178] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
72 Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020;19:8. [PMID: 31937318 DOI: 10.1186/s12943-019-1113-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
73 Lim TB, Lavenniah A, Foo RS. Circles in the heart and cardiovascular system. Cardiovasc Res 2020;116:269-78. [PMID: 31552406 DOI: 10.1093/cvr/cvz227] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
74 Peng Y, Wang HH. Cir-ITCH inhibits gastric cancer migration, invasion and proliferation by regulating the Wnt/β-catenin pathway. Sci Rep 2020;10:17443. [PMID: 33060778 DOI: 10.1038/s41598-020-74452-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
75 Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021;712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Reference Citation Analysis]
76 Solé C, Lawrie CH. Circular RNAs and cancer: Opportunities and challenges. Adv Clin Chem 2020;99:87-146. [PMID: 32951640 DOI: 10.1016/bs.acc.2020.02.008] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Wen ZJ, Xin H, Wang YC, Liu HW, Gao YY, Zhang YF. Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids 2021;26:828-48. [PMID: 34729251 DOI: 10.1016/j.omtn.2021.10.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Yao B, Wan X, Zheng X, Zhong T, Hu J, Zhou Y, Qin A, Ma Y, Yin D. Critical roles of microRNA-141-3p and CHD8 in hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Cell Biosci 2020;10:20. [PMID: 32123560 DOI: 10.1186/s13578-020-00384-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
79 Gai S, Sun L, Wang H, Yang P. Circular RNA hsa_circ_0007121 regulates proliferation, migration, invasion, and epithelial-mesenchymal transition of trophoblast cells by miR-182-5p/PGF axis in preeclampsia. Open Med (Wars) 2020;15:1061-71. [PMID: 33336062 DOI: 10.1515/med-2020-0230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Hou J, Jiang W, Zhu L, Zhong S, Zhang H, Li J, Zhou S, Yang S, He Y, Wang D, Chen X, Deng F, Zhang Q, Wang J, Hu J, Zhang W, Ding L, Zhao J, Tang J. Circular RNAs and exosomes in cancer: a mysterious connection. Clin Transl Oncol 2018;20:1109-16. [DOI: 10.1007/s12094-018-1839-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
81 Haque S, Harries LW. Circular RNAs (circRNAs) in Health and Disease. Genes (Basel) 2017;8:E353. [PMID: 29182528 DOI: 10.3390/genes8120353] [Cited by in Crossref: 100] [Cited by in F6Publishing: 112] [Article Influence: 20.0] [Reference Citation Analysis]
82 Wu WP, Zhou MY, Liu DL, Min X, Shao T, Xu ZY, Jing X, Cai MY, Xu S, Liang X, Mo M, Liu X, Xiong XD. circGNAQ, a circular RNA enriched in vascular endothelium, inhibits endothelial cell senescence and atherosclerosis progression. Mol Ther Nucleic Acids 2021;26:374-87. [PMID: 34552819 DOI: 10.1016/j.omtn.2021.07.020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Li J, Wang W, Wang X, He Y, Wang S, Yan Y. A novel strategy of identifying circRNA biomarkers in cardiovascular disease by meta‐analysis. J Cell Physiol 2019;234:21601-12. [DOI: 10.1002/jcp.28817] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
84 Ni T, Zhang Q, Li Y, Huang C, Zhou T, Yan J, Chen ZJ. CircSTK40 contributes to recurrent implantation failure via modulating the HSP90/AKT/FOXO1 axis. Mol Ther Nucleic Acids 2021;26:208-21. [PMID: 34513305 DOI: 10.1016/j.omtn.2021.06.021] [Reference Citation Analysis]
85 Femminò S, Penna C, Margarita S, Comità S, Brizzi MF, Pagliaro P. Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vascul Pharmacol 2020;135:106790. [PMID: 32861822 DOI: 10.1016/j.vph.2020.106790] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
86 Wang X, Cao X, Dong D, Shen X, Cheng J, Jiang R, Yang Z, Peng S, Huang Y, Lan X, Elnour IE, Lei C, Chen H. Circular RNA TTN Acts As a miR-432 Sponge to Facilitate Proliferation and Differentiation of Myoblasts via the IGF2/PI3K/AKT Signaling Pathway. Mol Ther Nucleic Acids 2019;18:966-80. [PMID: 31770673 DOI: 10.1016/j.omtn.2019.10.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
87 Wang L, Wang J, Li G, Xiao J. Non-coding RNAs in Physiological Cardiac Hypertrophy. Adv Exp Med Biol 2020;1229:149-61. [PMID: 32285410 DOI: 10.1007/978-981-15-1671-9_8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
88 Zhang Y, Chen B. Silencing circ_0062389 alleviates cardiomyocyte apoptosis in heart failure rats via modulating TGF-β1/Smad3 signaling pathway. Gene 2021;766:145154. [PMID: 32949699 DOI: 10.1016/j.gene.2020.145154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
89 Tang N, Jiang S, Yang Y, Liu S, Ponnusamy M, Xin H, Yu T. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus. Cardiovasc Ther. 2018;36:e12436. [PMID: 29797660 DOI: 10.1111/1755-5922.12436] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 7.5] [Reference Citation Analysis]
90 Zhang Y, Shen H, Wang P, Min J, Yu Y, Wang Q, Wang S, Xi W, Nguyen QM, Xiao J, Wang Z. Identification and characterization of circular RNAs in atrial appendage of patients with atrial fibrillation. Exp Cell Res 2020;389:111821. [PMID: 31923425 DOI: 10.1016/j.yexcr.2020.111821] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Ji K, Lin K, Wang Y, Du L, Xu C, He N, Wang J, Liu Y, Liu Q. TAZ inhibition promotes IL-2-induced apoptosis of hepatocellular carcinoma cells by activating the JNK/F-actin/mitochondrial fission pathway. Cancer Cell Int 2018;18:117. [PMID: 30127666 DOI: 10.1186/s12935-018-0615-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
92 Sarkar D, Diermeier SD. Circular RNAs: Potential Applications as Therapeutic Targets and Biomarkers in Breast Cancer. Noncoding RNA 2021;7:2. [PMID: 33466455 DOI: 10.3390/ncrna7010002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Gong X, Tian M, Cao N, Yang P, Xu Z, Zheng S, Liao Q, Chen C, Zeng C, Jose PA, Wang DZ, Jian Z, Xiao Y, Jiang DS, Wei X, Zhang B, Wang Y, Chen K, Wu G, Zeng C. Circular RNA circEsyt2 regulates vascular smooth muscle cell remodeling via splicing regulation. J Clin Invest 2021;131:e147031. [PMID: 34907911 DOI: 10.1172/JCI147031] [Reference Citation Analysis]
94 Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, Yuan SJ, Zeng N, Yang ZZ, Yang H, Wang XP, Duan JZ, Wang S, Luo JF, Wu SL, Shan ZX. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 2020;116:1323-34. [PMID: 31397837 DOI: 10.1093/cvr/cvz215] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 40.0] [Reference Citation Analysis]
95 Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021;8:774619. [PMID: 34901234 DOI: 10.3389/fcvm.2021.774619] [Reference Citation Analysis]
96 Schulte C, Barwari T, Joshi A, Theofilatos K, Zampetaki A, Barallobre-Barreiro J, Singh B, Sörensen NA, Neumann JT, Zeller T, Westermann D, Blankenberg S, Marber M, Liebetrau C, Mayr M. Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circ Res 2019;125:328-40. [PMID: 31159652 DOI: 10.1161/CIRCRESAHA.119.314937] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 11.7] [Reference Citation Analysis]
97 Li H, Jin X, Liu B, Zhang P, Chen W, Li Q. CircRNA CBL.11 suppresses cell proliferation by sponging miR-6778-5p in colorectal cancer. BMC Cancer 2019;19:826. [PMID: 31438886 DOI: 10.1186/s12885-019-6017-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
98 Liu Q, Dong Q. NR4A2 Exacerbates Cerebral Ischemic Brain Injury via Modulating microRNA-652/Mul1 Pathway. Neuropsychiatr Dis Treat 2020;16:2285-96. [PMID: 33116527 DOI: 10.2147/NDT.S265601] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Cui X, Dong Y, Li M, Wang X, Jiang M, Yang W, Liu G, Sun S, Xu W. A circular RNA from NFIX facilitates oxidative stress-induced H9c2 cells apoptosis. In Vitro Cell Dev Biol Anim 2020;56:715-22. [PMID: 33067659 DOI: 10.1007/s11626-020-00476-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
100 Yang T, Long T, Du T, Chen Y, Dong Y, Huang ZP. Circle the Cardiac Remodeling With circRNAs. Front Cardiovasc Med 2021;8:702586. [PMID: 34250050 DOI: 10.3389/fcvm.2021.702586] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
101 Ju J, Song YN, Chen XZ, Wang T, Liu CY, Wang K. circRNA is a potential target for cardiovascular diseases treatment. Mol Cell Biochem 2021. [PMID: 34780000 DOI: 10.1007/s11010-021-04286-z] [Reference Citation Analysis]
102 Chen Z, Zhang W, Deng M, Li Y, Zhou Y. CircGLCE alleviates intervertebral disc degeneration by regulating apoptosis and matrix degradation through the targeting of miR-587/STAP1. Aging (Albany NY) 2020;12:21971-91. [PMID: 33159017 DOI: 10.18632/aging.104035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
103 Schulte C, Barwari T, Joshi A, Zeller T, Mayr M. Noncoding RNAs versus Protein Biomarkers in Cardiovascular Disease. Trends Mol Med 2020;26:583-96. [PMID: 32470385 DOI: 10.1016/j.molmed.2020.02.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
104 Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J, Zheng S. Targeting Ferroptosis to Treat Cardiovascular Diseases: A New Continent to Be Explored. Front Cell Dev Biol 2021;9:737971. [PMID: 34527678 DOI: 10.3389/fcell.2021.737971] [Reference Citation Analysis]
105 Zheng H, Shi L, Tong C, Liu Y, Hou M. circSnx12 Is Involved in Ferroptosis During Heart Failure by Targeting miR-224-5p. Front Cardiovasc Med 2021;8:656093. [PMID: 33969020 DOI: 10.3389/fcvm.2021.656093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
106 Sarwar A, Wang B, Su Q, Zhang Y. MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochem Pharmacol 2021;189:114357. [PMID: 33279497 DOI: 10.1016/j.bcp.2020.114357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Luan W, Shi Y, Zhou Z, Xia Y, Wang J. circRNA_0084043 promote malignant melanoma progression via miR-153-3p/Snail axis. Biochemical and Biophysical Research Communications 2018;502:22-9. [DOI: 10.1016/j.bbrc.2018.05.114] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 15.3] [Reference Citation Analysis]
108 Badimon L, Mendieta G, Ben-Aicha S, Vilahur G. Post-Genomic Methodologies and Preclinical Animal Models: Chances for the Translation of Cardioprotection to the Clinic. Int J Mol Sci 2019;20:E514. [PMID: 30691061 DOI: 10.3390/ijms20030514] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
109 Ma D, Guan B, Song L, Liu Q, Fan Y, Zhao L, Wang T, Zhang Z, Gao Z, Li S, Xu H. A Bibliometric Analysis of Exosomes in Cardiovascular Diseases From 2001 to 2021. Front Cardiovasc Med 2021;8:734514. [PMID: 34513962 DOI: 10.3389/fcvm.2021.734514] [Reference Citation Analysis]
110 Luo C, Ling GX, Lei BF, Feng X, Xie XY, Fang C, Li YG, Cai XW, Zheng BS. Circular RNA PVT1 silencing prevents ischemia-reperfusion injury in rat by targeting microRNA-125b and microRNA-200a. J Mol Cell Cardiol 2021;159:80-90. [PMID: 34097926 DOI: 10.1016/j.yjmcc.2021.05.019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Fang Y. Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018;4:FSO314. [PMID: 30112184 DOI: 10.4155/fsoa-2018-0036] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
112 Gomes CPC, Salgado-Somoza A, Creemers EE, Dieterich C, Lustrek M, Devaux Y; Cardiolinc™ network. Circular RNAs in the cardiovascular system. Noncoding RNA Res 2018;3:1-11. [PMID: 30159434 DOI: 10.1016/j.ncrna.2018.02.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
113 Zhang C, Xiong Y, Zeng L, Peng Z, Liu Z, Zhan H, Yang Z. The Role of Non-coding RNAs in Viral Myocarditis. Front Cell Infect Microbiol 2020;10:312. [PMID: 32754448 DOI: 10.3389/fcimb.2020.00312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
114 Feng D, Wang Z, Zhao Y, Li Y, Liu D, Chen Z, Ning S, Hu Y, Yao J, Tian X. circ-PRKCB acts as a ceRNA to regulate p66Shc-mediated oxidative stress in intestinal ischemia/reperfusion. Theranostics 2020;10:10680-96. [PMID: 32929374 DOI: 10.7150/thno.44250] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
115 Gong X, Wu G, Zeng C. Role of circular RNAs in cardiovascular diseases. Exp Biol Med (Maywood) 2019;244:73-82. [PMID: 30654635 DOI: 10.1177/1535370218822988] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
116 Zhu L, Li N, Sun L, Zheng D, Shao G. Non-coding RNAs: The key detectors and regulators in cardiovascular disease. Genomics 2021;113:1233-46. [PMID: 33164830 DOI: 10.1016/j.ygeno.2020.10.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
117 Zhang T, Huang W. Angiogenic circular RNAs: A new landscape in cardiovascular diseases. Microvascular Research 2020;129:103983. [DOI: 10.1016/j.mvr.2020.103983] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
118 Liu Y, Yang Y, Wang Z, Fu X, Chu XM, Li Y, Wang Q, He X, Li M, Wang K, Wang JX, Li PF, Yu T. Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis 2020;298:14-26. [PMID: 32131039 DOI: 10.1016/j.atherosclerosis.2020.02.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
119 Qu S, Liu Z, Yang X, Zhou J, Yu H, Zhang R, Li H. The emerging functions and roles of circular RNAs in cancer. Cancer Lett 2018;414:301-9. [PMID: 29174799 DOI: 10.1016/j.canlet.2017.11.022] [Cited by in Crossref: 123] [Cited by in F6Publishing: 131] [Article Influence: 24.6] [Reference Citation Analysis]
120 Wang Y, Sun X, Ji K, Du L, Xu C, He N, Wang J, Liu Y, Liu Q. Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway. Biomedicine & Pharmacotherapy 2018;105:1172-82. [DOI: 10.1016/j.biopha.2018.06.071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
121 Ding Y, Lu C, Zhang W, Wang Y, Li Y, Zhu Y, Lv S, Zhang J. The emerging role of circular RNAs in cardiovascular diseases. J Physiol Biochem 2021;77:343-53. [PMID: 33772724 DOI: 10.1007/s13105-021-00807-y] [Reference Citation Analysis]
122 Li Y, Liu X. Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol 2018;233:5589-97. [PMID: 29528108 DOI: 10.1002/jcp.26522] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
123 Gan J, Yuan J, Liu Y, Lu Z, Xue Y, Shi L, Zeng H. Circular RNA_101237 mediates anoxia/reoxygenation injury by targeting let‑7a‑5p/IGF2BP3 in cardiomyocytes. Int J Mol Med 2020;45:451-60. [PMID: 31894303 DOI: 10.3892/ijmm.2019.4441] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
124 Ma S, Liao Y. Noncoding RNAs in exercise-induced cardio-protection for chronic heart failure. EBioMedicine 2019;46:532-40. [PMID: 31351933 DOI: 10.1016/j.ebiom.2019.07.051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
125 Altesha M, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol 2019;234:5588-600. [DOI: 10.1002/jcp.27384] [Cited by in Crossref: 116] [Cited by in F6Publishing: 124] [Article Influence: 29.0] [Reference Citation Analysis]
126 Wang Y, Liu B. Circular RNA in Diseased Heart. Cells 2020;9:E1240. [PMID: 32429565 DOI: 10.3390/cells9051240] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
127 Santer L, Bär C, Thum T. Circular RNAs: A Novel Class of Functional RNA Molecules with a Therapeutic Perspective. Mol Ther 2019;27:1350-63. [PMID: 31324392 DOI: 10.1016/j.ymthe.2019.07.001] [Cited by in Crossref: 65] [Cited by in F6Publishing: 72] [Article Influence: 21.7] [Reference Citation Analysis]
128 Xu P, Zhang G, Sha L, Hou S. DUSP1 alleviates cerebral ischaemia reperfusion injury via inactivating JNK-Mff pathways and repressing mitochondrial fission. Life Sci 2018;210:251-62. [PMID: 30138595 DOI: 10.1016/j.lfs.2018.08.049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
129 Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis 2021;12:468. [PMID: 33976116 DOI: 10.1038/s41419-021-03743-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
130 Yang Q, Li F, He AT, Yang BB. Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther 2021;29:1683-702. [PMID: 33484969 DOI: 10.1016/j.ymthe.2021.01.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
131 Siebert V, Allencherril J, Ye Y, Wehrens XHT, Birnbaum Y. The Role of Non-coding RNAs in Ischemic Myocardial Reperfusion Injury. Cardiovasc Drugs Ther 2019;33:489-98. [PMID: 31332654 DOI: 10.1007/s10557-019-06893-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
132 Wang J, Zhu M, Pan J, Chen C, Xia S, Song Y. Circular RNAs: a rising star in respiratory diseases. Respir Res 2019;20:3. [PMID: 30611252 DOI: 10.1186/s12931-018-0962-1] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
133 Chatterjee S, Gupta SK, Bär C, Thum T. Noncoding RNAs: potential regulators in cardioncology. Am J Physiol Heart Circ Physiol 2019;316:H160-8. [PMID: 30412441 DOI: 10.1152/ajpheart.00418.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
134 Dong Y, Xu S, Liu J, Ponnusamy M, Zhao Y, Zhang Y, Wang Q, Li P, Wang K. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J Biol Sci 2018;14:1133-41. [PMID: 29989099 DOI: 10.7150/ijbs.26215] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
135 Fang S, Guo H, Cheng Y, Zhou Z, Zhang W, Han B, Luo W, Wang J, Xie W, Chao J. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1. Cell Death Dis 2018;9:396. [PMID: 29540674 DOI: 10.1038/s41419-018-0432-1] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 11.5] [Reference Citation Analysis]
136 Wen Z, Shen Q, Zhang H, Su Y, Zhu Z, Chen G, Peng L, Li H, Du C, Xie H, Xu X, Tang W. Circular RNA CCDC66 targets DCX to regulate cell proliferation and migration by sponging miR-488-3p in Hirschsprung's disease. J Cell Physiol 2019;234:10576-87. [PMID: 30443988 DOI: 10.1002/jcp.27733] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
137 Lu D, Thum T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol. 2019;16:661-674. [PMID: 31186539 DOI: 10.1038/s41569-019-0218-x] [Cited by in Crossref: 74] [Cited by in F6Publishing: 79] [Article Influence: 24.7] [Reference Citation Analysis]
138 Awan FM, Yang BB, Naz A, Hanif A, Ikram A, Obaid A, Malik A, Janjua HA, Ali A, Sharif S. The emerging role and significance of circular RNAs in viral infections and antiviral immune responses: possible implication as theranostic agents. RNA Biol 2021;18:1-15. [PMID: 32615049 DOI: 10.1080/15476286.2020.1790198] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
139 Ma B, Zhao M, Guo Z. Circular RNA circ_0010729 Knockdown Attenuates Oxygen-Glucose Deprivation-Induced Human Cardiac Myocytes Injury by miR-338-3p/CALM2 Axis. J Cardiovasc Pharmacol 2021;77:594-602. [PMID: 33951696 DOI: 10.1097/FJC.0000000000000988] [Reference Citation Analysis]
140 Shi Y, Zhang Z, Yin Q, Fu C, Barszczyk A, Zhang X, Wang J, Yang D. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med 2021;25:5326-34. [PMID: 33942477 DOI: 10.1111/jcmm.16544] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
141 Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, Zhang Y, Wang Q, Liu J, Wang K. A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ 2018;6:e5503. [PMID: 30155370 DOI: 10.7717/peerj.5503] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 12.8] [Reference Citation Analysis]
142 Xu M, Xie F, Tang X, Wang T, Wang S. Insights into the role of circular RNA in macrophage activation and fibrosis disease. Pharmacol Res 2020;156:104777. [PMID: 32244027 DOI: 10.1016/j.phrs.2020.104777] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
143 Kishore R, Garikipati VNS, Gonzalez C. Role of Circular RNAs in Cardiovascular Disease. J Cardiovasc Pharmacol 2020;76:128-37. [PMID: 32398477 DOI: 10.1097/FJC.0000000000000841] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
144 Luo B, Zeng X, Liu P, Zhu H. Noncoding RNAs and Heart Failure. Adv Exp Med Biol 2020;1229:215-29. [PMID: 32285414 DOI: 10.1007/978-981-15-1671-9_12] [Reference Citation Analysis]
145 Xiao Y, Oumarou DB, Wang S, Liu Y. Circular RNA Involved in the Protective Effect of Malva sylvestris L. on Myocardial Ischemic/Re-Perfused Injury. Front Pharmacol 2020;11:520486. [PMID: 33101012 DOI: 10.3389/fphar.2020.520486] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
146 Ge X, Li Z, Zhou Z, Xia Y, Bian M, Yu J. Circular RNA SIPA1L1 promotes osteogenesis via regulating the miR-617/Smad3 axis in dental pulp stem cells. Stem Cell Res Ther 2020;11:364. [PMID: 32831141 DOI: 10.1186/s13287-020-01877-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
147 Bose R, Ain R. Regulation of Transcription by Circular RNAs. Adv Exp Med Biol 2018;1087:81-94. [PMID: 30259359 DOI: 10.1007/978-981-13-1426-1_7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
148 Yan M, Chen K, Sun R, Lin K, Qian X, Yuan M, Wang Y, Ma J, Qing Y, Xu J, Wei M, Huang D, Li J. Glucose impairs angiogenesis and promotes ventricular remodelling following myocardial infarction via upregulation of microRNA-17. Experimental Cell Research 2019;381:191-200. [DOI: 10.1016/j.yexcr.2019.04.039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
149 Wu N, Li C, Xu B, Xiang Y, Jia X, Yuan Z, Wu L, Zhong L, Li Y. Circular RNA mmu_circ_0005019 inhibits fibrosis of cardiac fibroblasts and reverses electrical remodeling of cardiomyocytes. BMC Cardiovasc Disord 2021;21:308. [PMID: 34154526 DOI: 10.1186/s12872-021-02128-w] [Reference Citation Analysis]
150 Wang Y, Chen J, Cowan DB, Wang DZ. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Semin Cell Dev Biol 2021:S1084-9521(21)00194-4. [PMID: 34284952 DOI: 10.1016/j.semcdb.2021.07.007] [Reference Citation Analysis]
151 Cavalcante GC, Magalhães L, Ribeiro-Dos-Santos Â, Vidal AF. Mitochondrial Epigenetics: Non-Coding RNAs as a Novel Layer of Complexity. Int J Mol Sci 2020;21:E1838. [PMID: 32155913 DOI: 10.3390/ijms21051838] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
152 Cai L, Qi B, Wu X, Peng S, Zhou G, Wei Y, Xu J, Chen S, Liu S. Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J Mol Cell Cardiol 2019;130:10-22. [PMID: 30876857 DOI: 10.1016/j.yjmcc.2019.03.007] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
153 Liang L, Su W, Zhou L, Cao Y, Zhou X, Liu S, Zhao Y, Ding X, Wang Q, Zhang H. Statin downregulation of miR-652-3p protects endothelium from dyslipidemia by promoting ISL1 expression. Metabolism 2020;107:154226. [PMID: 32277945 DOI: 10.1016/j.metabol.2020.154226] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
154 Liu X, Li X, Zhu W, Zhang Y, Hong Y, Liang X, Fan B, Zhao H, He H, Zhang F. Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair. J Cell Physiol. 2020;. [PMID: 31960418 DOI: 10.1002/jcp.29456] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
155 Rajappa A, Banerjee S, Sharma V, Khandelia P. Circular RNAs: Emerging Role in Cancer Diagnostics and Therapeutics. Front Mol Biosci 2020;7:577938. [PMID: 33195421 DOI: 10.3389/fmolb.2020.577938] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
156 Haddad G, Lorenzen JM. Biogenesis and Function of Circular RNAs in Health and in Disease. Front Pharmacol. 2019;10:428. [PMID: 31080413 DOI: 10.3389/fphar.2019.00428] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 15.7] [Reference Citation Analysis]
157 He X, Bao X, Tao Z, Sun J, Zheng S, Zhong F, Zhang L. The microarray identification circular RNA hsa_circ_0105015 up-regulated involving inflammation pathway in essential hypertension. J Clin Lab Anal 2021;35:e23603. [PMID: 33236350 DOI: 10.1002/jcla.23603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
158 Holdt LM, Kohlmaier A, Teupser D. Circular RNAs as Therapeutic Agents and Targets. Front Physiol. 2018;9:1262. [PMID: 30356745 DOI: 10.3389/fphys.2018.01262] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 15.8] [Reference Citation Analysis]
159 Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, Li D, Wang T, Xu R, Liu K. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 2019;7:e6831. [PMID: 31119072 DOI: 10.7717/peerj.6831] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
160 Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, Wang K, Li P. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci 2017;13:1497-506. [PMID: 29230098 DOI: 10.7150/ijbs.22531] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 11.4] [Reference Citation Analysis]
161 Manguso N, Giuliano AE, Tanaka H. circRNA meets gene amplification. Noncoding RNA Investig 2018;2:38. [PMID: 30123874 DOI: 10.21037/ncri.2018.06.04] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
162 Liu X, Hu Z, Zhou J, Tian C, Tian G, He M, Gao L, Chen L, Li T, Peng H, Zhang W. Interior circular RNA. RNA Biol 2020;17:87-97. [PMID: 31532701 DOI: 10.1080/15476286.2019.1669391] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
163 Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022;8:809580. [DOI: 10.3389/fcvm.2021.809580] [Reference Citation Analysis]
164 Wang P, He X. Current research on circular RNAs associated with colorectal cancer. Scandinavian Journal of Gastroenterology 2017;52:1203-10. [DOI: 10.1080/00365521.2017.1365168] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
165 Bei Y, Yang T, Wang L, Holvoet P, Das S, Sluijter JPG, Monteiro MC, Liu Y, Zhou Q, Xiao J. Circular RNAs as Potential Theranostics in the Cardiovascular System. Mol Ther Nucleic Acids 2018;13:407-18. [PMID: 30368217 DOI: 10.1016/j.omtn.2018.09.022] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
166 Zhu X, Tang X, Chong H, Cao H, Fan F, Pan J, Wang D, Zhou Q. Expression Profiles of Circular RNA in Human Atrial Fibrillation With Valvular Heart Diseases. Front Cardiovasc Med 2020;7:597932. [PMID: 33330659 DOI: 10.3389/fcvm.2020.597932] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
167 Qi SX, Sun H, Liu H, Yu J, Jiang ZY, Yan P. Role and mechanism of circ-PRKCI in hepatocellular carcinoma. World J Gastroenterol 2019; 25(16): 1964-1974 [PMID: 31086464 DOI: 10.3748/wjg.v25.i16.1964] [Cited by in CrossRef: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
168 Li T, Chen Y, Lai Y, He G, He G. The relationship between polymorphisms of microRNA and preeclampsia: A protocol for meta-analysis and bioinformatics prediction. Medicine (Baltimore) 2021;100:e25477. [PMID: 33832165 DOI: 10.1097/MD.0000000000025477] [Reference Citation Analysis]
169 Lin W, Liu H, Tang Y, Wei Y, Wei W, Zhang L, Chen J. The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Mol Cell Biochem 2021;476:109-23. [PMID: 32975695 DOI: 10.1007/s11010-020-03889-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
170 Gong C, Zhou X, Lai S, Wang L, Liu J. Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reperfusion Injury. Biomed Res Int 2020;2020:8838524. [PMID: 33299883 DOI: 10.1155/2020/8838524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
171 Wang L, Liang Y, Mao Q, Xia W, Chen B, Shen H, Xu L, Jiang F, Dong G. Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. Cancer Sci 2019;110:2960-72. [PMID: 31301086 DOI: 10.1111/cas.14131] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
172 Zhang S, Wang W, Wu X, Zhou X. Regulatory Roles of Circular RNAs in Coronary Artery Disease. Mol Ther Nucleic Acids 2020;21:172-9. [PMID: 32585625 DOI: 10.1016/j.omtn.2020.05.024] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
173 Ma Y, Zhang B, Zhang D, Wang S, Li M, Zhao J. Differentially Expressed Circular RNA Profile in an Intracranial Aneurysm Group Compared with a Healthy Control Group. Dis Markers 2021;2021:8889569. [PMID: 33574968 DOI: 10.1155/2021/8889569] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
174 Wei Q, Sun H, Song S, Liu Y, Liu P, Livingston MJ, Wang J, Liang M, Mi QS, Huo Y, Nahman NS, Mei C, Dong Z. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J Clin Invest 2018;128:5448-64. [PMID: 30325740 DOI: 10.1172/JCI121859] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
175 Li J, Li Q, Chen L, Gao Y, Li J. Expression profile of circular RNAs in infantile hemangioma detected by RNA-Seq. Medicine (Baltimore) 2018;97:e10882. [PMID: 29794795 DOI: 10.1097/MD.0000000000010882] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
176 Ward Z, Pearson J, Schmeier S, Cameron V, Pilbrow A. Insights into circular RNAs: their biogenesis, detection, and emerging role in cardiovascular disease. RNA Biol 2021;:1-18. [PMID: 33779499 DOI: 10.1080/15476286.2021.1891393] [Reference Citation Analysis]
177 Mei X, Chen SY. Circular RNAs in cardiovascular diseases. Pharmacol Ther 2021;:107991. [PMID: 34592203 DOI: 10.1016/j.pharmthera.2021.107991] [Reference Citation Analysis]
178 Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021;14:2516865720988567. [PMID: 33598635 DOI: 10.1177/2516865720988567] [Reference Citation Analysis]
179 Zhang R, Xue MY, Liu BS, Wang WJ, Fan XH, Zheng BY, Yuan QH, Xu F, Wang JL, Chen YG. Aldehyde dehydrogenase 2 preserves mitochondrial morphology and attenuates hypoxia/reoxygenation-induced cardiomyocyte injury. World J Emerg Med 2020;11:246-54. [PMID: 33014221 DOI: 10.5847/wjem.j.1920-8642.2020.04.007] [Reference Citation Analysis]
180 Wang L, Meng X, Li G, Zhou Q, Xiao J. Circular RNAs in Cardiovascular Diseases. In: Xiao J, editor. Circular RNAs. Singapore: Springer; 2018. pp. 191-204. [DOI: 10.1007/978-981-13-1426-1_15] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
181 Wang Y, Liu C, Wei W, Chen W. Predictive value of circulating coagulation related microRNAs expressions for major adverse cardiac and cerebral event risk in patients undergoing continuous ambulatory peritoneal dialysis: a cohort study. J Nephrol 2020;33:157-65. [PMID: 31359371 DOI: 10.1007/s40620-019-00626-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
182 Zhou J, Ge Y, Hu Y, Rong D, Fu K, Wang H, Cao H, Tang W. Circular RNAs as novel rising stars with huge potentials in development and disease. CBM 2018;22:597-610. [DOI: 10.3233/cbm-181296] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
183 Jiang R, Zhou Z, Liao Y, Yang F, Cheng Y, Huang J, Wang J, Chen H, Zhu T, Chao J. The emerging roles of a novel CCCH-type zinc finger protein, ZC3H4, in silica-induced epithelial to mesenchymal transition. Toxicol Lett 2019;307:26-40. [PMID: 30826420 DOI: 10.1016/j.toxlet.2019.02.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
184 Sheng J, Li H, Dai Q, Lu C, Xu M, Zhang J, Feng J. DUSP1 recuses diabetic nephropathy via repressing JNK‐Mff‐mitochondrial fission pathways. J Cell Physiol 2018;234:3043-57. [DOI: 10.1002/jcp.27124] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
185 Li D, Yang Y, Li ZQ, Li LC, Zhu XH. Circular RNAs: from biogenesis and function to diseases. Chin Med J (Engl) 2019;132:2457-64. [PMID: 31651510 DOI: 10.1097/CM9.0000000000000465] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
186 Chen S, Zhao W, Min H, Xu Y. MiR-340 Promotes the Proliferation of Vascular Smooth Muscle Cells by Targeting von Hippel-Lindau Tumor Suppressor Gene. J Cardiovasc Pharmacol 2021;77:875-84. [PMID: 34016842 DOI: 10.1097/FJC.0000000000001016] [Reference Citation Analysis]
187 Lin F, Chen HW, Zhao GA, Li Y, He XH, Liang WQ, Shi ZL, Sun SY, Tian PP, Huang MY, Liu C. Advances in Research on the circRNA-miRNA-mRNA Network in Coronary Heart Disease Treated with Traditional Chinese Medicine. Evid Based Complement Alternat Med 2020;2020:8048691. [PMID: 32148552 DOI: 10.1155/2020/8048691] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
188 Chen X, Ouyang Z, Shen Y, Liu B, Zhang Q, Wan L, Yin Z, Zhu W, Li S, Peng D. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 2019;16:1249-62. [PMID: 31204558 DOI: 10.1080/15476286.2019.1624470] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
189 Wang T, Zhai M, Xu S, Ponnusamy M, Huang Y, Liu CY, Wang M, Shan C, Shan PP, Gao XQ, Wang K, Chen XZ, Liu J, Xie JY, Zhang DY, Zhou LY, Wang K. NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Theranostics 2020;10:553-66. [PMID: 31903137 DOI: 10.7150/thno.37181] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
190 Zhou H, Wang S, Hu S, Chen Y, Ren J. ER-Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury: A Fresh Perspective. Front Physiol. 2018;9:755. [PMID: 29962971 DOI: 10.3389/fphys.2018.00755] [Cited by in Crossref: 94] [Cited by in F6Publishing: 97] [Article Influence: 23.5] [Reference Citation Analysis]
191 Liu J, Yang T, Zhang Y, Wang S. Promotion of BZW2 by LINC00174 through miR-4500 inhibition enhances proliferation and apoptosis evasion in laryngeal papilloma. Cancer Cell Int 2020;20:471. [PMID: 33005104 DOI: 10.1186/s12935-020-01559-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
192 Jusic A, Devaux Y; EU-CardioRNA COST Action (CA17129). Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020;115:23. [PMID: 32140778 DOI: 10.1007/s00395-020-0783-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
193 Wan B, Liu B, Lv C. Progress of research into circular RNAs in urinary neoplasms. PeerJ 2020;8:e8666. [PMID: 32140311 DOI: 10.7717/peerj.8666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
194 Costa MC, Calderon-Dominguez M, Mangas A, Campuzano O, Sarquella-Brugada G, Ramos M, Quezada-Feijoo M, Pinilla JMG, Robles-Mezcua A, Del Aguila Pacheco-Cruz G, Belmonte T, Enguita FJ, Toro R. Circulating circRNA as biomarkers for dilated cardiomyopathy etiology. J Mol Med (Berl) 2021. [PMID: 34498126 DOI: 10.1007/s00109-021-02119-6] [Reference Citation Analysis]
195 Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018;3:75-98. [PMID: 30159442 DOI: 10.1016/j.ncrna.2018.05.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
196 Wu H, Liu Y, Duan H, Fan X, Wang Y, Song J, Han J, Yang M, Lu L, Nie G. Identification of differentially expressed circular RNAs in human nasopharyngeal carcinoma. Cancer Biomark 2020;29:483-92. [PMID: 32865182 DOI: 10.3233/CBM-201731] [Reference Citation Analysis]
197 Chen Z, Wang C, Yu N, Si L, Zhu L, Zeng A, Liu Z, Wang X. INF2 regulates oxidative stress-induced apoptosis in epidermal HaCaT cells by modulating the HIF1 signaling pathway. Biomedicine & Pharmacotherapy 2019;111:151-61. [DOI: 10.1016/j.biopha.2018.12.046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]