BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, Liu SH, Cheng AL. Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer. 2013;108:72-81. [PMID: 23257894 DOI: 10.1038/bjc.2012.559] [Cited by in Crossref: 133] [Cited by in F6Publishing: 139] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 Li X, Yin X, Bao H, Liu C. Circular RNA ITCH increases sorafenib-sensitivity in hepatocellular carcinoma via sequestering miR-20b-5p and modulating the downstream PTEN-PI3K/Akt pathway. Molecular and Cellular Probes 2022. [DOI: 10.1016/j.mcp.2022.101877] [Reference Citation Analysis]
2 Gnocchi D, Kurzyk A, Mintrone A, Lentini G, Sabbà C, Mazzocca A. Inhibition of LPAR6 overcomes sorafenib resistance by switching glycolysis into oxidative phosphorylation in hepatocellular carcinoma. Biochimie 2022:S0300-9084(22)00192-4. [PMID: 35952946 DOI: 10.1016/j.biochi.2022.07.016] [Reference Citation Analysis]
3 An J, Ha E. Extracellular vesicles derived from Lactobacillus plantarum restore chemosensitivity through the PDK2-mediated glucose metabolic pathway in 5-FU-resistant colorectal cancer cells. J Microbiol 2022;60:735-745. [DOI: 10.1007/s12275-022-2201-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Vishnoi K, Kumar S, Ke R, Rana A, Rana B. Dysregulation of immune checkpoint proteins in hepatocellular carcinoma: Impact on metabolic reprogramming. Current Opinion in Pharmacology 2022;64:102232. [DOI: 10.1016/j.coph.2022.102232] [Reference Citation Analysis]
5 Ho C, Lin K, Shen R, Gu D, Lee S, Su W, Jou Y. Prognostic comparative genes predict targets for sorafenib combination therapies in hepatocellular carcinoma. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.04.008] [Reference Citation Analysis]
6 Dotsu Y, Muraoka D, Ogo N, Sonoda Y, Yasui K, Yamaguchi H, Yagita H, Mukae H, Asai A, Ikeda H. Chemical augmentation of mitochondrial electron transport chains tunes T cell activation threshold in tumors. J Immunother Cancer 2022;10:e003958. [PMID: 35115364 DOI: 10.1136/jitc-2021-003958] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. Sci Adv 2022;8:eabh2635. [DOI: 10.1126/sciadv.abh2635] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
8 Filimonova M, Shitova A, Soldatova O, Shevchenko L, Saburova A, Podosinnikova T, Surinova V, Shegay P, Kaprin A, Ivanov S, Filimonov A. Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects. Int J Mol Sci 2022;23:730. [PMID: 35054914 DOI: 10.3390/ijms23020730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu W, Chen G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol Life Sci 2021;78:8097-108. [PMID: 34773132 DOI: 10.1007/s00018-021-04016-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ferns GA, Shahini Shams Abadi M, Raeisi A, Arjmand MH. The Potential Role of Changes in the Glucose and Lipid Metabolic Pathways in Gastrointestinal Cancer Progression: Strategy in Cancer Therapy. Gastrointest Tumors 2021;8:169-76. [PMID: 34722470 DOI: 10.1159/000517771] [Reference Citation Analysis]
11 Ozgen S, Krigman J, Zhang R, Sun N. Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regen Res 2022;17:741-7. [PMID: 34472459 DOI: 10.4103/1673-5374.322429] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sun L, Jiang Y, Yan X, Dai X, Huang C, Chen L, Li T, Zhang Y, Xiao H, Yang M, Xiang L, Zhang Y, Chen S, Li S, Chen A, He F, Lian J. Dichloroacetate enhances the anti-tumor effect of sorafenib via modulating the ROS-JNK-Mcl-1 pathway in liver cancer cells. Exp Cell Res 2021;406:112755. [PMID: 34332981 DOI: 10.1016/j.yexcr.2021.112755] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Lee HY, Nga HT, Tian J, Yi HS. Mitochondrial Metabolic Signatures in Hepatocellular Carcinoma. Cells 2021;10:1901. [PMID: 34440674 DOI: 10.3390/cells10081901] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
14 Dahiya M, Dureja H. Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother 2021;:1-16. [PMID: 34291704 DOI: 10.1080/1120009X.2021.1955202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Gao R, Buechel D, Kalathur RKR, Morini MF, Coto-Llerena M, Ercan C, Piscuoglio S, Chen Q, Blumer T, Wang X, Dazert E, Heim MH, Hall MN, Tang F, Christofori G. USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis 2021;10:52. [PMID: 34272356 DOI: 10.1038/s41389-021-00338-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
16 Bao MH, Wong CC. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021;10:1715. [PMID: 34359884 DOI: 10.3390/cells10071715] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 28.0] [Reference Citation Analysis]
17 Silva AC, Silva MJ, Rocha AA, Costa MP, Marinho JZ, Dantas NO. Synergistic effect of simonkolleite with zinc oxide: Physico-chemical properties and cytotoxicity in breast cancer cells. Materials Chemistry and Physics 2021;266:124548. [DOI: 10.1016/j.matchemphys.2021.124548] [Reference Citation Analysis]
18 Jing Z, Gao J, Li J, Niu F, Tian L, Nan P, Sun Y, Xie X, Zhu Y, Zhao Y, Liu F, Zhou L, Sun Y, Zhao X. Acetylation-induced PCK isoenzyme transition promotes metabolic adaption of liver cancer to systemic therapy. Cancer Lett 2021;519:46-62. [PMID: 34166767 DOI: 10.1016/j.canlet.2021.06.016] [Reference Citation Analysis]
19 Lin JC, Yang PM, Liu TP. PERK/ATF4-Dependent ZFAS1 Upregulation Is Associated with Sorafenib Resistance in Hepatocellular Carcinoma Cells. Int J Mol Sci 2021;22:5848. [PMID: 34072570 DOI: 10.3390/ijms22115848] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Fernández-Tussy P, Rodríguez-Agudo R, Fernández-Ramos D, Barbier-Torres L, Zubiete-Franco I, Davalillo SL, Herraez E, Goikoetxea-Usandizaga N, Lachiondo-Ortega S, Simón J, Lopitz-Otsoa F, Juan VG, McCain MV, Perugorria MJ, Mabe J, Navasa N, Rodrigues CMP, Fabregat I, Boix L, Sapena V, Anguita J, Lu SC, Mato JM, Banales JM, Villa E, Reeves HL, Bruix J, Reig M, Marin JJG, Delgado TC, Martínez-Chantar ML. Anti-miR-518d-5p overcomes liver tumor cell death resistance through mitochondrial activity. Cell Death Dis 2021;12:555. [PMID: 34050139 DOI: 10.1038/s41419-021-03827-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021;303:8-22. [PMID: 34010461 DOI: 10.1111/imr.12975] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Pan Y, Hu GY, Jiang S, Xia SJ, Maher H, Lin ZJ, Mao QJ, Zhao J, Cai LX, Xu YH, Xu JJ, Cai XJ. Development of an Aerobic Glycolysis Index for Predicting the Sorafenib Sensitivity and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021;11:637971. [PMID: 34094917 DOI: 10.3389/fonc.2021.637971] [Reference Citation Analysis]
23 Woolbright BL, Harris RA. PDK2: An Underappreciated Regulator of Liver Metabolism. Livers 2021;1:82-97. [DOI: 10.3390/livers1020008] [Reference Citation Analysis]
24 Parczyk J, Ruhnau J, Pelz C, Schilling M, Wu H, Piaskowski NN, Eickholt B, Kühn H, Danker K, Klein A. Dichloroacetate and PX-478 exhibit strong synergistic effects in a various number of cancer cell lines. BMC Cancer 2021;21:481. [PMID: 33931028 DOI: 10.1186/s12885-021-08186-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
25 Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021;10:1056. [PMID: 33946927 DOI: 10.3390/cells10051056] [Cited by in Crossref: 47] [Cited by in F6Publishing: 54] [Article Influence: 47.0] [Reference Citation Analysis]
26 Rao J, Wu X, Zhou X, Deng R, Ma Y. Development of a prognostic model for hepatocellular carcinoma using genes involved in aerobic respiration. Aging (Albany NY) 2021;13:13318-32. [PMID: 33903282 DOI: 10.18632/aging.203021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Wang S, Lv Y, Zhou Y, Ling J, Wang H, Gu D, Wang C, Qin W, Zheng X, Jin H. Acidic extracellular pH induces autophagy to promote anoikis resistance of hepatocellular carcinoma cells via downregulation of miR-3663-3p. J Cancer 2021;12:3418-26. [PMID: 33995620 DOI: 10.7150/jca.51849] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
28 Hua HW, Jiang HS, Jia L, Jia YP, Yao YL, Chen YW, Jiang F, Lu DQ, Zhou Q, Jiang MW, Ding G. SPARC regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma. Cancer Biomark 2021. [PMID: 33843664 DOI: 10.3233/CBM-200101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
29 Reddy NN, Hung SJ, Swamy MK, Sanjeev A, Rao VS, Rohini R, Raju AK, Bhaskar K, Hu A, Reddy PM. Synthesis and Rational Design of New Appended 1,2,3-Triazole-uracil Ensembles as Promising Anti-Tumor Agents via In Silico VEGFR-2 Transferase Inhibition. Molecules 2021;26:1952. [PMID: 33808444 DOI: 10.3390/molecules26071952] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021;10:762. [PMID: 33808495 DOI: 10.3390/cells10040762] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
31 Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-muja J, Stryeck S, Pichler M, Rinner B, Deutsch AJ, Reinisch A, Madl T, Chiozzi RZ, Heck AJ, Huch M, Malli R, Prokesch A. Fasting reverses drug-resistance in hepatocellular carcinoma through p53-dependent metabolic synergism.. [DOI: 10.1101/2021.02.10.430545] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Marcucci F, Rumio C. Glycolysis-induced drug resistance in tumors-A response to danger signals? Neoplasia 2021;23:234-45. [PMID: 33418276 DOI: 10.1016/j.neo.2020.12.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 19.0] [Reference Citation Analysis]
33 Ferrarini MG, Nisimura LM, Girard RMBM, Alencar MB, Fragoso MSI, Araújo-Silva CA, Veiga AA, Abud APR, Nardelli SC, Vommaro RC, Silber AM, France-Sagot M, Ávila AR. Dichloroacetate and Pyruvate Metabolism: Pyruvate Dehydrogenase Kinases as Targets Worth Investigating for Effective Therapy of Toxoplasmosis. mSphere 2021;6:e01002-20. [PMID: 33408226 DOI: 10.1128/mSphere.01002-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Hu Y, Yu D, Zhang X. 9-amino acid cyclic peptide-decorated sorafenib polymeric nanoparticles for the efficient in vitro nursing care analysis of hepatocellular carcinoma. Process Biochemistry 2021;100:140-8. [DOI: 10.1016/j.procbio.2020.09.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
35 de Mey S, Dufait I, Jiang H, Corbet C, Wang H, Van De Gucht M, Kerkhove L, Law KL, Vandenplas H, Gevaert T, Feron O, De Ridder M. Dichloroacetate Radiosensitizes Hypoxic Breast Cancer Cells. Int J Mol Sci 2020;21:E9367. [PMID: 33316932 DOI: 10.3390/ijms21249367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
36 Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2021;1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
37 Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021;34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
38 Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020;12:5957-74. [PMID: 32765096 DOI: 10.2147/CMAR.S258196] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
39 Meßner M, Schmitt S, Ardelt MA, Fröhlich T, Müller M, Pein H, Huber-Cantonati P, Ortler C, Koenig LM, Zobel L, Koeberle A, Arnold GJ, Rothenfußer S, Kiemer AK, Gerbes AL, Zischka H, Vollmar AM, Pachmayr J. Metabolic implication of tigecycline as an efficacious second-line treatment for sorafenib-resistant hepatocellular carcinoma. FASEB J 2020;34:11860-82. [PMID: 32652772 DOI: 10.1096/fj.202001128R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
40 Chouhan S, Singh S, Athavale D, Ramteke P, Vanuopadath M, Nair BG, Nair SS, Bhat MK. Sensitization of hepatocellular carcinoma cells towards doxorubicin and sorafenib is facilitated by glucose-dependent alterations in reactive oxygen species, P-glycoprotein and DKK4. J Biosci 2020;45. [DOI: 10.1007/s12038-020-00065-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
41 Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 2020;39:126. [PMID: 32631382 DOI: 10.1186/s13046-020-01629-4] [Cited by in Crossref: 104] [Cited by in F6Publishing: 115] [Article Influence: 52.0] [Reference Citation Analysis]
42 Lu H, Zhu Q. Identification of Key Biological Processes, Pathways, Networks, and Genes with Potential Prognostic Values in Hepatocellular Carcinoma Using a Bioinformatics Approach. Cancer Biother Radiopharm 2020. [PMID: 32598174 DOI: 10.1089/cbr.2019.3327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Fan G, Wei X, Xu X. Is the era of sorafenib over? A review of the literature. Ther Adv Med Oncol 2020;12:1758835920927602. [PMID: 32518599 DOI: 10.1177/1758835920927602] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
44 Jiang YX, Siu MK, Wang JJ, Mo XT, Leung TH, Chan DW, Cheung AN, Ngan HY, Chan KK. Ascites-derived ALDH+CD44+ tumour cell subsets endow stemness, metastasis and metabolic switch via PDK4-mediated STAT3/AKT/NF-κB/IL-8 signalling in ovarian cancer. Br J Cancer 2020;123:275-87. [PMID: 32390009 DOI: 10.1038/s41416-020-0865-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
45 Tao H, Ding X, Wu J, Liu S, Sun W, Nie M, Pan X, Zou X. β-Asarone Increases Chemosensitivity by Inhibiting Tumor Glycolysis in Gastric Cancer. Evid Based Complement Alternat Med 2020;2020:6981520. [PMID: 32351601 DOI: 10.1155/2020/6981520] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
46 Rodríguez-Hernández MA, de la Cruz-Ojeda P, Gallego P, Navarro-Villarán E, Staňková P, Del Campo JA, Kučera O, Elkalaf M, Maseko TE, Červinková Z, Muntané J. Dose-dependent regulation of mitochondrial function and cell death pathway by sorafenib in liver cancer cells. Biochem Pharmacol 2020;176:113902. [PMID: 32156660 DOI: 10.1016/j.bcp.2020.113902] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
47 Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol Life Sci 2020;77:2527-42. [PMID: 31970423 DOI: 10.1007/s00018-019-03438-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 19.5] [Reference Citation Analysis]
48 Xia S, Pan Y, Liang Y, Xu J, Cai X. The microenvironmental and metabolic aspects of sorafenib resistance in hepatocellular carcinoma. EBioMedicine 2020;51:102610. [PMID: 31918403 DOI: 10.1016/j.ebiom.2019.102610] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 36.0] [Reference Citation Analysis]
49 Li Y, Wei J, Wei Y, Cheng L, Guo B, Meng F, Li F, Zhong Z. Apolipoprotein E Peptide-Guided Disulfide-Cross-Linked Micelles for Targeted Delivery of Sorafenib to Hepatocellular Carcinoma. Biomacromolecules 2020;21:716-24. [DOI: 10.1021/acs.biomac.9b01419] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
50 Abdel-wahab AF, Mahmoud W, Al-harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacological Research 2019;150:104511. [DOI: 10.1016/j.phrs.2019.104511] [Cited by in Crossref: 150] [Cited by in F6Publishing: 136] [Article Influence: 50.0] [Reference Citation Analysis]
51 Jonus HC, Byrnes CC, Kim J, Valle ML, Bartlett MG, Said HM, Zastre JA. Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy. Biomed Pharmacother 2020;121:109648. [PMID: 31810115 DOI: 10.1016/j.biopha.2019.109648] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
52 Price MJ, Patterson DG, Scharer CD, Boss JM. Progressive Upregulation of Oxidative Metabolism Facilitates Plasmablast Differentiation to a T-Independent Antigen. Cell Rep 2018;23:3152-9. [PMID: 29898388 DOI: 10.1016/j.celrep.2018.05.053] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 21.7] [Reference Citation Analysis]
53 Lee MH, DeBerardinis RJ, Wen X, Corbin IR, Sherry AD, Malloy CR, Jin ES. Active pyruvate dehydrogenase and impaired gluconeogenesis in orthotopic hepatomas of rats. Metabolism 2019;101:153993. [PMID: 31672442 DOI: 10.1016/j.metabol.2019.153993] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
54 Liang Y, Zhu D, Zhu L, Hou Y, Hou L, Huang X, Li L, Wang Y, Li L, Zou H, Wu T, Yao M, Wang J, Meng X. Dichloroacetate Overcomes Oxaliplatin Chemoresistance in Colorectal Cancer through the miR-543/PTEN/Akt/mTOR Pathway. J Cancer 2019;10:6037-47. [PMID: 31762813 DOI: 10.7150/jca.34650] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
55 Liang Y, Hou L, Li L, Li L, Zhu L, Wang Y, Huang X, Hou Y, Zhu D, Zou H, Gu Y, Weng X, Wang Y, Li Y, Wu T, Yao M, Gross I, Gaiddon C, Luo M, Wang J, Meng X. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2020;39:469-85. [PMID: 31597953 DOI: 10.1038/s41388-019-1035-8] [Cited by in Crossref: 54] [Cited by in F6Publishing: 60] [Article Influence: 18.0] [Reference Citation Analysis]
56 Stakišaitis D, Juknevičienė M, Damanskienė E, Valančiūtė A, Balnytė I, Alonso MM. The Importance of Gender-Related Anticancer Research on Mitochondrial Regulator Sodium Dichloroacetate in Preclinical Studies In Vivo. Cancers (Basel) 2019;11:E1210. [PMID: 31434295 DOI: 10.3390/cancers11081210] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
57 Ludman T, Melemedjian OK. Bortezomib-induced aerobic glycolysis contributes to chemotherapy-induced painful peripheral neuropathy. Mol Pain 2019;15:1744806919837429. [PMID: 30810076 DOI: 10.1177/1744806919837429] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
58 Song C, Xu F, Ren Z, Zhang Y, Meng Y, Yang Y, Lingadahalli S, Cheung E, Li G, Liu W, Wan J, Zhao Y, Chen G. Elevated Exogenous Pyruvate Potentiates Mesodermal Differentiation through Metabolic Modulation and AMPK/mTOR Pathway in Human Embryonic Stem Cells. Stem Cell Reports 2019;13:338-51. [PMID: 31353224 DOI: 10.1016/j.stemcr.2019.06.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
59 Güiza FM, Duarte YB, Mendez-sanchez SC, Bohórquez ARR. Synthesis and in vitro evaluation of substituted tetrahydroquinoline-isoxazole hybrids as anticancer agents. Med Chem Res 2019;28:1182-96. [DOI: 10.1007/s00044-019-02363-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
60 Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, Li Y, Deng H, Wu Y, Li M, Li JL. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer 2019;121:22-33. [PMID: 31130723 DOI: 10.1038/s41416-019-0482-x] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]
61 Tang D, Yang Z, Long F, Luo L, Yang B, Zhu R, Sang X, Cao G, Wang K. Long noncoding RNA MALAT1 mediates stem cell-like properties in human colorectal cancer cells by regulating miR-20b-5p/Oct4 axis. J Cell Physiol 2019;234:20816-28. [PMID: 31012108 DOI: 10.1002/jcp.28687] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 15.7] [Reference Citation Analysis]
62 Yoo JJ, Yu SJ, Na J, Kim K, Cho YY, Lee YB, Cho EJ, Lee JH, Kim YJ, Youn H, Yoon JH. Hexokinase-II Inhibition Synergistically Augments the Anti-tumor Efficacy of Sorafenib in Hepatocellular Carcinoma. Int J Mol Sci 2019;20:E1292. [PMID: 30875800 DOI: 10.3390/ijms20061292] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
63 Zhou L, Liu L, Chai W, Zhao T, Jin X, Guo X, Han L, Yuan C. Dichloroacetic acid upregulates apoptosis of ovarian cancer cells by regulating mitochondrial function. Onco Targets Ther 2019;12:1729-39. [PMID: 30881027 DOI: 10.2147/OTT.S194329] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
64 Wang Q, Zhang P, Li Z, Feng X, Lv C, Zhang H, Xiao H, Ding J, Chen X. Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics 2019;9:1426-52. [PMID: 30867842 DOI: 10.7150/thno.31683] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
65 Lee SR, Kwon SW, Lee YH, Kaya P, Kim JM, Ahn C, Jung EM, Lee GS, An BS, Jeung EB, Park BK, Hong EJ. Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation. BMC Cancer 2019;19:6. [PMID: 30606143 DOI: 10.1186/s12885-018-5222-8] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 11.7] [Reference Citation Analysis]
66 Palamarciuc O, Milunović MNM, Sîrbu A, Stratulat E, Pui A, Gligorijevic N, Radulovic S, Kožíšek J, Darvasiová D, Rapta P, Enyedy EA, Novitchi G, Shova S, Arion VB. Investigation of the cytotoxic potential of methyl imidazole-derived thiosemicarbazones and their copper( ii ) complexes with dichloroacetate as a co-ligand. New J Chem 2019;43:1340-57. [DOI: 10.1039/c8nj04041a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
67 Obad N, Bjerkvig R. The Implication of Anti-angiogenic Treatment of Malignancies on Human Metabolism. Tumor Angiogenesis 2019. [DOI: 10.1007/978-3-319-33673-2_35] [Reference Citation Analysis]
68 Yang F, Shu L, Zhang X. Tumorigenesis and Metabolism Disorder. Virus Infection and Tumorigenesis 2019. [DOI: 10.1007/978-981-13-6198-2_7] [Reference Citation Analysis]
69 Alves A, Mamede A, Alves M, Oliveira P, Rocha S, Botelho M, Maia C. Glycolysis Inhibition as a Strategy for Hepatocellular Carcinoma Treatment? CCDT 2018;19:26-40. [DOI: 10.2174/1568009618666180430144441] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
70 Li W, Qiu Y, Hao J, Zhao C, Deng X, Shu G. Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a:HK2/PKM2 modulation. Food Chem Toxicol 2018;121:156-65. [PMID: 30171973 DOI: 10.1016/j.fct.2018.08.030] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
71 Yao J, Man S, Dong H, Yang L, Ma L, Gao W. Combinatorial treatment of Rhizoma Paridis saponins and sorafenib overcomes the intolerance of sorafenib. J Steroid Biochem Mol Biol 2018;183:159-66. [PMID: 29932973 DOI: 10.1016/j.jsbmb.2018.06.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
72 Bahman AA, Abaza MSI, Khoushiash SI, Al-Attiyah RJ. Sequence‑dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action. Int J Mol Med 2018;42:1695-715. [PMID: 29901131 DOI: 10.3892/ijmm.2018.3725] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
73 Shu G, Hao J, Li W, Zhang L, Qiu Y, Yang X. Liensinine suppresses STAT3-dependent HK2 expression through elevating SHP-1 to induce apoptosis in hepatocellular carcinoma cells in vitro and in vivo. Journal of Functional Foods 2018;45:288-97. [DOI: 10.1016/j.jff.2018.04.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
74 Zhou H, Cai Y, Liu D, Li M, Sha Y, Zhang W, Wang K, Gong J, Tang N, Huang A, Xia J. Pharmacological or transcriptional inhibition of both HDAC1 and 2 leads to cell cycle blockage and apoptosis via p21Waf1/Cip1 and p19INK4d upregulation in hepatocellular carcinoma. Cell Prolif 2018;51:e12447. [PMID: 29484736 DOI: 10.1111/cpr.12447] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 11.3] [Reference Citation Analysis]
75 Li S, Li J, Dai W, Zhang Q, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Mo W, Xu L, Guo C. Genistein suppresses aerobic glycolysis and induces hepatocellular carcinoma cell death. Br J Cancer 2017;117:1518-28. [PMID: 28926527 DOI: 10.1038/bjc.2017.323] [Cited by in Crossref: 73] [Cited by in F6Publishing: 78] [Article Influence: 14.6] [Reference Citation Analysis]
76 Li S, Dai W, Mo W, Li J, Feng J, Wu L, Liu T, Yu Q, Xu S, Wang W, Lu X, Zhang Q, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Xu L, Guo C. By inhibiting PFKFB3, aspirin overcomes sorafenib resistance in hepatocellular carcinoma. Int J Cancer 2017;141:2571-84. [PMID: 28857200 DOI: 10.1002/ijc.31022] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 10.6] [Reference Citation Analysis]
77 Lee JY, McMurtry SA, Stevens T. Single cell cloning generates lung endothelial colonies with conserved growth, angiogenic, and bioenergetic characteristics. Pulm Circ 2017;7:777-92. [PMID: 28841087 DOI: 10.1177/2045893217731295] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
78 Wang H, Xu J, Li D, Zhang S, Guo Z. Identification of sequence polymorphisms in the mitochondrial cytochrome c oxidase genes as risk factors for hepatocellular carcinoma. J Clin Lab Anal 2018;32. [PMID: 28703354 DOI: 10.1002/jcla.22299] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
79 Li W, Hao J, Zhang L, Cheng Z, Deng X, Shu G. Astragalin Reduces Hexokinase 2 through Increasing miR-125b to Inhibit the Proliferation of Hepatocellular Carcinoma Cells in Vitro and in Vivo. J Agric Food Chem 2017;65:5961-72. [PMID: 28654261 DOI: 10.1021/acs.jafc.7b02120] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
80 Ward NP, Poff AM, Koutnik AP, D'Agostino DP. Complex I inhibition augments dichloroacetate cytotoxicity through enhancing oxidative stress in VM-M3 glioblastoma cells. PLoS One 2017;12:e0180061. [PMID: 28644886 DOI: 10.1371/journal.pone.0180061] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
81 Dahlmanns M, Yakubov E, Chen D, Sehm T, Rauh M, Savaskan N, Wrosch JK. Chemotherapeutic xCT inhibitors sorafenib and erastin unraveled with the synaptic optogenetic function analysis tool. Cell Death Discov 2017;3:17030. [PMID: 28835855 DOI: 10.1038/cddiscovery.2017.30] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
82 Lemieux H, Subarsky P, Doblander C, Wurm M, Troppmair J, Gnaiger E. Impairment of mitochondrial respiratory function as an early biomarker of apoptosis induced by growth factor removal.. [DOI: 10.1101/151480] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
83 Dumas J, Brisson L, Chevalier S, Mahéo K, Fromont G, Moussata D, Besson P, Roger S. Metabolic reprogramming in cancer cells, consequences on pH and tumour progression: Integrated therapeutic perspectives with dietary lipids as adjuvant to anticancer treatment. Seminars in Cancer Biology 2017;43:90-110. [DOI: 10.1016/j.semcancer.2017.03.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
84 Zarrinpar A. Metabolic Pathway Inhibition in Liver Cancer. SLAS Technol 2017;22:237-44. [PMID: 28314110 DOI: 10.1177/2472630317698683] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
85 Lu Z, Xu N, He B, Pan C, Lan Y, Zhou H, Liu X. Inhibition of autophagy enhances the selective anti-cancer activity of tigecycline to overcome drug resistance in the treatment of chronic myeloid leukemia. J Exp Clin Cancer Res 2017;36:43. [PMID: 28283035 DOI: 10.1186/s13046-017-0512-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 5.4] [Reference Citation Analysis]
86 Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep 2017;7:41241. [PMID: 28120890 DOI: 10.1038/srep41241] [Cited by in Crossref: 65] [Cited by in F6Publishing: 68] [Article Influence: 13.0] [Reference Citation Analysis]
87 Morandi A, Indraccolo S. Linking metabolic reprogramming to therapy resistance in cancer. Biochim Biophys Acta Rev Cancer 2017;1868:1-6. [PMID: 28065746 DOI: 10.1016/j.bbcan.2016.12.004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 91] [Article Influence: 14.8] [Reference Citation Analysis]
88 Hsu C, Cheng A. Clinical and Preclinical Perspectives on Mechanisms of Sorafenib Resistance in Hepatocellular Carcinoma. Resistance to Targeted Anti-Cancer Therapeutics 2017. [DOI: 10.1007/978-3-319-56197-4_5] [Reference Citation Analysis]
89 Obad N, Bjerkvig R. The Implication of Antiangiogenic Treatment of Malignancies on Human Metabolism. Tumor Angiogenesis 2017. [DOI: 10.1007/978-3-319-31215-6_35-1] [Reference Citation Analysis]
90 Reyes R, Wani NA, Ghoshal K, Jacob ST, Motiwala T. Sorafenib and 2-Deoxyglucose Synergistically Inhibit Proliferation of Both Sorafenib-Sensitive and -Resistant HCC Cells by Inhibiting ATP Production. Gene Expr 2017;17:129-40. [PMID: 27938509 DOI: 10.3727/105221616X693855] [Cited by in Crossref: 32] [Cited by in F6Publishing: 36] [Article Influence: 5.3] [Reference Citation Analysis]
91 Cairns J, Ung CY, da Rocha EL, Zhang C, Correia C, Weinshilboum R, Wang L, Li H. A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes. Sci Rep 2016;6:37003. [PMID: 27841317 DOI: 10.1038/srep37003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
92 Kim J, Kim J, Bae JS. ROS homeostasis and metabolism: a critical liaison for cancer therapy. Exp Mol Med 2016;48:e269. [PMID: 27811934 DOI: 10.1038/emm.2016.119] [Cited by in Crossref: 171] [Cited by in F6Publishing: 178] [Article Influence: 28.5] [Reference Citation Analysis]
93 Liu J, Pan C, Guo L, Wu M, Guo J, Peng S, Wu Q, Zuo Q. A new mechanism of trastuzumab resistance in gastric cancer: MACC1 promotes the Warburg effect via activation of the PI3K/AKT signaling pathway. J Hematol Oncol 2016;9:76. [PMID: 27581375 DOI: 10.1186/s13045-016-0302-1] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 10.5] [Reference Citation Analysis]
94 Zimmer AD, Walbrecq G, Kozar I, Behrmann I, Haan C. Phosphorylation of the pyruvate dehydrogenase complex precedes HIF-1-mediated effects and pyruvate dehydrogenase kinase 1 upregulation during the first hours of hypoxic treatment in hepatocellular carcinoma cells. Hypoxia (Auckl) 2016;4:135-45. [PMID: 27800515 DOI: 10.2147/HP.S99044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
95 Moreno-Sánchez R, Marín-Hernández Á, Del Mazo-Monsalvo I, Saavedra E, Rodríguez-Enríquez S. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochim Biophys Acta Gen Subj 2017;1861:3221-36. [PMID: 27538376 DOI: 10.1016/j.bbagen.2016.08.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
96 Li S, Wu L, Feng J, Li J, Liu T, Zhang R, Xu S, Cheng K, Zhou Y, Zhou S, Kong R, Chen K, Wang F, Xia Y, Lu J, Zhou Y, Dai W, Guo C. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep 2016;6:28479. [PMID: 27349173 DOI: 10.1038/srep28479] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 9.2] [Reference Citation Analysis]
97 Misra SK, Ye M, Ostadhossein F, Pan D. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation. Sci Rep 2016;6:28196. [PMID: 27323896 DOI: 10.1038/srep28196] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
98 Dai W, Wang F, Lu J, Xia Y, He L, Chen K, Li J, Li S, Liu T, Zheng Y. By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice. Oncotarget. 2015;6:13703-13717. [PMID: 25938543 DOI: 10.18632/oncotarget.3800] [Cited by in Crossref: 69] [Cited by in F6Publishing: 80] [Article Influence: 11.5] [Reference Citation Analysis]
99 Fujisawa K, Terai S, Takami T, Yamamoto N, Yamasaki T, Matsumoto T, Yamaguchi K, Owada Y, Nishina H, Noma T, Sakaida I. Modulation of anti-cancer drug sensitivity through the regulation of mitochondrial activity by adenylate kinase 4. J Exp Clin Cancer Res 2016;35:48. [PMID: 26980435 DOI: 10.1186/s13046-016-0322-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 5.2] [Reference Citation Analysis]
100 Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance.Br J Pharmacol. 2016;173:970-979. [PMID: 26750865 DOI: 10.1111/bph.13422] [Cited by in Crossref: 152] [Cited by in F6Publishing: 142] [Article Influence: 25.3] [Reference Citation Analysis]
101 Kinnaird A, Dromparis P, Saleme B, Gurtu V, Watson K, Paulin R, Zervopoulos S, Stenson T, Sutendra G, Pink DB, Carmine-Simmen K, Moore R, Lewis JD, Michelakis ED. Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase. Eur Urol 2016;69:734-44. [PMID: 26433571 DOI: 10.1016/j.eururo.2015.09.014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 6.8] [Reference Citation Analysis]
102 Jahn SC, Solayman MH, Lorenzo RJ, Langaee T, Stacpoole PW, James MO. GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetate. Biochim Biophys Acta 2016;1860:1202-10. [PMID: 26850694 DOI: 10.1016/j.bbagen.2016.01.024] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
103 Dazert E, Colombi M, Boldanova T, Moes S, Adametz D, Quagliata L, Roth V, Terracciano L, Heim MH, Jenoe P, Hall MN. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc Natl Acad Sci U S A 2016;113:1381-6. [PMID: 26787912 DOI: 10.1073/pnas.1523434113] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 8.8] [Reference Citation Analysis]
104 Zhang X, Ng HLH, Lu A, Lin C, Zhou L, Lin G, Zhang Y, Yang Z, Zhang H. Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. Nanomedicine. 2016;12:853-869. [PMID: 26772424 DOI: 10.1016/j.nano.2015.12.381] [Cited by in Crossref: 79] [Cited by in F6Publishing: 84] [Article Influence: 13.2] [Reference Citation Analysis]
105 Savic LJ, Chapiro J, Duwe G, Geschwind JF. Targeting glucose metabolism in cancer: new class of agents for loco-regional and systemic therapy of liver cancer and beyond? Hepat Oncol 2016;3:19-28. [PMID: 26989470 DOI: 10.2217/hep.15.36] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
106 McIntyre A, Harris AL. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 2015;7:368-79. [PMID: 25700172 DOI: 10.15252/emmm.201404271] [Cited by in Crossref: 114] [Cited by in F6Publishing: 123] [Article Influence: 16.3] [Reference Citation Analysis]
107 Marchetti P, Guerreschi P, Mortier L, Kluza J. Integration of Mitochondrial Targeting for Molecular Cancer Therapeutics. Int J Cell Biol 2015;2015:283145. [PMID: 26713093 DOI: 10.1155/2015/283145] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
108 Roh JL, Park JY, Kim EH, Jang HJ, Kwon M. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer. Cancer Lett 2016;371:20-9. [PMID: 26607904 DOI: 10.1016/j.canlet.2015.11.023] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 6.7] [Reference Citation Analysis]
109 Zhang W, Zhang SL, Hu X, Tam KY. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target? Int J Biol Sci 2015;11:1390-400. [PMID: 26681918 DOI: 10.7150/ijbs.13325] [Cited by in Crossref: 88] [Cited by in F6Publishing: 95] [Article Influence: 12.6] [Reference Citation Analysis]
110 Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6(3): 148-161 [PMID: 26322173 DOI: 10.4331/wjbc.v6.i3.148] [Cited by in CrossRef: 92] [Cited by in F6Publishing: 93] [Article Influence: 13.1] [Reference Citation Analysis]
111 Delaney LM, Ho N, Morrison J, Farias NR, Mosser DD, Coomber BL. Dichloroacetate affects proliferation but not survival of human colorectal cancer cells. Apoptosis. 2015;20:63-74. [PMID: 25344893 DOI: 10.1007/s10495-014-1046-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
112 Emadi A, Sadowska M, Carter-Cooper B, Bhatnagar V, van der Merwe I, Levis MJ, Sausville EA, Lapidus RG. Perturbation of cellular oxidative state induced by dichloroacetate and arsenic trioxide for treatment of acute myeloid leukemia. Leuk Res 2015;39:719-29. [PMID: 25982179 DOI: 10.1016/j.leukres.2015.04.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
113 Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer. 2016;138:809-817. [PMID: 25868605 DOI: 10.1002/ijc.29564] [Cited by in Crossref: 125] [Cited by in F6Publishing: 132] [Article Influence: 17.9] [Reference Citation Analysis]
114 Wood CE, Hester SD, Chorley BN, Carswell G, George MH, Ward W, Vallanat B, Ren H, Fisher A, Lake AD, Okerberg CV, Gaillard ET, Moore TM, Deangelo AB. Latent carcinogenicity of early-life exposure to dichloroacetic acid in mice. Carcinogenesis 2015;36:782-91. [PMID: 25913432 DOI: 10.1093/carcin/bgv057] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
115 Zhang SL, Hu X, Zhang W, Yao H, Tam KY. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov Today 2015;20:1112-9. [PMID: 25842042 DOI: 10.1016/j.drudis.2015.03.012] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 8.0] [Reference Citation Analysis]
116 Chu QS, Sangha R, Spratlin J, Vos LJ, Mackey JR, McEwan AJ, Venner P, Michelakis ED. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest New Drugs. 2015;33:603-610. [PMID: 25762000 DOI: 10.1007/s10637-015-0221-y] [Cited by in Crossref: 83] [Cited by in F6Publishing: 80] [Article Influence: 11.9] [Reference Citation Analysis]
117 Liu L, Chen X, Li D, Zhang Y, Li L, Guo L, Cao Y, Che Y. Bisabolane Sesquiterpenoids from the Plant Endophytic Fungus Paraconiothyrium brasiliense. J Nat Prod 2015;78:746-53. [PMID: 25760674 DOI: 10.1021/np5009569] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
118 Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D. Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 2015;20:635-43. [PMID: 25766095 DOI: 10.1016/j.drudis.2015.03.001] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 8.6] [Reference Citation Analysis]
119 Roychoudhury J, Clark JP, Gracia-Maldonado G, Unnisa Z, Wunderlich M, Link KA, Dasgupta N, Aronow B, Huang G, Mulloy JC, Kumar AR. MEIS1 regulates an HLF-oxidative stress axis in MLL-fusion gene leukemia. Blood 2015;125:2544-52. [PMID: 25740828 DOI: 10.1182/blood-2014-09-599258] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
120 Cao H, Wang Y, He X, Zhang Z, Yin Q, Chen Y, Yu H, Huang Y, Chen L, Xu M, Gu W, Li Y. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol Pharm 2015;12:922-31. [PMID: 25622075 DOI: 10.1021/mp500755j] [Cited by in Crossref: 64] [Cited by in F6Publishing: 72] [Article Influence: 9.1] [Reference Citation Analysis]
121 Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z, François C, Chatelain D, Debuysscher V, Barbare JC, Chauffert B, Galmiche A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 2015;356:971-7. [PMID: 25444922 DOI: 10.1016/j.canlet.2014.11.014] [Cited by in Crossref: 190] [Cited by in F6Publishing: 210] [Article Influence: 23.8] [Reference Citation Analysis]
122 Kankotia S, Stacpoole PW. Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta. 2014;1846:617-629. [PMID: 25157892 DOI: 10.1016/j.bbcan.2014.08.005] [Cited by in Crossref: 75] [Cited by in F6Publishing: 121] [Article Influence: 9.4] [Reference Citation Analysis]
123 Lin G, Hill DK, Andrejeva G, Boult JK, Troy H, Fong AC, Orton MR, Panek R, Parkes HG, Jafar M. Dichloroacetate induces autophagy in colorectal cancer cells and tumours. Br J Cancer. 2014;111:375-385. [PMID: 24892448 DOI: 10.1038/bjc.2014.281] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 6.3] [Reference Citation Analysis]
124 Ježek P, Smolková K, Dvořák A, Olejár T. Emerging Anti-cancer Targets in Mitochondria. Mitochondria: The Anti- cancer Target for the Third Millennium 2014. [DOI: 10.1007/978-94-017-8984-4_10] [Reference Citation Analysis]
125 Galmiche A, Chauffert B, Barbare JC. New biological perspectives for the improvement of the efficacy of sorafenib in hepatocellular carcinoma. Cancer Lett 2014;346:159-62. [PMID: 24380851 DOI: 10.1016/j.canlet.2013.12.028] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 6.1] [Reference Citation Analysis]
126 Dunbar EM, Coats BS, Shroads AL, Langaee T, Lew A, Forder JR, Shuster JJ, Wagner DA, Stacpoole PW. Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs. 2014;32:452-464. [PMID: 24297161 DOI: 10.1007/s10637-013-0047-4] [Cited by in Crossref: 140] [Cited by in F6Publishing: 123] [Article Influence: 15.6] [Reference Citation Analysis]
127 Berasain C. Hepatocellular carcinoma and sorafenib: too many resistance mechanisms? Gut 2013;62:1674-5. [PMID: 23481262 DOI: 10.1136/gutjnl-2013-304564] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 7.3] [Reference Citation Analysis]
128 Lee H, Abe Y, Lee I, Shrivastav S, Crusan AP, Hüttemann M, Hopfer U, Felder RA, Asico LD, Armando I, Jose PA, Kopp JB. Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int 2014;85:561-9. [PMID: 24132210 DOI: 10.1038/ki.2013.397] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
129 Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013;12:829-46. [PMID: 24113830 DOI: 10.1038/nrd4145] [Cited by in Crossref: 504] [Cited by in F6Publishing: 527] [Article Influence: 56.0] [Reference Citation Analysis]
130 Kumar A, Kant S, Singh SM. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol. 2013;273:196-208. [PMID: 24051182 DOI: 10.1016/j.taap.2013.09.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
131 Li J, Zhao S, Zhou X, Zhang T, Zhao L, Miao P, Song S, Sun X, Liu J, Zhao X, Huang G. Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel. PLoS One 2013;8:e74623. [PMID: 24040298 DOI: 10.1371/journal.pone.0074623] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
132 Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA, Kudryavtseva AV. Targeting VDAC-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opinion on Therapeutic Targets 2013;17:1221-33. [DOI: 10.1517/14728222.2013.833607] [Cited by in Crossref: 102] [Cited by in F6Publishing: 104] [Article Influence: 11.3] [Reference Citation Analysis]
133 Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat. 2013;141:67-78. [PMID: 23963659 DOI: 10.1007/s10549-013-2668-x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 5.4] [Reference Citation Analysis]
134 Puszyk WM, Trinh TL, Chapple SJ, Liu C. Linking metabolism and epigenetic regulation in development of hepatocellular carcinoma. Lab Invest 2013;93:983-90. [PMID: 23917878 DOI: 10.1038/labinvest.2013.94] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
135 Krasnov GS, Dmitriev AA, Snezhkina AV, Kudryavtseva AV. Deregulation of glycolysis in cancer: glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target. Expert Opinion on Therapeutic Targets 2013;17:681-93. [DOI: 10.1517/14728222.2013.775253] [Cited by in Crossref: 70] [Cited by in F6Publishing: 72] [Article Influence: 7.8] [Reference Citation Analysis]