BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Belrose JC, Jackson MF. TRPM2: a candidate therapeutic target for treating neurological diseases. Acta Pharmacol Sin 2018;39:722-32. [PMID: 29671419 DOI: 10.1038/aps.2018.31] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Ying Y, Gong L, Tao X, Ding J, Chen N, Yao Y, Liu J, Chen C, Zhu T, Jiang P. Genetic Knockout of TRPM2 Increases Neuronal Excitability of Hippocampal Neurons by Inhibiting Kv7 Channel in Epilepsy. Mol Neurobiol 2022;59:6918-33. [PMID: 36053438 DOI: 10.1007/s12035-022-02993-2] [Reference Citation Analysis]
2 Wang Y, Liu J, Yu B, Jin Y, Li J, Ma X, Yu J, Niu J, Liang X. Umbilical cord-derived mesenchymal stem cell conditioned medium reverses neuronal oxidative injury by inhibition of TRPM2 activation and the JNK signaling pathway. Mol Biol Rep 2022. [PMID: 35585377 DOI: 10.1007/s11033-022-07524-9] [Reference Citation Analysis]
3 Bracke F, Frieling H, Leffler A. Antidepressants Are Poor Inhibitors of Heat-Evoked Ion Currents Mediated by TRPM2. Pharmacology 2022;:1-8. [PMID: 35584608 DOI: 10.1159/000524934] [Reference Citation Analysis]
4 Zong P, Feng J, Yue Z, Li Y, Wu G, Sun B, He Y, Miller B, Yu AS, Su Z, Xie J, Mori Y, Hao B, Yue L. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 2022:S0896-6273(22)00257-4. [PMID: 35421327 DOI: 10.1016/j.neuron.2022.03.021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
5 Ni Y, Xu H, Liu Y. Roles of Long Non-coding RNAs in the Development of Aging-Related Neurodegenerative Diseases. Front Mol Neurosci 2022;15:844193. [DOI: 10.3389/fnmol.2022.844193] [Reference Citation Analysis]
6 Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022;23:2454. [PMID: 35269597 DOI: 10.3390/ijms23052454] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Cheng W, Zheng J. Distribution and Assembly of TRP Ion Channels. Adv Exp Med Biol 2021;1349:111-38. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sun L, Zhang Z, Zhao H, Qiu M, Wen Y, Yao X, Tang WH. Identification of TRPM2 as a Marker Associated With Prognosis and Immune Infiltration in Kidney Renal Clear Cell Carcinoma. Front Mol Biosci 2021;8:774905. [PMID: 35071322 DOI: 10.3389/fmolb.2021.774905] [Reference Citation Analysis]
9 Ferreira AFF, Singulani MP, Ulrich H, Feng ZP, Sun HS, Britto LR. Inhibition of TRPM2 by AG490 Is Neuroprotective in a Parkinson's Disease Animal Model. Mol Neurobiol 2022. [PMID: 35000153 DOI: 10.1007/s12035-022-02723-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Costas-Ferreira C, Faro LRF. Systematic Review of Calcium Channels and Intracellular Calcium Signaling: Relevance to Pesticide Neurotoxicity. Int J Mol Sci 2021;22:13376. [PMID: 34948173 DOI: 10.3390/ijms222413376] [Reference Citation Analysis]
11 Hu F, Yu Y, Lu F, Cheng X. Knockdown of transient receptor potential melastatin 2 reduces renal fibrosis and inflammation by blocking transforming growth factor-β1-activated JNK1 activation in diabetic mice. Aging (Albany NY) 2021;13:24605-20. [PMID: 34845114 DOI: 10.18632/aging.203694] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021;15:717008. [PMID: 34720898 DOI: 10.3389/fnbeh.2021.717008] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021;13:749001. [PMID: 34690733 DOI: 10.3389/fnsyn.2021.749001] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
14 Shao Y, Chen C, Zhu T, Sun Z, Li S, Gong L, Dong X, Shen W, Zeng L, Xie Y, Jiang P. TRPM2 contributes to neuroinflammation and cognitive deficits in a cuprizone-induced multiple sclerosis model via NLRP3 inflammasome. Neurobiol Dis 2021;160:105534. [PMID: 34673151 DOI: 10.1016/j.nbd.2021.105534] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
15 Wang X, Xiao Y, Huang M, Shen B, Xue H, Wu K. Effect of TRPM2-Mediated Calcium Signaling on Cell Proliferation and Apoptosis in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2021;20:15330338211045213. [PMID: 34605693 DOI: 10.1177/15330338211045213] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 García-Rodríguez C, Bravo-Tobar ID, Duarte Y, Barrio LC, Sáez JC. Contribution of non-selective membrane channels and receptors in epilepsy. Pharmacol Ther 2021;:107980. [PMID: 34481811 DOI: 10.1016/j.pharmthera.2021.107980] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Ali ES, Rychkov GY, Barritt GJ. TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants (Basel) 2021;10:1243. [PMID: 34439491 DOI: 10.3390/antiox10081243] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
18 Hu X, Wu L, Liu X, Zhang Y, Xu M, Fang Q, Lu L, Niu J, Abd El-Aziz TM, Jiang LH, Li F, Yang W. Deficiency of ROS-Activated TRPM2 Channel Protects Neurons from Cerebral Ischemia-Reperfusion Injury through Upregulating Autophagy. Oxid Med Cell Longev 2021;2021:7356266. [PMID: 34367466 DOI: 10.1155/2021/7356266] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Yue L, Xu H. TRP channels in health and disease at a glance. J Cell Sci 2021;134:jcs258372. [PMID: 34254641 DOI: 10.1242/jcs.258372] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 Ding R, Yin YL, Jiang LH. Reactive Oxygen Species-Induced TRPM2-Mediated Ca2+ Signalling in Endothelial Cells. Antioxidants (Basel) 2021;10:718. [PMID: 34063677 DOI: 10.3390/antiox10050718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
21 Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021;139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
22 Zhang H, Yu P, Lin H, Jin Z, Zhao S, Zhang Y, Xu Q, Jin H, Liu Z, Yang W, Zhang L. The Discovery of Novel ACA Derivatives as Specific TRPM2 Inhibitors that Reduce Ischemic Injury Both In Vitro and In Vivo. J Med Chem 2021;64:3976-96. [PMID: 33784097 DOI: 10.1021/acs.jmedchem.0c02129] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Huang J, Zhang R, Wang S, Zhang D, Leung CK, Yang G, Li Y, Liu L, Xu Y, Lin S, Wang C, Zeng X, Li J. Methamphetamine and HIV-Tat Protein Synergistically Induce Oxidative Stress and Blood-Brain Barrier Damage via Transient Receptor Potential Melastatin 2 Channel. Front Pharmacol 2021;12:619436. [PMID: 33815104 DOI: 10.3389/fphar.2021.619436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Hwang SM, Lee JY, Park CK, Kim YH. The Role of TRP Channels and PMCA in Brain Disorders: Intracellular Calcium and pH Homeostasis. Front Cell Dev Biol 2021;9:584388. [PMID: 33585474 DOI: 10.3389/fcell.2021.584388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
25 Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2020;14:618986. [PMID: 33536876 DOI: 10.3389/fncel.2020.618986] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020;9:E2604. [PMID: 33291725 DOI: 10.3390/cells9122604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
27 Thapak P, Khare P, Bishnoi M, Sharma SS. Neuroprotective Effect of 2-Aminoethoxydiphenyl Borate (2-APB) in Amyloid β-Induced Memory Dysfunction: A Mechanistic Study. Cell Mol Neurobiol 2020. [PMID: 33219878 DOI: 10.1007/s10571-020-01012-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
28 Vaidya B, Sharma SS. Transient Receptor Potential Channels as an Emerging Target for the Treatment of Parkinson's Disease: An Insight Into Role of Pharmacological Interventions. Front Cell Dev Biol 2020;8:584513. [PMID: 33330461 DOI: 10.3389/fcell.2020.584513] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
29 Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020;37:101755. [PMID: 33130440 DOI: 10.1016/j.redox.2020.101755] [Cited by in Crossref: 9] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
30 Zhang H, Zhao S, Yu J, Yang W, Liu Z, Zhang L. Medicinal chemistry perspective of TRPM2 channel inhibitors: where we are and where we might be heading? Drug Discov Today 2020;25:2326-34. [PMID: 33065292 DOI: 10.1016/j.drudis.2020.09.039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
31 Brito LM, Ribeiro-Dos-Santos Â, Vidal AF, de Araújo GS. Differential Expression and miRNA-Gene Interactions in Early and Late Mild Cognitive Impairment. Biology (Basel) 2020;9:E251. [PMID: 32872134 DOI: 10.3390/biology9090251] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
32 Hong DK, Kho AR, Lee SH, Jeong JH, Kang BS, Kang DH, Park MK, Park KH, Lim MS, Choi BY, Suh SW. Transient Receptor Potential Melastatin 2 (TRPM2) Inhibition by Antioxidant, N-Acetyl-l-Cysteine, Reduces Global Cerebral Ischemia-Induced Neuronal Death. Int J Mol Sci 2020;21:E6026. [PMID: 32825703 DOI: 10.3390/ijms21176026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
33 Duitama M, Vargas-López V, Casas Z, Albarracin SL, Sutachan JJ, Torres YP. TRP Channels Role in Pain Associated With Neurodegenerative Diseases. Front Neurosci 2020;14:782. [PMID: 32848557 DOI: 10.3389/fnins.2020.00782] [Cited by in Crossref: 7] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
34 Hu H, Zhu T, Gong L, Zhao Y, Shao Y, Li S, Sun Z, Ling Y, Tao Y, Ying Y, Lan C, Xie Y, Jiang P. Transient receptor potential melastatin 2 contributes to neuroinflammation and negatively regulates cognitive outcomes in a pilocarpine-induced mouse model of epilepsy. Int Immunopharmacol 2020;87:106824. [PMID: 32731181 DOI: 10.1016/j.intimp.2020.106824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
35 Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020;21:E3059. [PMID: 32357528 DOI: 10.3390/ijms21093059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
36 Wu YY, Kuo HC. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci. 2020;27:49. [PMID: 32264890 DOI: 10.1186/s12929-020-00636-z] [Cited by in Crossref: 36] [Cited by in F6Publishing: 63] [Article Influence: 18.0] [Reference Citation Analysis]
37 Mahmuda NA, Yokoyama S, Munesue T, Hayashi K, Yagi K, Tsuji C, Higashida H. One Single Nucleotide Polymorphism of the TRPM2 Channel Gene Identified as a Risk Factor in Bipolar Disorder Associates with Autism Spectrum Disorder in a Japanese Population. Diseases 2020;8:E4. [PMID: 32046066 DOI: 10.3390/diseases8010004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Baszczyňski O, Watt JM, Rozewitz MD, Fliegert R, Guse AH, Potter BVL. Synthesis of phosphonoacetate analogues of the second messenger adenosine 5'-diphosphate ribose (ADPR). RSC Adv 2020;10:1776-85. [PMID: 31934327 DOI: 10.1039/C9RA09284F] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
39 Pan T, Zhu QJ, Xu LX, Ding X, Li JQ, Sun B, Hua J, Feng X. Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation. Neural Regen Res 2020;15:2154-61. [PMID: 32394974 DOI: 10.4103/1673-5374.282271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
40 Li Y, Jiao J. Deficiency of TRPM2 leads to embryonic neurogenesis defects in hyperthermia. Sci Adv 2020;6:eaay6350. [PMID: 31911949 DOI: 10.1126/sciadv.aay6350] [Cited by in Crossref: 61] [Cited by in F6Publishing: 11] [Article Influence: 30.5] [Reference Citation Analysis]
41 Park SK, Gunaratne GS, Chulkov EG, Moehring F, McCusker P, Dosa PI, Chan JD, Stucky CL, Marchant JS. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J Biol Chem 2019;294:18873-80. [PMID: 31653697 DOI: 10.1074/jbc.AC119.011093] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
42 Adhya P, Sharma SS. Redox TRPs in diabetes and diabetic complications: Mechanisms and pharmacological modulation. Pharmacol Res 2019;146:104271. [PMID: 31096011 DOI: 10.1016/j.phrs.2019.104271] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
43 Baszczyňski O, Watt JM, Rozewitz MD, Guse AH, Fliegert R, Potter BVL. Synthesis of Terminal Ribose Analogues of Adenosine 5'-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2. J Org Chem 2019;84:6143-57. [PMID: 30978018 DOI: 10.1021/acs.joc.9b00338] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
44 Ding XM, Zhao LJ, Qiao HY, Wu SL, Wang XH. Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact 2019;307:73-81. [PMID: 31004593 DOI: 10.1016/j.cbi.2019.04.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
45 An X, Fu Z, Mai C, Wang W, Wei L, Li D, Li C, Jiang LH. Increasing the TRPM2 Channel Expression in Human Neuroblastoma SH-SY5Y Cells Augments the Susceptibility to ROS-Induced Cell Death. Cells 2019;8:E28. [PMID: 30625984 DOI: 10.3390/cells8010028] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
46 Toda T, Yamamoto S, Umehara N, Mori Y, Wakamori M, Shimizu S. Protective Effects of Duloxetine against Cerebral Ischemia-Reperfusion Injury via Transient Receptor Potential Melastatin 2 Inhibition. J Pharmacol Exp Ther 2019;368:246-54. [DOI: 10.1124/jpet.118.253922] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
47 Jiang LH, Li X, Syed Mortadza SA, Lovatt M, Yang W. The TRPM2 channel nexus from oxidative damage to Alzheimer's pathologies: An emerging novel intervention target for age-related dementia. Ageing Res Rev 2018;47:67-79. [PMID: 30009973 DOI: 10.1016/j.arr.2018.07.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
48 Sita G, Hrelia P, Graziosi A, Ravegnini G, Morroni F. TRPM2 in the Brain: Role in Health and Disease. Cells 2018;7:E82. [PMID: 30037128 DOI: 10.3390/cells7070082] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
49 Feng ZP, Sun HS. A new platform for international collaboration on pharmacology and drug development: 2017 China-Canada-USA Pharmacology/Physiology Conference. Acta Pharmacol Sin 2018;39:659-60. [PMID: 29728706 DOI: 10.1038/aps.2018.34] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]