BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 2014;8:2118-33. [PMID: 24617523 DOI: 10.1021/nn404871p] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Castagnola V, Cookman J, de Araújo JM, Polo E, Cai Q, Silveira CP, Krpetić Ž, Yan Y, Boselli L, Dawson KA. Towards a classification strategy for complex nanostructures. Nanoscale Horiz 2017;2:187-98. [DOI: 10.1039/c6nh00219f] [Cited by in Crossref: 31] [Cited by in F6Publishing: 4] [Article Influence: 6.2] [Reference Citation Analysis]
2 Guo Z, Zeng G, Cui K, Chen A. Toxicity of environmental nanosilver: mechanism and assessment. Environ Chem Lett 2019;17:319-33. [DOI: 10.1007/s10311-018-0800-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
3 Wang A, Jin Q, Xu X, Miao A, White JC, Gardea-Torresdey JL, Ji R, Zhao L. High-Throughput Screening for Engineered Nanoparticles That Enhance Photosynthesis Using Mesophyll Protoplasts. J Agric Food Chem 2020;68:3382-9. [PMID: 32091884 DOI: 10.1021/acs.jafc.9b06429] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
4 Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021;12:612659. [PMID: 34566630 DOI: 10.3389/fphar.2021.612659] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Pan Y, Duncombe TA, Kellenberger CA, Hammond MC, Herr AE. High-throughput electrophoretic mobility shift assays for quantitative analysis of molecular binding reactions. Anal Chem 2014;86:10357-64. [PMID: 25233437 DOI: 10.1021/ac502700b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
6 Toprani SM, Bitounis D, Huang Q, Oliveira N, Ng KW, Tay CY, Nagel ZD, Demokritou P. High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS Nano 2021;15:4728-46. [PMID: 33710878 DOI: 10.1021/acsnano.0c09254] [Reference Citation Analysis]
7 Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021;13:1615. [PMID: 34683908 DOI: 10.3390/pharmaceutics13101615] [Reference Citation Analysis]
8 Madeira C, Costa PM. Proteomics in systems toxicology. Adv Protein Chem Struct Biol 2021;127:55-91. [PMID: 34340774 DOI: 10.1016/bs.apcsb.2021.03.001] [Reference Citation Analysis]
9 Bitounis D, Huang Q, Toprani SM, Setyawati MI, Oliveira N, Wu Z, Tay CY, Ng KW, Nagel ZD, Demokritou P. Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NanoImpact 2022. [DOI: 10.1016/j.impact.2022.100379] [Reference Citation Analysis]
10 Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. Nanomaterials (Basel) 2020;10:E1911. [PMID: 32992722 DOI: 10.3390/nano10101911] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
11 Cohen JM, DeLoid GM, Demokritou P. A critical review of in vitro dosimetry for engineered nanomaterials. Nanomedicine (Lond) 2015;10:3015-32. [PMID: 26419834 DOI: 10.2217/nnm.15.129] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 9.0] [Reference Citation Analysis]
12 Illath K, Kar S, Gupta P, Shinde A, Wankhar S, Tseng FG, Lim KT, Nagai M, Santra TS. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2021;:121247. [PMID: 34801251 DOI: 10.1016/j.biomaterials.2021.121247] [Reference Citation Analysis]
13 Sisler JD, Pirela SV, Friend S, Farcas M, Schwegler-Berry D, Shvedova A, Castranova V, Demokritou P, Qian Y. Small airway epithelial cells exposure to printer-emitted engineered nanoparticles induces cellular effects on human microvascular endothelial cells in an alveolar-capillary co-culture model. Nanotoxicology 2015;9:769-79. [PMID: 25387250 DOI: 10.3109/17435390.2014.976603] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
14 Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts. Environ Health Perspect 2016;124:210-9. [PMID: 26080392 DOI: 10.1289/ehp.1409582] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
15 Bastos V, Duarte IF, Santos C, Oliveira H. Genotoxicity of citrate-coated silver nanoparticles to human keratinocytes assessed by the comet assay and cytokinesis blocked micronucleus assay. Environ Sci Pollut Res 2017;24:5039-48. [DOI: 10.1007/s11356-016-8240-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
16 Li Y, Wang J, Zhao F, Bai B, Nie G, Nel AE, Zhao Y. Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. National Science Review 2018;5:365-88. [DOI: 10.1093/nsr/nwx120] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
17 Garduño-balderas LG, Urrutia-ortega IM, Medina-reyes EI, Chirino YI. Difficulties in establishing regulations for engineered nanomaterials and considerations for policy makers: avoiding an unbalance between benefits and risks: Difficulties in establishing regulations for engineered nanomaterials. J Appl Toxicol 2015;35:1073-85. [DOI: 10.1002/jat.3180] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
18 Cordelli E, Keller J, Eleuteri P, Villani P, Ma-hock L, Schulz M, Landsiedel R, Pacchierotti F. No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO 2 or BaSO 4 nanomaterials. MUTAGE 2016;32:13-22. [DOI: 10.1093/mutage/gew005] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
19 Ge J, Chow DN, Fessler JL, Weingeist DM, Wood DK, Engelward BP. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification. Mutagenesis 2015;30:11-9. [PMID: 25527723 DOI: 10.1093/mutage/geu063] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
20 Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-berry D, Pirela SV, Deloid G, Demokritou P, Luanpitpong S, Rojanasakul Y, Wang L. Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact 2017;6:39-54. [DOI: 10.1016/j.impact.2016.11.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
21 Yang Y, Qin Z, Zeng W, Yang T, Cao Y, Mei C, Kuang Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnology Reviews 2017;6:279-89. [DOI: 10.1515/ntrev-2016-0047] [Cited by in Crossref: 89] [Cited by in F6Publishing: 35] [Article Influence: 17.8] [Reference Citation Analysis]
22 Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, Estrela-Lopis I, Cimpan MR, Ibrahim M, Cimpan E, Ostermann M, Sauter A, Yamani NE, Shaposhnikov S, Chevillard S, Paget V, Grall R, Delic J, de-Cerio FG, Suarez-Merino B, Fessard V, Hogeveen KN, Fjellsbø LM, Pran ER, Brzicova T, Topinka J, Silva MJ, Leite PE, Ribeiro AR, Granjeiro JM, Grafström R, Prina-Mello A, Dusinska M. High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 27273980 DOI: 10.1002/wnan.1413] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 10.8] [Reference Citation Analysis]
23 Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, Thomas T, Demokritou P. Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life-cycle implications from nano-enabled products. Nanotoxicology 2015;9:760-8. [PMID: 25387251 DOI: 10.3109/17435390.2014.976602] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 6.5] [Reference Citation Analysis]
24 Karbaschi M, Ji Y, Abdulwahed AMS, Alohaly A, Bedoya JF, Burke SL, Boulos TM, Tempest HG, Cooke MS. Evaluation of the Major Steps in the Conventional Protocol for the Alkaline Comet Assay. Int J Mol Sci 2019;20:E6072. [PMID: 31810189 DOI: 10.3390/ijms20236072] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
25 Solaiman SM, Algie J, Bakand S, Sluyter R, Sencadas V, Lerch M, Huang X, Konstantinov K, Barker PJ. Nano-sunscreens – a double-edged sword in protecting consumers from harm: viewing Australian regulatory policies through the lenses of the European Union. Critical Reviews in Toxicology 2019;49:122-39. [DOI: 10.1080/10408444.2019.1579780] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
26 Wang MM, Wang YC, Wang XN, Liu Y, Zhang H, Zhang JW, Huang Q, Chen SP, Hei TK, Wu LJ, Xu A. Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process. Nanotoxicology 2015;9:972-82. [PMID: 25676621 DOI: 10.3109/17435390.2014.992816] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
27 Yazdimamaghani M, Barber ZB, Hadipour Moghaddam SP, Ghandehari H. Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity. Mol Pharm 2018;15:2372-83. [PMID: 29719153 DOI: 10.1021/acs.molpharmaceut.8b00213] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
28 Srivastava AK, Yadav SS, Mishra S, Yadav SK, Parmar D, Yadav S. A combined microRNA and proteome profiling to investigate the effect of ZnO nanoparticles on neuronal cells. Nanotoxicology 2020;14:757-73. [DOI: 10.1080/17435390.2020.1759726] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Xue W, Dan Zhao, Zhang Q, Chang Y, Liu M. An origami paper-based analytical device for DNA damage analysis. Chem Commun (Camb) 2021;57:11465-8. [PMID: 34651618 DOI: 10.1039/d1cc05019b] [Reference Citation Analysis]
30 Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, Rundén-Pran E, Smolkova B. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food Chem Toxicol 2017;109:797-811. [PMID: 28847762 DOI: 10.1016/j.fct.2017.08.030] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 10.2] [Reference Citation Analysis]
31 Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?: Interactions Between NPs and the Comet Assay. Environ Mol Mutagen 2015;56:82-96. [DOI: 10.1002/em.21933] [Cited by in Crossref: 78] [Cited by in F6Publishing: 69] [Article Influence: 9.8] [Reference Citation Analysis]
32 McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NanoImpact 2016;3-4:47-57. [PMID: 29568810 DOI: 10.1016/j.impact.2016.10.002] [Cited by in Crossref: 75] [Cited by in F6Publishing: 58] [Article Influence: 12.5] [Reference Citation Analysis]
33 Singh D, Sotiriou GA, Zhang F, Mead J, Bello D, Wohlleben W, Demokritou P. End-of-life thermal decomposition of nano-enabled polymers: effect of nanofiller loading and polymer matrix on by-products. Environ Sci : Nano 2016;3:1293-305. [DOI: 10.1039/c6en00252h] [Cited by in Crossref: 18] [Article Influence: 3.0] [Reference Citation Analysis]
34 Li L, Wang W, Ding M, Luo G, Liang Q. Single-Cell-Arrayed Agarose Chip for in Situ Analysis of Cytotoxicity and Genotoxicity of DNA Cross-Linking Agents. Anal Chem 2016;88:6734-42. [PMID: 27269449 DOI: 10.1021/acs.analchem.6b01008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
35 Pal AK, Bello D, Cohen J, Demokritou P. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 2015;9:871-85. [PMID: 25672815 DOI: 10.3109/17435390.2014.986670] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 7.4] [Reference Citation Analysis]
36 Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R, Mosesso P, Parent-Massin D, Tobback P, Kovalkovicova N, Rincon AM, Tard A, Lambré C; EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J 2018;16:e05088. [PMID: 32625658 DOI: 10.2903/j.efsa.2018.5088] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
37 Roszak J, Catalán J, Järventaus H, Lindberg HK, Suhonen S, Vippola M, Stępnik M, Norppa H. Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2016;805:7-18. [DOI: 10.1016/j.mrgentox.2016.05.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
38 Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. Environment International 2016;94:8-23. [DOI: 10.1016/j.envint.2016.05.001] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 10.5] [Reference Citation Analysis]
39 Glei M, Schneider T, Schlörmann W. Comet assay: an essential tool in toxicological research. Arch Toxicol 2016;90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 11.7] [Reference Citation Analysis]
40 Periasamy VS, Athinarayanan J, Alhazmi M, Alatiah KA, Alshatwi AA. Fe 3 O 4 nanoparticle redox system modulation via cell-cycle progression and gene expression in human mesenchymal stem cells: Fe3 O 4 Nanoparticle Redox System Modulation. Environ Toxicol 2016;31:901-12. [DOI: 10.1002/tox.22098] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
41 DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 2017;12:355-71. [PMID: 28102836 DOI: 10.1038/nprot.2016.172] [Cited by in Crossref: 150] [Cited by in F6Publishing: 134] [Article Influence: 30.0] [Reference Citation Analysis]
42 Townsend TA, Parrish MC, Engelward BP, Manjanatha MG. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ Mol Mutagen 2017;58:508-21. [PMID: 28755435 DOI: 10.1002/em.22101] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
43 Nelson N, Port J, Pandey M. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. JNT 2020;1:105-35. [DOI: 10.3390/jnt1010008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
44 Falk M. Nanodiamonds and nanoparticles as tumor cell radiosensitizers-promising results but an obscure mechanism of action. Ann Transl Med 2017;5:18. [PMID: 28164103 DOI: 10.21037/atm.2016.12.62] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
45 Cohen JM, Beltran-Huarac J, Pyrgiotakis G, Demokritou P. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact 2018;10:81-6. [PMID: 29479575 DOI: 10.1016/j.impact.2017.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
46 Chao C, Engelward BP. Applications of CometChip for Environmental Health Studies. Chem Res Toxicol 2020;33:1528-38. [PMID: 32519858 DOI: 10.1021/acs.chemrestox.9b00393] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
47 Wen R, Hu L, Qu G, Zhou Q, Jiang G. Exposure, tissue biodistribution, and biotransformation of nanosilver. NanoImpact 2016;2:18-28. [DOI: 10.1016/j.impact.2016.06.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
48 Kornberg TG, Stueckle TA, Antonini JA, Rojanasakul Y, Castranova V, Yang Y, Wang L. Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk. Nanomaterials (Basel) 2017;7:E307. [PMID: 28984829 DOI: 10.3390/nano7100307] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
49 Ye M, Shi B. Zirconia Nanoparticles-Induced Toxic Effects in Osteoblast-Like 3T3-E1 Cells. Nanoscale Res Lett 2018;13:353. [PMID: 30402719 DOI: 10.1186/s11671-018-2747-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
50 Watson-Wright C, Singh D, Demokritou P. Toxicological Implications of Released Particulate Matter during Thermal Decomposition of Nano-Enabled Thermoplastics. NanoImpact 2017;5:29-40. [PMID: 29333505 DOI: 10.1016/j.impact.2016.12.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
51 Lefebvre DE, Venema K, Gombau L, Valerio LG Jr, Raju J, Bondy GS, Bouwmeester H, Singh RP, Clippinger AJ, Collnot EM, Mehta R, Stone V. Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 2015;9:523-42. [PMID: 25119418 DOI: 10.3109/17435390.2014.948091] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 8.4] [Reference Citation Analysis]
52 Lu X, Miousse IR, Pirela SV, Melnyk S, Koturbash I, Demokritou P. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology 2016;10:140-50. [PMID: 25938281 DOI: 10.3109/17435390.2015.1025115] [Cited by in Crossref: 31] [Cited by in F6Publishing: 49] [Article Influence: 4.4] [Reference Citation Analysis]
53 Huk A, Collins AR, El Yamani N, Porredon C, Azqueta A, de Lapuente J, Dusinska M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 2015;30:85-8. [PMID: 25527731 DOI: 10.1093/mutage/geu077] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
54 He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. Nanotechnology 2018;29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
55 Hussain SM, Warheit DB, Ng SP, Comfort KK, Grabinski CM, Braydich-stolle LK. At the Crossroads of Nanotoxicology in vitro : Past Achievements and Current Challenges. Toxicol Sci 2015;147:5-16. [DOI: 10.1093/toxsci/kfv106] [Cited by in Crossref: 52] [Cited by in F6Publishing: 40] [Article Influence: 7.4] [Reference Citation Analysis]
56 Li L, Deng Y, Meng X, Chang H, Ling C, Li D, Wang Q, Lu T, Yang Y, Song G, Hu Y. Genotoxicity evaluation of silica nanoparticles in murine: a systematic review and meta-analysis. Toxicol Mech Methods 2021;:1-17. [PMID: 34350812 DOI: 10.1080/15376516.2021.1965277] [Reference Citation Analysis]
57 Rajan R, Huo P, Chandran K, Manickam Dakshinamoorthi B, Yun SI, Liu B. A review on the toxicity of silver nanoparticles against different biosystems. Chemosphere 2021;292:133397. [PMID: 34954197 DOI: 10.1016/j.chemosphere.2021.133397] [Reference Citation Analysis]
58 Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH. Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 2017;32:215-32. [PMID: 27565834 DOI: 10.1093/mutage/gew037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
59 Song LY, Wu YZ, Pei XX, Li R, Chen HT, Sun XZ. Pulmonary toxicity and RNA sequencing analyses of mouse in response to exposure to cellulose nanofibrils. Inhal Toxicol 2020;32:388-401. [PMID: 33043732 DOI: 10.1080/08958378.2020.1831112] [Reference Citation Analysis]
60 Watson CY, DeLoid GM, Pal A, Demokritou P. Buoyant Nanoparticles: Implications for Nano-Biointeractions in Cellular Studies. Small 2016;12:3172-80. [PMID: 27135209 DOI: 10.1002/smll.201600314] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
61 Lu X, Miousse IR, Pirela SV, Moore JK, Melnyk S, Koturbash I, Demokritou P. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology 2016;10:629-39. [PMID: 26559097 DOI: 10.3109/17435390.2015.1108473] [Cited by in Crossref: 51] [Cited by in F6Publishing: 46] [Article Influence: 7.3] [Reference Citation Analysis]
62 Persson M, Hornberg JJ. Advances in Predictive Toxicology for Discovery Safety through High Content Screening. Chem Res Toxicol 2016;29:1998-2007. [DOI: 10.1021/acs.chemrestox.6b00248] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
63 Pyrgiotakis G, Blattmann CO, Demokritou P. Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy. ACS Sustain Chem Eng 2014;2:1681-90. [PMID: 25068097 DOI: 10.1021/sc500152g] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 5.4] [Reference Citation Analysis]
64 Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019;93:3387-96. [PMID: 31664499 DOI: 10.1007/s00204-019-02593-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
65 Liu J, Feng X, Wei L, Chen L, Song B, Shao L. The toxicology of ion-shedding zinc oxide nanoparticles. Critical Reviews in Toxicology 2016;46:348-84. [DOI: 10.3109/10408444.2015.1137864] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 12.8] [Reference Citation Analysis]
66 Entezari Heravi R, Zakeri S, Nazari P. Anticancer activity evaluation of green synthesised gold–silver alloy nanoparticles on colourectal HT‐29 and prostate DU‐145 carcinoma cell lines. Micro & Nano Letters 2018;13:1475-9. [DOI: 10.1049/mnl.2018.0235] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Beltran-Huarac J, Zhang Z, Pyrgiotakis G, DeLoid G, Vaze N, Hussain SM, Demokritou P. Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact 2018;10:26-37. [PMID: 30035243 DOI: 10.1016/j.impact.2017.11.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
68 Brunborg G, Jackson P, Shaposhnikov S, Dahl H, Azqueta A, Collins AR, Gutzkow KB. High throughput sample processing and automated scoring. Front Genet 2014;5:373. [PMID: 25389434 DOI: 10.3389/fgene.2014.00373] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
69 Chen Y, Xu M, Zhang J, Ma J, Gao M, Zhang Z, Xu Y, Liu S. Genome-Wide DNA Methylation Variations upon Exposure to Engineered Nanomaterials and Their Implications in Nanosafety Assessment. Adv Mater 2017;29:1604580. [DOI: 10.1002/adma.201604580] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
70 Singh D, Schifman LA, Watson-Wright C, Sotiriou GA, Oyanedel-Craver V, Wohlleben W, Demokritou P. Nanofiller Presence Enhances Polycyclic Aromatic Hydrocarbon (PAH) Profile on Nanoparticles Released during Thermal Decomposition of Nano-enabled Thermoplastics: Potential Environmental Health Implications. Environ Sci Technol 2017;51:5222-32. [PMID: 28397486 DOI: 10.1021/acs.est.6b06448] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
71 DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L. Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact 2016;2:70-81. [PMID: 29568809 DOI: 10.1016/j.impact.2016.07.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
72 Furxhi I, Murphy F, Mullins M, Poland CA. Machine learning prediction of nanoparticle in vitro toxicity: A comparative study of classifiers and ensemble-classifiers using the Copeland Index. Toxicol Lett 2019;312:157-66. [PMID: 31102714 DOI: 10.1016/j.toxlet.2019.05.016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
73 Kohan-Baghkheirati E, Geisler-Lee J. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat. Nanomaterials (Basel) 2015;5:436-67. [PMID: 28347022 DOI: 10.3390/nano5020436] [Cited by in Crossref: 46] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
74 Singh D, Wohlleben W, De La Torre Roche R, White JC, Demokritou P. Thermal decomposition/incineration of nano-enabled coatings and effects of nanofiller/matrix properties and operational conditions on byproduct release dynamics: Potential environmental health implications. NanoImpact 2019;13:44-55. [DOI: 10.1016/j.impact.2018.12.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
75 Kornberg TG, Stueckle TA, Coyle J, Derk R, Demokritou P, Rojanasakul Y, Rojanasakul LW. Iron Oxide Nanoparticle-Induced Neoplastic-Like Cell Transformation in Vitro Is Reduced with a Protective Amorphous Silica Coating. Chem Res Toxicol 2019;32:2382-97. [PMID: 31657553 DOI: 10.1021/acs.chemrestox.9b00118] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
76 Konduru NV, Jimenez RJ, Swami A, Friend S, Castranova V, Demokritou P, Brain JD, Molina RM. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Part Fibre Toxicol 2015;12:31. [PMID: 26458946 DOI: 10.1186/s12989-015-0106-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
77 Liu J, Kang Y, Yin S, Song B, Wei L, Chen L, Shao L. Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner. Int J Nanomedicine 2017;12:8085-99. [PMID: 29138564 DOI: 10.2147/IJN.S149070] [Cited by in Crossref: 42] [Cited by in F6Publishing: 12] [Article Influence: 8.4] [Reference Citation Analysis]
78 Zhao J, Nelson J, Dada O, Pyrgiotakis G, Kavouras IG, Demokritou P. Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhal Toxicol 2018;30:78-88. [PMID: 29564955 DOI: 10.1080/08958378.2018.1450462] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
79 Zhao J, Pyrgiotakis G, Demokritou P. Development and characterization of electronic-cigarette exposure generation system (Ecig-EGS) for the physico-chemical and toxicological assessment of electronic cigarette emissions. Inhal Toxicol 2016;28:658-69. [PMID: 27829296 DOI: 10.1080/08958378.2016.1246628] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
80 Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Keller AA. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal 2016;286:640-62. [DOI: 10.1016/j.cej.2015.10.105] [Cited by in Crossref: 364] [Cited by in F6Publishing: 180] [Article Influence: 60.7] [Reference Citation Analysis]
81 Dissanayake NM, Current KM, Obare SO. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells. Int J Mol Sci 2015;16:23482-516. [PMID: 26437397 DOI: 10.3390/ijms161023482] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 5.4] [Reference Citation Analysis]
82 Stueckle TA, Sargent L, Rojanasakul Y, Wang L. Genotoxicity and Carcinogenic Potential of Carbon Nanomaterials. In: Chen C, Wang H, editors. Biomedical Applications and Toxicology of Carbon Nanomaterials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. pp. 267-332. [DOI: 10.1002/9783527692866.ch10] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
83 Sykora P, Witt KL, Revanna P, Smith-Roe SL, Dismukes J, Lloyd DG, Engelward BP, Sobol RW. Next generation high throughput DNA damage detection platform for genotoxic compound screening. Sci Rep 2018;8:2771. [PMID: 29426857 DOI: 10.1038/s41598-018-20995-w] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
84 Carll AP, Salatini R, Pirela SV, Wang Y, Xie Z, Lorkiewicz P, Naeem N, Qian Y, Castranova V, Godleski JJ, Demokritou P. Inhalation of printer-emitted particles impairs cardiac conduction, hemodynamics, and autonomic regulation and induces arrhythmia and electrical remodeling in rats. Part Fibre Toxicol 2020;17:7. [PMID: 31996220 DOI: 10.1186/s12989-019-0335-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
85 Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. Micromachines (Basel) 2019;10:E414. [PMID: 31234335 DOI: 10.3390/mi10060414] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
86 McClements DJ, Xiao H, Demokritou P. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Adv Colloid Interface Sci 2017;246:165-80. [PMID: 28552424 DOI: 10.1016/j.cis.2017.05.010] [Cited by in Crossref: 64] [Cited by in F6Publishing: 55] [Article Influence: 12.8] [Reference Citation Analysis]
87 Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol 2020;14:1-13. [PMID: 31935671 DOI: 10.1049/iet-nbt.2019.0176] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
88 Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, Molina RM. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol 2014;11:44. [PMID: 25183210 DOI: 10.1186/s12989-014-0044-6] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 7.0] [Reference Citation Analysis]
89 Pearce KM, Okon I, Watson-wright C. Induction of Oxidative DNA Damage and Epithelial Mesenchymal Transitions in Small Airway Epithelial Cells Exposed to Cosmetic Aerosols. Toxicological Sciences 2020;177:248-62. [DOI: 10.1093/toxsci/kfaa089] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Filipova M, Elhelu OK, De Paoli SH, Fremuntova Z, Mosko T, Cmarko D, Simak J, Holada K. An effective "three-in-one" screening assay for testing drug and nanoparticle toxicity in human endothelial cells. PLoS One 2018;13:e0206557. [PMID: 30379903 DOI: 10.1371/journal.pone.0206557] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]