BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yuan Y, Chen S, Paunesku T, Gleber SC, Liu WC, Doty CB, Mak R, Deng J, Jin Q, Lai B, Brister K, Flachenecker C, Jacobsen C, Vogt S, Woloschak GE. Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell X-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells. ACS Nano 2013;7:10502-17. [PMID: 24219664 DOI: 10.1021/nn4033294] [Cited by in Crossref: 78] [Cited by in F6Publishing: 66] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Mohamed MS, Kobayashi A, Taoka A, Watanabe-nakayama T, Kikuchi Y, Hazawa M, Minamoto T, Fukumori Y, Kodera N, Uchihashi T, Ando T, Wong RW. High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells. ACS Nano 2017;11:5567-78. [DOI: 10.1021/acsnano.7b00906] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
2 Kreuzer M, Stamenković S, Chen S, Andjus P, Dučić T. Lipids status and copper in a single astrocyte of the rat model for amyotrophic lateral sclerosis: Correlative synchrotron-based X-ray and infrared imaging. J Biophotonics 2020;13:e202000069. [PMID: 32463554 DOI: 10.1002/jbio.202000069] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
3 He Z, Zhang Y, Khan AR, Ji J, Yu A, Zhai G. A novel progress of drug delivery system for organelle targeting in tumour cells. J Drug Target 2021;29:12-28. [PMID: 32698651 DOI: 10.1080/1061186X.2020.1797051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
4 Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Alsahli MA, Rahmani AH. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. Journal of Drug Delivery Science and Technology 2021;61:102315. [DOI: 10.1016/j.jddst.2020.102315] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019;143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Cited by in Crossref: 162] [Cited by in F6Publishing: 141] [Article Influence: 54.0] [Reference Citation Analysis]
6 Fus F, Yang Y, Lee HZS, Top S, Carriere M, Bouron A, Pacureanu A, da Silva JC, Salmain M, Vessières A, Cloetens P, Jaouen G, Bohic S. Intracellular Localization of an Osmocenyl‐Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation X‐ray Fluorescence Nanoimaging. Angew Chem Int Ed 2019;58:3461-5. [DOI: 10.1002/anie.201812336] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
7 Chen S, Lastra RO, Paunesku T, Antipova O, Li L, Deng J, Luo Y, Wanzer MB, Popovic J, Li Y, Glasco AD, Jacobsen C, Vogt S, Woloschak GE. Development of Multi-Scale X-ray Fluorescence Tomography for Examination of Nanocomposite-Treated Biological Samples. Cancers (Basel) 2021;13:4497. [PMID: 34503306 DOI: 10.3390/cancers13174497] [Reference Citation Analysis]
8 Alvarez Lemus MA, Monroy H, López T, De la Cruz Hernández EN, López-gonzález R. Effect of surface modification on the bioactivity of sol-gel TiO 2 -based nanomaterials: Effect of surface modification on the bioactivity. J Chem Technol Biotechnol 2016;91:2148-55. [DOI: 10.1002/jctb.4915] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
9 de Jonge MD, Ryan CG, Jacobsen CJ. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens. J Synchrotron Radiat 2014;21:1031-47. [PMID: 25177992 DOI: 10.1107/S160057751401621X] [Cited by in Crossref: 42] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
10 Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS Nano 2021;15:3754-807. [PMID: 33650433 DOI: 10.1021/acsnano.0c09563] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
11 Conesa JJ, Otón J, Chiappi M, Carazo JM, Pereiro E, Chichón FJ, Carrascosa JL. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography. Sci Rep 2016;6:22354. [PMID: 26960695 DOI: 10.1038/srep22354] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
12 Wang J, Shen H, Huang C, Ma Q, Tan Y, Jiang F, Ma C, Yuan Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Res 2017;10:145-56. [DOI: 10.1007/s12274-016-1273-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
13 Song L, Falzone N, Vallis KA. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer. Int J Radiat Biol. 2016;92:716-723. [PMID: 26999580 DOI: 10.3109/09553002.2016.1145360] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 6.3] [Reference Citation Analysis]
14 Fus F, Yang Y, Lee HZS, Top S, Carriere M, Bouron A, Pacureanu A, da Silva JC, Salmain M, Vessières A, Cloetens P, Jaouen G, Bohic S. Intracellular Localization of an Osmocenyl‐Tamoxifen Derivative in Breast Cancer Cells Revealed by Synchrotron Radiation X‐ray Fluorescence Nanoimaging. Angew Chem 2019;131:3499-503. [DOI: 10.1002/ange.201812336] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
15 Singla R, Guliani A, Kumari A, Yadav SK. Metallic Nanoparticles, Toxicity Issues and Applications in Medicine. In: Yadav SK, editor. Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. Singapore: Springer; 2016. pp. 41-80. [DOI: 10.1007/978-981-10-0818-4_3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
16 Dučić T, Carboni E, Lai B, Chen S, Michalke B, Lázaro DF, Outeiro TF, Bähr M, Barski E, Lingor P. Alpha-Synuclein Regulates Neuronal Levels of Manganese and Calcium. ACS Chem Neurosci 2015;6:1769-79. [PMID: 26284970 DOI: 10.1021/acschemneuro.5b00093] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
17 Jukapli NM, Bagheri S. Recent developments on titania nanoparticle as photocatalytic cancer cells treatment. Journal of Photochemistry and Photobiology B: Biology 2016;163:421-30. [DOI: 10.1016/j.jphotobiol.2016.08.046] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
18 Fan M, Liang X, Yang D, Pan X, Li Z, Wang H, Shi B. Epidermal growth factor receptor-targeted peptide conjugated phospholipid micelles for doxorubicin delivery. J Drug Target 2016;24:111-9. [PMID: 26176268 DOI: 10.3109/1061186X.2015.1058800] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
19 Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Appl Mater Interfaces 2019;11:26529-58. [DOI: 10.1021/acsami.9b01370] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 24.0] [Reference Citation Analysis]
20 Roudeau S, Carmona A, Perrin L, Ortega R. Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells. Anal Bioanal Chem 2014;406:6979-91. [PMID: 25023971 DOI: 10.1007/s00216-014-8004-4] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
21 Rehman FU, Zhao C, Jiang H, Wang X. Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater Sci 2016;4:40-54. [DOI: 10.1039/c5bm00332f] [Cited by in Crossref: 77] [Cited by in F6Publishing: 17] [Article Influence: 12.8] [Reference Citation Analysis]
22 Perez RA, Singh RK, Kim T, Kim H. Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater Horiz 2017;4:772-99. [DOI: 10.1039/c7mh00017k] [Cited by in Crossref: 44] [Cited by in F6Publishing: 1] [Article Influence: 8.8] [Reference Citation Analysis]
23 Dučić T, Stamenković S, Lai B, Andjus P, Lučić V. Multimodal Synchrotron Radiation Microscopy of Intact Astrocytes from the hSOD1 G93A Rat Model of Amyotrophic Lateral Sclerosis. Anal Chem 2019;91:1460-71. [DOI: 10.1021/acs.analchem.8b04273] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
24 Faucon A, Benhelli-mokrani H, Fleury F, Dutertre S, Tramier M, Boucard J, Lartigue L, Nedellec S, Hulin P, Ishow E. Bioconjugated fluorescent organic nanoparticles targeting EGFR-overexpressing cancer cells. Nanoscale 2017;9:18094-106. [DOI: 10.1039/c7nr06533g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
25 Jin Q, Paunesku T, Lai B, Gleber SC, Chen SI, Finney L, Vine D, Vogt S, Woloschak G, Jacobsen C. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy. J Microsc 2017;265:81-93. [PMID: 27580164 DOI: 10.1111/jmi.12466] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 6.7] [Reference Citation Analysis]
26 Tardillo Suárez V, Gallet B, Chevallet M, Jouneau PH, Tucoulou R, Veronesi G, Deniaud A. Correlative transmission electron microscopy and high-resolution hard X-ray fluorescence microscopy of cell sections to measure trace element concentrations at the organelle level. J Struct Biol 2021;213:107766. [PMID: 34216761 DOI: 10.1016/j.jsb.2021.107766] [Reference Citation Analysis]
27 Brown K, Thurn T, Xin L, Liu W, Bazak R, Chen S, Lai B, Vogt S, Jacobsen C, Paunesku T, Woloschak GE. Intracellular in situ labeling of TiO2 nanoparticles for fluorescence microscopy detection. Nano Res 2018;11:464-76. [PMID: 29541425 DOI: 10.1007/s12274-017-1654-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 3.6] [Reference Citation Analysis]
28 Paunesku T, Gordon AC, White S, Harris K, Antipova O, Maxey E, Vogt S, Smith A, Daddario L, Procissi D, Larson A, Woloschak GE. Use of X-Ray Fluorescence Microscopy for Studies on Research Models of Hepatocellular Carcinoma. Front Public Health 2021;9:711506. [PMID: 34490194 DOI: 10.3389/fpubh.2021.711506] [Reference Citation Analysis]
29 Gomez-Gonzalez MA, Koronfel MA, Goode AE, Al-Ejji M, Voulvoulis N, Parker JE, Quinn PD, Scott TB, Xie F, Yallop ML, Porter AE, Ryan MP. Spatially Resolved Dissolution and Speciation Changes of ZnO Nanorods during Short-Term in Situ Incubation in a Simulated Wastewater Environment. ACS Nano 2019;13:11049-61. [PMID: 31525960 DOI: 10.1021/acsnano.9b02866] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
30 Refaat T, West D, El Achy S, Parimi V, May J, Xin L, Harris KR, Liu W, Wanzer MB, Finney L, Maxey E, Vogt S, Omary RA, Procissi D, Larson AC, Paunesku T, Woloschak GE. Distribution of Iron Oxide Core-Titanium Dioxide Shell Nanoparticles in VX2 Tumor Bearing Rabbits Introduced by Two Different Delivery Modalities. Nanomaterials (Basel) 2016;6:E143. [PMID: 28335271 DOI: 10.3390/nano6080143] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
31 Eskiizmir G, Ermertcan AT, Yapici K. Nanomaterials: promising structures for the management of oral cancer. Nanostructures for Oral Medicine. Elsevier; 2017. pp. 511-44. [DOI: 10.1016/b978-0-323-47720-8.00018-3] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
32 Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017;90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
33 Ilkhani H, Sarparast M, Noori A, Zahra Bathaie S, Mousavi MF. Electrochemical aptamer/antibody based sandwich immunosensor for the detection of EGFR, a cancer biomarker, using gold nanoparticles as a signaling probe. Biosens Bioelectron 2015;74:491-7. [PMID: 26176209 DOI: 10.1016/j.bios.2015.06.063] [Cited by in Crossref: 108] [Cited by in F6Publishing: 89] [Article Influence: 15.4] [Reference Citation Analysis]
34 Wang R, Hu Y, Zhao N, Xu F. Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy. ACS Appl Mater Interfaces 2016;8:11298-308. [DOI: 10.1021/acsami.6b01697] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
35 Guo X, Wei X, Chen Z, Zhang X, Yang G, Zhou S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Progress in Materials Science 2020;107:100599. [DOI: 10.1016/j.pmatsci.2019.100599] [Cited by in Crossref: 66] [Cited by in F6Publishing: 40] [Article Influence: 33.0] [Reference Citation Analysis]
36 Mejía C, Ortega-rosales S, Ruiz-azuara L. Mechanism of Action of Anticancer Metallodrugs. In: Rai M, Ingle AP, Medici S, editors. Biomedical Applications of Metals. Cham: Springer International Publishing; 2018. pp. 213-34. [DOI: 10.1007/978-3-319-74814-6_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Yang Y, Fus F, Pacureanu A, da Silva JC, De Nolf W, Biot C, Bohic S, Cloetens P. Three-Dimensional Correlative Imaging of a Malaria-Infected Cell with a Hard X-ray Nanoprobe. Anal Chem 2019;91:6549-54. [DOI: 10.1021/acs.analchem.8b05957] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
38 Parodi A, Corbo C, Cevenini A, Molinaro R, Palomba R, Pandolfi L, Agostini M, Salvatore F, Tasciotti E. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond) 2015;10:1923-40. [PMID: 26139126 DOI: 10.2217/nnm.15.39] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
39 Hien VX, You J, Jo K, Kim S, Lee J, Kim J, Heo Y. Synthesis of submicron-sized rods and trees of Cu 2 O by radio-frequency magnetron sputtering. Vacuum 2015;111:60-7. [DOI: 10.1016/j.vacuum.2014.09.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
40 Bettiol AA, Mi Z, Watt F. High-resolution fast ion microscopy of single whole biological cells. Applied Physics Reviews 2016;3:041102. [DOI: 10.1063/1.4971414] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
41 Saeed M, Iqbal MZ, Ren W, Xia Y, Khan WS, Wu A. Tunable fabrication of new theranostic Fe 3 O 4 -black TiO 2 nanocomposites: dual wavelength stimulated synergistic imaging-guided phototherapy in cancer. J Mater Chem B 2019;7:210-23. [DOI: 10.1039/c8tb02704h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 4.3] [Reference Citation Analysis]
42 West M, Ellis AT, Potts PJ, Streli C, Vanhoof C, Wobrauschek P. 2014 Atomic Spectrometry Update – a review of advances in X-ray fluorescence spectrometry. J Anal At Spectrom 2014;29:1516. [DOI: 10.1039/c4ja90038c] [Cited by in Crossref: 38] [Article Influence: 4.8] [Reference Citation Analysis]
43 Venugopal I, Pernal S, Duproz A, Bentley J, Engelhard H, Linninger A. Magnetic field-enhanced cellular uptake of doxorubicin loaded magnetic nanoparticles for tumor treatment. Mater Res Express 2016;3:095010. [DOI: 10.1088/2053-1591/3/9/095010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
44 Cao X, Chen Y, Jiao S, Fang Z, Xu M, Liu X, Li L, Pang G, Feng S. Magnetic photocatalysts with a p-n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 2014;6:12366-70. [PMID: 25201551 DOI: 10.1039/c4nr03729d] [Cited by in Crossref: 42] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
45 Lastra RO, Paunesku T, Gutama B, Reyes F, François J, Martinez S, Xin L, Brown K, Zander A, Raha S, Protic M, Nanavati D, Bi Y, Woloschak GE. Protein Binding Effects of Dopamine Coated Titanium Dioxide Shell Nanoparticles. PRNANO 2019;2:393-438. [DOI: 10.33218/prnano2(4).190802.1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Dučić T, Paunesku T, Chen S, Ninković M, Speling S, Wilke C, Lai B, Woloschak G. Structural and elemental changes in glioblastoma cells in situ: complementary imaging with high resolution visible light- and X-ray microscopy. Analyst 2017;142:356-65. [PMID: 27981320 DOI: 10.1039/c6an02532c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
47 Fan Y, Li C, Li F, Chen D. pH-activated size reduction of large compound nanoparticles for in vivo nucleus-targeted drug delivery. Biomaterials 2016;85:30-9. [DOI: 10.1016/j.biomaterials.2016.01.057] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
48 Finney LA, Jin Q. Preparing adherent cells for X-ray fluorescence imaging by chemical fixation. J Vis Exp 2015. [PMID: 25867691 DOI: 10.3791/52370] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
49 Endo-kimura M, Kowalska E. Plasmonic Photocatalysts for Microbiological Applications. Catalysts 2020;10:824. [DOI: 10.3390/catal10080824] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
50 Fan X, Xiao J, Wang W, Zhang Y, Zhang S, Tang B. Novel Magnetic-to-Thermal Conversion and Thermal Energy Management Composite Phase Change Material. Polymers (Basel) 2018;10:E585. [PMID: 30966619 DOI: 10.3390/polym10060585] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
51 Tian F, Chen G, Yi P, Zhang J, Li A, Zhang J, Zheng L, Deng Z, Shi Q, Peng R, Wang Q. Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials 2014;35:6412-21. [DOI: 10.1016/j.biomaterials.2014.04.052] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
52 Wu W, Changzhong Jiang, Roy VA. Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 2015;7:38-58. [PMID: 25406760 DOI: 10.1039/c4nr04244a] [Cited by in Crossref: 346] [Cited by in F6Publishing: 32] [Article Influence: 49.4] [Reference Citation Analysis]
53 Yu Q, Sun J, Zhu X, Qiu L, Xu M, Liu S, Ouyang J, Liu J. Mesoporous titanium dioxide nanocarrier with magnetic-targeting and high loading efficiency for dual-modal imaging and photodynamic therapy. J Mater Chem B 2017;5:6081-96. [DOI: 10.1039/c7tb01035d] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 3.2] [Reference Citation Analysis]
54 Zheng J, Wu Y, Zhang Q, Li Y, Wang C, Zhou Y. Direct liquid phase deposition fabrication of waxberry-like magnetic Fe 3 O 4 @TiO 2 core-shell microspheres. Materials Chemistry and Physics 2016;181:391-6. [DOI: 10.1016/j.matchemphys.2016.06.074] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
55 Sun P, Deng B, Du G, Li H, Sun W, Ren J, Xiao T. Nondestructive rare earth element imaging of fish teeth from deep-sea sediments: Nondestructive rare earth elements imaging by XFCT. X-Ray Spectrom 2015;44:442-6. [DOI: 10.1002/xrs.2624] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
56 Liu W, Mirzoeva S, Yuan Y, Deng J, Chen S, Lai B, Vogt S, Shah K, Shroff R, Bleher R, Jin Q, Vo N, Bazak R, Ritner C, Gutionov S, Raha S, Sedlmair J, Hirschmugl C, Jacobsen C, Paunesku T, Kalapurkal J, Woloschak GE. Development of Fe3O4 core–TiO2 shell nanocomposites and nanoconjugates as a foundation for neuroblastoma radiosensitization. Cancer Nano 2021;12. [DOI: 10.1186/s12645-021-00081-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Chen S, Deng J, Yuan Y, Flachenecker C, Mak R, Hornberger B, Jin Q, Shu D, Lai B, Maser J, Roehrig C, Paunesku T, Gleber SC, Vine DJ, Finney L, VonOsinski J, Bolbat M, Spink I, Chen Z, Steele J, Trapp D, Irwin J, Feser M, Snyder E, Brister K, Jacobsen C, Woloschak G, Vogt S. The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities. J Synchrotron Radiat 2014;21:66-75. [PMID: 24365918 DOI: 10.1107/S1600577513029676] [Cited by in Crossref: 107] [Cited by in F6Publishing: 40] [Article Influence: 11.9] [Reference Citation Analysis]
58 Chen S, Paunesku T, Yuan Y, Jin Q, Hornberger B, Flachenecker C, Lai B, Brister K, Jacobsen C, Woloschak G, Vogt S. The Bionanoprobe: Synchrotron-based Hard X-ray Fluorescence Microscopy for 2D/3D Trace Element Mapping. Micros Today 2015;23:26-9. [PMID: 27398077 DOI: 10.1017/S1551929515000401] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhai J, Scoble JA, Li N, Lovrecz G, Waddington LJ, Tran N, Muir BW, Coia G, Kirby N, Drummond CJ. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity. Nanoscale. 2015;7:2905-2913. [PMID: 25516406 DOI: 10.1039/c4nr05200e] [Cited by in Crossref: 50] [Cited by in F6Publishing: 10] [Article Influence: 7.1] [Reference Citation Analysis]
60 Deng J, Vine DJ, Chen S, Nashed YS, Jin Q, Phillips NW, Peterka T, Ross R, Vogt S, Jacobsen CJ. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae. Proc Natl Acad Sci U S A 2015;112:2314-9. [PMID: 25675478 DOI: 10.1073/pnas.1413003112] [Cited by in Crossref: 101] [Cited by in F6Publishing: 72] [Article Influence: 14.4] [Reference Citation Analysis]
61 Wu W, Jiang CZ, Roy VA. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 2016;8:19421-74. [PMID: 27812592 DOI: 10.1039/c6nr07542h] [Cited by in Crossref: 176] [Cited by in F6Publishing: 28] [Article Influence: 44.0] [Reference Citation Analysis]
62 Shan J, Wang L, Yu H, Ji J, Amer WA, Chen Y, Jing G, Khalid H, Akram M, Abbasi NM. Recent progress in Fe 3 O 4 based magnetic nanoparticles: from synthesis to application. Materials Science and Technology 2015. [DOI: 10.1179/1743284715y.0000000122] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
63 Seo S, Chen M, Wang H, Kang MS, Leong KW, Kim H. Extra- and intra-cellular fate of nanocarriers under dynamic interactions with biology. Nano Today 2017;14:84-99. [DOI: 10.1016/j.nantod.2017.04.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
64 Wang Q, Xiao J, Su Y, Huang J, Li J, Qiu L, Zhan M, He X, Yuan W, Li Y. Fabrication of thermoresponsive magnetic micelles from amphiphilic poly(phenyl isocyanide) and Fe 3 O 4 nanoparticles for controlled drug release and synergistic thermochemotherapy. Polym Chem 2021;12:2132-40. [DOI: 10.1039/d1py00022e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
65 Yan H, Nazaretski E, Lauer K, Huang X, Wagner U, Rau C, Yusuf M, Robinson I, Kalbfleisch S, Li L, Bouet N, Zhou J, Conley R, Chu YS. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution. Sci Rep 2016;6:20112. [PMID: 26846188 DOI: 10.1038/srep20112] [Cited by in Crossref: 44] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
66 Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H2O2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019;294:8516-28. [PMID: 30962283 DOI: 10.1074/jbc.RA118.005953] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Liu X, Chen Q, Yang G, Zhang L, Liu Z, Cheng Z, Zhu X. Magnetic nanomaterials with near-infrared pH-activatable fluorescence via iron-catalyzed AGET ATRP for tumor acidic microenvironment imaging. J Mater Chem B 2015;3:2786-800. [DOI: 10.1039/c5tb00070j] [Cited by in Crossref: 27] [Article Influence: 3.9] [Reference Citation Analysis]
68 Yadav RD, Chaudhary A. Nano-bio surface interactions, cellular internalisation in cancer cells and e-data portals of nanomaterials: A review. IET Nanobiotechnol 2021;15:519-31. [PMID: 34694743 DOI: 10.1049/nbt2.12040] [Reference Citation Analysis]