BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schwartz PA, Vetticatt MJ, Schramm VL. Transition state analysis of thymidine hydrolysis by human thymidine phosphorylase. J Am Chem Soc 2010;132:13425-33. [PMID: 20804144 DOI: 10.1021/ja105041j] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
Number Citing Articles
1 Hou X, Zhang Z, Ma Y, Jin R, Yi B, Yang D, Ma L. Mechanism of hydroxysafflor yellow A on acute liver injury based on transcriptomics. Front Pharmacol 2022;13:966759. [DOI: 10.3389/fphar.2022.966759] [Reference Citation Analysis]
2 Kalman TI. Rational Design of an Orally Active Anticancer Fluoropyrimidine, Pencitabine, a Hybrid of Capecitabine and Gemcitabine. ACS Med Chem Lett 2022;13:409-16. [PMID: 35300092 DOI: 10.1021/acsmedchemlett.1c00565] [Reference Citation Analysis]
3 Poortahmasebi V, Nejati A, Abazari MF, Nasiri Toosi M, Ghaziasadi A, Mohammadzadeh N, Tavakoli A, Khamseh A, Momenifar N, Gholizadeh O, Norouzi M, Jazayeri SM, Solimando AG. Identifying Potential New Gene Expression-Based Biomarkers in the Peripheral Blood Mononuclear Cells of Hepatitis B-Related Hepatocellular Carcinoma. Canadian Journal of Gastroenterology and Hepatology 2022;2022:1-13. [DOI: 10.1155/2022/9541600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Karamitros CS, Somody CM, Agnello G, Rowlinson S. Engineering of the Recombinant Expression and PEGylation Efficiency of the Therapeutic Enzyme Human Thymidine Phosphorylase. Front Bioeng Biotechnol 2021;9. [DOI: 10.3389/fbioe.2021.793985] [Reference Citation Analysis]
5 de Moura Sperotto ND, Deves Roth C, Rodrigues-junior VS, Ev Neves C, Reisdorfer Paula F, da Silva Dadda A, Bergo P, Freitas de Freitas T, Souza Macchi F, Moura S, Duarte de Souza AP, Campos MM, Valim Bizarro C, Santos DS, Basso LA, Machado P. Design of Novel Inhibitors of Human Thymidine Phosphorylase: Synthesis, Enzyme Inhibition, in Vitro Toxicity, and Impact on Human Glioblastoma Cancer. J Med Chem 2019;62:1231-45. [DOI: 10.1021/acs.jmedchem.8b01305] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
6 Tuñón I, Williams IH. The transition state and cognate concepts. Advances in Physical Organic Chemistry 2019. [DOI: 10.1016/bs.apoc.2019.09.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
7 Zhang Q, Zhang Y, Hu X, Qin Y, Zhong W, Meng J, Xiao T, Zhang C, Li M, Chen S, Liu H, Liu Y, Sun T, Yang C. Thymidine phosphorylase promotes metastasis and serves as a marker of poor prognosis in hepatocellular carcinoma. Lab Invest 2017;97:903-12. [DOI: 10.1038/labinvest.2017.51] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
8 Drohat AC, Coey CT. Role of Base Excision "Repair" Enzymes in Erasing Epigenetic Marks from DNA. Chem Rev 2016;116:12711-29. [PMID: 27501078 DOI: 10.1021/acs.chemrev.6b00191] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 10.3] [Reference Citation Analysis]
9 Balaev VV, Lashkov AA, Gabdulkhakov AG, Dontsova MV, Seregina TA, Mironov AS, Betzel C, Mikhailov AM. Structural investigation of the thymidine phosphorylase from Salmonella typhimurium in the unliganded state and its complexes with thymidine and uridine. Acta Crystallogr F Struct Biol Commun 2016;72:224-33. [PMID: 26919527 DOI: 10.1107/S2053230X1600162X] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
10 Drohat AC, Maiti A. Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA. Org Biomol Chem 2014;12:8367-78. [PMID: 25181003 DOI: 10.1039/c4ob01063a] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 7.4] [Reference Citation Analysis]
11 Evans GB, Gainsford GJ, Schramm VL, Tyler PC. The synthesis of possible transition state analogue inhibitors of thymidine phosphorylase. Tetrahedron Letters 2015;56:406-9. [DOI: 10.1016/j.tetlet.2014.11.113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
12 Chan J, Sannikova N, Tang A, Bennet AJ. Transition-State Structure for the Quintessential S N 2 Reaction of a Carbohydrate: Reaction of α-Glucopyranosyl Fluoride with Azide Ion in Water. J Am Chem Soc 2014;136:12225-8. [DOI: 10.1021/ja506092h] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
13 Kuhn I, Kellenberger E, Cakir-Kiefer C, Muller-Steffner H, Schuber F. Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues. Biochim Biophys Acta 2014;1844:1317-31. [PMID: 24721563 DOI: 10.1016/j.bbapap.2014.03.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
14 Deves C, Rostirolla DC, Martinelli LK, Bizarro CV, Santos DS, Basso LA. The kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer drug development. Mol Biosyst 2014;10:592-604. [PMID: 24407036 DOI: 10.1039/c3mb70453j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
15 Maganjić A, Šolić I, Milovac S, Halasz I, Biljan I, Vančik H. Mechanochemically induced cross-dimerizations of nitrosobenzenes. Kinetics and solid-state isotope effects: MECHANOCHEMISTRY OF NITROSOBENZENES. J Phys Org Chem 2014;27:177-82. [DOI: 10.1002/poc.3256] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
16 Gu H, Zhang S, Wong KY, Radak BK, Dissanayake T, Kellerman DL, Dai Q, Miyagi M, Anderson VE, York DM, Piccirilli JA, Harris ME. Experimental and computational analysis of the transition state for ribonuclease A-catalyzed RNA 2'-O-transphosphorylation. Proc Natl Acad Sci U S A 2013;110:13002-7. [PMID: 23878223 DOI: 10.1073/pnas.1215086110] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 5.7] [Reference Citation Analysis]
17 Swiderek K, Paneth P. Binding isotope effects. Chem Rev 2013;113:7851-79. [PMID: 23848598 DOI: 10.1021/cr300515x] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 6.7] [Reference Citation Analysis]
18 Schramm VL. Transition States, analogues, and drug development. ACS Chem Biol 2013;8:71-81. [PMID: 23259601 DOI: 10.1021/cb300631k] [Cited by in Crossref: 103] [Cited by in F6Publishing: 104] [Article Influence: 11.4] [Reference Citation Analysis]
19 Mcclelland RA. Carbocations. Organic Reaction Mechanisms Series 2012. [DOI: 10.1002/9781119941910.ch7] [Reference Citation Analysis]
20 Chan J, Lewis AR, Indurugalla D, Schur M, Wakarchuk W, Bennet AJ. Transition State Analysis of Vibrio cholerae Sialidase-Catalyzed Hydrolyses of Natural Substrate Analogues. J Am Chem Soc 2012;134:3748-57. [DOI: 10.1021/ja208564y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
21 Silva RG, Schramm VL. Uridine phosphorylase from Trypanosoma cruzi: kinetic and chemical mechanisms. Biochemistry 2011;50:9158-66. [PMID: 21932786 DOI: 10.1021/bi2013382] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
22 Silva RG, Vetticatt MJ, Merino EF, Cassera MB, Schramm VL. Transition-state analysis of Trypanosoma cruzi uridine phosphorylase-catalyzed arsenolysis of uridine. J Am Chem Soc 2011;133:9923-31. [PMID: 21599004 DOI: 10.1021/ja2031294] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
23 Schwartz PA, Vetticatt MJ, Schramm VL. Transition state analysis of the arsenolytic depyrimidination of thymidine by human thymidine phosphorylase. Biochemistry 2011;50:1412-20. [PMID: 21222488 DOI: 10.1021/bi101900b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]