BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Radhakrishnan R, Trout BL. Nucleation of hexagonal ice (Ih) in liquid water. J Am Chem Soc 2003;125:7743-7. [PMID: 12812516 DOI: 10.1021/ja0211252] [Cited by in Crossref: 93] [Cited by in F6Publishing: 85] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Brukhno AV, Anwar J, Davidchack R, Handel R. Challenges in molecular simulation of homogeneous ice nucleation. J Phys : Condens Matter 2008;20:494243. [DOI: 10.1088/0953-8984/20/49/494243] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 3.4] [Reference Citation Analysis]
2 Quigley D, Rodger P. A metadynamics-based approach to sampling crystallisation events. Molecular Simulation 2009;35:613-23. [DOI: 10.1080/08927020802647280] [Cited by in Crossref: 31] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
3 Lovette MA, Browning AR, Griffin DW, Sizemore JP, Snyder RC, Doherty MF. Crystal Shape Engineering. Ind Eng Chem Res 2008;47:9812-33. [DOI: 10.1021/ie800900f] [Cited by in Crossref: 235] [Cited by in F6Publishing: 128] [Article Influence: 16.8] [Reference Citation Analysis]
4 Reinhardt A, Doye JPK. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model. The Journal of Chemical Physics 2014;141:084501. [DOI: 10.1063/1.4892804] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
5 Peters B. Recent advances in transition path sampling: accurate reaction coordinates, likelihood maximisation and diffusive barrier-crossing dynamics. Molecular Simulation 2010;36:1265-81. [DOI: 10.1080/08927020903536382] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
6 Harding JH, Duffy DM, Sushko ML, Rodger PM, Quigley D, Elliott JA. Computational Techniques at the Organic−Inorganic Interface in Biomineralization. Chem Rev 2008;108:4823-54. [DOI: 10.1021/cr078278y] [Cited by in Crossref: 94] [Cited by in F6Publishing: 75] [Article Influence: 6.7] [Reference Citation Analysis]
7 Elts E, Greiner MM, Briesen H. Data Filtering for Effective Analysis of Crystal–Solution Interface Molecular Dynamics Simulations. J Chem Theory Comput 2014;10:1686-97. [DOI: 10.1021/ct400808d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
8 Quigley D, Freeman CL, Harding JH, Rodger PM. Sampling the structure of calcium carbonate nanoparticles with metadynamics. The Journal of Chemical Physics 2011;134:044703. [DOI: 10.1063/1.3530288] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
9 Elts E, Briesen H. Capturing Crystal Shape Evolution from Molecular Simulations. J Chem Inf Model 2020;60:6109-19. [PMID: 33284626 DOI: 10.1021/acs.jcim.0c00944] [Reference Citation Analysis]
10 Moore EB, Molinero V. Is it cubic? Ice crystallization from deeply supercooled water. Phys Chem Chem Phys 2011;13:20008. [DOI: 10.1039/c1cp22022e] [Cited by in Crossref: 155] [Cited by in F6Publishing: 134] [Article Influence: 14.1] [Reference Citation Analysis]
11 Vega C, Martin-conde M, Patrykiejew A. Absence of superheating for ice I h with a free surface: a new method of determining the melting point of different water models. Molecular Physics 2006;104:3583-92. [DOI: 10.1080/00268970600967948] [Cited by in Crossref: 54] [Cited by in F6Publishing: 44] [Article Influence: 3.4] [Reference Citation Analysis]
12 Peters B. p(TP|q) peak maximization: Necessary but not sufficient for reaction coordinate accuracy. Chemical Physics Letters 2010;494:100-3. [DOI: 10.1016/j.cplett.2010.05.069] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
13 Quigley D, Alfè D, Slater B. Communication: On the stability of ice 0, ice i, and I(h). J Chem Phys 2014;141:161102. [PMID: 25362263 DOI: 10.1063/1.4900772] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.9] [Reference Citation Analysis]
14 Malkin TL, Murray BJ, Salzmann CG, Molinero V, Pickering SJ, Whale TF. Stacking disorder in ice I. Phys Chem Chem Phys 2015;17:60-76. [PMID: 25380218 DOI: 10.1039/c4cp02893g] [Cited by in Crossref: 150] [Cited by in F6Publishing: 35] [Article Influence: 21.4] [Reference Citation Analysis]
15 Li W, Ma A. Recent developments in methods for identifying reaction coordinates. Mol Simul 2014;40:784-93. [PMID: 25197161 DOI: 10.1080/08927022.2014.907898] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.1] [Reference Citation Analysis]
16 Haji-Akbari A, Debenedetti PG. Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc Natl Acad Sci U S A 2015;112:10582-8. [PMID: 26240318 DOI: 10.1073/pnas.1509267112] [Cited by in Crossref: 154] [Cited by in F6Publishing: 136] [Article Influence: 22.0] [Reference Citation Analysis]
17 Soria GD, Espinosa JR, Ramirez J, Valeriani C, Vega C, Sanz E. A simulation study of homogeneous ice nucleation in supercooled salty water. The Journal of Chemical Physics 2018;148:222811. [DOI: 10.1063/1.5008889] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
18 Parks C, Koswara A, Devilbiss F, Tung H, Nere NK, Bordawekar S, Nagy ZK, Ramkrishna D. Solubility curves and nucleation rates from molecular dynamics for polymorph prediction – moving beyond lattice energy minimization. Phys Chem Chem Phys 2017;19:5285-95. [DOI: 10.1039/c6cp07181c] [Cited by in Crossref: 14] [Article Influence: 2.8] [Reference Citation Analysis]
19 Espinosa JR, Vega C, Sanz E. Ice–Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW Models As Obtained from the Mold Integration Technique. J Phys Chem C 2016;120:8068-75. [DOI: 10.1021/acs.jpcc.5b11221] [Cited by in Crossref: 54] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
20 Black S. Simulating nucleation of molecular solids. Proc R Soc A 2007;463:2799-811. [DOI: 10.1098/rspa.2007.0008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
21 Espinosa JR, Vega C, Valeriani C, Sanz E. Seeding approach to crystal nucleation. J Chem Phys 2016;144:034501. [PMID: 26801035 DOI: 10.1063/1.4939641] [Cited by in Crossref: 109] [Cited by in F6Publishing: 82] [Article Influence: 18.2] [Reference Citation Analysis]
22 Lanaro G, Patey GN. Birth of NaCl Crystals: Insights from Molecular Simulations. J Phys Chem B 2016;120:9076-87. [PMID: 27454568 DOI: 10.1021/acs.jpcb.6b05291] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
23 Martelli F, Palmer JC. Signatures of sluggish dynamics and local structural ordering during ice nucleation. J Chem Phys 2022;156:114502. [DOI: 10.1063/5.0083638] [Reference Citation Analysis]
24 Moore EB, de la Llave E, Welke K, Scherlis DA, Molinero V. Freezing, melting and structure of ice in a hydrophilic nanopore. Phys Chem Chem Phys 2010;12:4124. [DOI: 10.1039/b919724a] [Cited by in Crossref: 202] [Cited by in F6Publishing: 152] [Article Influence: 16.8] [Reference Citation Analysis]
25 Metya AK, Singh JK. Nucleation of Aqueous Salt Solutions on Solid Surfaces. J Phys Chem C 2018;122:8277-87. [DOI: 10.1021/acs.jpcc.7b12495] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
26 Santiso EE, Trout BL. A general set of order parameters for molecular crystals. J Chem Phys 2011;134:064109. [PMID: 21322663 DOI: 10.1063/1.3548889] [Cited by in Crossref: 69] [Cited by in F6Publishing: 54] [Article Influence: 6.3] [Reference Citation Analysis]
27 Reinhardt A, Doye JPK, Noya EG, Vega C. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water. The Journal of Chemical Physics 2012;137:194504. [DOI: 10.1063/1.4766362] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 6.6] [Reference Citation Analysis]
28 Charaborty SN, Talapatra S, Chakravarty C. Relationship between crystalline order and melting mechanisms of solids. Indian J Phys 2009;83:65-79. [DOI: 10.1007/s12648-009-0004-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
29 Anwar J, Zahn D. Atomistisches Verständnis der Keimbildung und des Kristallwachstums durch molekulare Simulationen. Angew Chem 2011;123:2042-61. [DOI: 10.1002/ange.201000463] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
30 He X, Shen Y, Hung FR, Santiso EE. Molecular simulation of homogeneous nucleation of crystals of an ionic liquid from the melt. J Chem Phys 2015;143:124506. [PMID: 26429023 DOI: 10.1063/1.4931654] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
31 Giberti F, Salvalaglio M, Parrinello M. Metadynamics studies of crystal nucleation. IUCrJ 2015;2:256-66. [PMID: 25866662 DOI: 10.1107/S2052252514027626] [Cited by in Crossref: 56] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
32 Donadio D, Raiteri P, Parrinello M. Topological Defects and Bulk Melting of Hexagonal Ice. J Phys Chem B 2005;109:5421-4. [DOI: 10.1021/jp050690z] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 3.4] [Reference Citation Analysis]
33 Pedevilla P, Fitzner M, Sosso GC, Michaelides A. Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability of crystalline surfaces. J Chem Phys 2018;149:072327. [PMID: 30134662 DOI: 10.1063/1.5029336] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
34 Quigley D, Rodger PM. Metadynamics simulations of ice nucleation and growth. The Journal of Chemical Physics 2008;128:154518. [DOI: 10.1063/1.2888999] [Cited by in Crossref: 100] [Cited by in F6Publishing: 94] [Article Influence: 7.1] [Reference Citation Analysis]
35 Cox SJ, Raza Z, Kathmann SM, Slater B, Michaelides A. The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals. Faraday Discuss 2013;167:389-403. [PMID: 24640502 DOI: 10.1039/c3fd00059a] [Cited by in Crossref: 63] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
36 Ding W, Palaiokostas M, Orsi M. Stress testing the ELBA water model. Molecular Simulation 2015;42:337-46. [DOI: 10.1080/08927022.2015.1047367] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
37 Radhakrishnan R, Trout BL. Order Parameter Approach to Understanding and Quantifying the Physico-Chemical Behavior of Complex Systems. In: Yip S, editor. Handbook of Materials Modeling. Dordrecht: Springer Netherlands; 2005. pp. 1613-26. [DOI: 10.1007/978-1-4020-3286-8_81] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
38 Wang X, Wang S, Xu Q, Mi J. Thermodynamics of Ice Nucleation in Liquid Water. J Phys Chem B 2015;119:1660-8. [DOI: 10.1021/jp512280p] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
39 Nguyen AH, Molinero V. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm. J Phys Chem B 2015;119:9369-76. [DOI: 10.1021/jp510289t] [Cited by in Crossref: 89] [Cited by in F6Publishing: 75] [Article Influence: 11.1] [Reference Citation Analysis]
40 Sanz E, Vega C, Espinosa JR, Caballero-bernal R, Abascal JLF, Valeriani C. Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation. J Am Chem Soc 2013;135:15008-17. [DOI: 10.1021/ja4028814] [Cited by in Crossref: 192] [Cited by in F6Publishing: 151] [Article Influence: 21.3] [Reference Citation Analysis]
41 Wu H, Khan MA. Quality‐by‐Design (QbD): An Integrated Process Analytical Technology (PAT) Approach for Real‐Time Monitoring and Mapping the State of a Pharmaceutical Coprecipitation Process. Journal of Pharmaceutical Sciences 2010;99:1516-34. [DOI: 10.1002/jps.21923] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
42 Metya AK, Singh JK. Ice Nucleation on a Graphite Surface in the Presence of Nanoparticles. J Phys Chem C 2018;122:19056-66. [DOI: 10.1021/acs.jpcc.8b05989] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
43 Bellucci MA, Trout BL. Bézier curve string method for the study of rare events in complex chemical systems. J Chem Phys 2014;141:074110. [PMID: 25149778 DOI: 10.1063/1.4893216] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
44 Reinhardt A, Doye JPK. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model. The Journal of Chemical Physics 2012;136:054501. [DOI: 10.1063/1.3677192] [Cited by in Crossref: 81] [Cited by in F6Publishing: 68] [Article Influence: 8.1] [Reference Citation Analysis]
45 Beckham GT, Peters B, Trout BL. Evidence for a Size Dependent Nucleation Mechanism in Solid State Polymorph Transformations. J Phys Chem B 2008;112:7460-6. [DOI: 10.1021/jp710192u] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
46 Li T, Donadio D, Russo G, Galli G. Homogeneous ice nucleation from supercooled water. Phys Chem Chem Phys 2011;13:19807. [DOI: 10.1039/c1cp22167a] [Cited by in Crossref: 182] [Cited by in F6Publishing: 149] [Article Influence: 16.5] [Reference Citation Analysis]
47 Beckham GT, Peters B, Starbuck C, Variankaval N, Trout BL. Surface-Mediated Nucleation in the Solid-State Polymorph Transformation of Terephthalic Acid. J Am Chem Soc 2007;129:4714-23. [DOI: 10.1021/ja0687567] [Cited by in Crossref: 73] [Cited by in F6Publishing: 59] [Article Influence: 4.9] [Reference Citation Analysis]
48 Chakraborty SN, Ghosh N, Shah P, Chakravarty * C. Melting of atomic solids: effect of range and softness of interaction potentials. Molecular Physics 2004;102:909-18. [DOI: 10.1080/00268970410001703345] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
49 Sakti AW, Nishimura Y, Chou C, Nakai H. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I h , Ice I c , Ice III, and Melted Ice VI Phases. J Phys Chem A 2018;122:33-40. [DOI: 10.1021/acs.jpca.7b10664] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
50 Quigley D. Communication: Thermodynamics of stacking disorder in ice nuclei. J Chem Phys 2014;141:121101. [PMID: 25273401 DOI: 10.1063/1.4896376] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
51 Anderson BJ, Tester JW, Borghi GP, Trout BL. Properties of Inhibitors of Methane Hydrate Formation via Molecular Dynamics Simulations. J Am Chem Soc 2005;127:17852-62. [DOI: 10.1021/ja0554965] [Cited by in Crossref: 180] [Cited by in F6Publishing: 105] [Article Influence: 10.6] [Reference Citation Analysis]
52 Elts E, Greiner M, Briesen H. Predicting Dissolution Kinetics for Active Pharmaceutical Ingredients on the Basis of Their Molecular Structures. Crystal Growth & Design 2016;16:4154-64. [DOI: 10.1021/acs.cgd.6b00721] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
53 Li T, Donadio D, Galli G. Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon. The Journal of Chemical Physics 2009;131:224519. [DOI: 10.1063/1.3268346] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
54 Haji-Akbari A, DeFever RS, Sarupria S, Debenedetti PG. Suppression of sub-surface freezing in free-standing thin films of a coarse-grained model of water. Phys Chem Chem Phys 2014;16:25916-27. [PMID: 25354427 DOI: 10.1039/c4cp03948c] [Cited by in Crossref: 49] [Cited by in F6Publishing: 13] [Article Influence: 6.1] [Reference Citation Analysis]
55 Pietrucci F, Martoňák R. Systematic comparison of crystalline and amorphous phases: Charting the landscape of water structures and transformations. The Journal of Chemical Physics 2015;142:104704. [DOI: 10.1063/1.4914138] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
56 Zimmermann NER, Vorselaars B, Quigley D, Peters B. Nucleation of NaCl from Aqueous Solution: Critical Sizes, Ion-Attachment Kinetics, and Rates. J Am Chem Soc 2015;137:13352-61. [DOI: 10.1021/jacs.5b08098] [Cited by in Crossref: 98] [Cited by in F6Publishing: 73] [Article Influence: 14.0] [Reference Citation Analysis]
57 Desgranges C, Delhommelle J. Crystal nucleation along an entropic pathway: Teaching liquids how to transition. Phys Rev E 2018;98. [DOI: 10.1103/physreve.98.063307] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
58 Vega C. Water: one molecule, two surfaces, one mistake. Molecular Physics 2015;113:1145-63. [DOI: 10.1080/00268976.2015.1005191] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
59 Zhao W, Xu Z, Sahai N. Biogeochemistry. In: Kubicki JD, editor. Molecular Modeling of Geochemical Reactions. Chichester: John Wiley & Sons, Ltd; 2016. pp. 311-39. [DOI: 10.1002/9781118845226.ch9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
60 García Fernández R, Abascal JL, Vega C. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. J Chem Phys 2006;124:144506. [PMID: 16626213 DOI: 10.1063/1.2183308] [Cited by in Crossref: 295] [Cited by in F6Publishing: 238] [Article Influence: 18.4] [Reference Citation Analysis]
61 Geiger P, Dellago C. Neural networks for local structure detection in polymorphic systems. J Chem Phys 2013;139:164105. [PMID: 24182002 DOI: 10.1063/1.4825111] [Cited by in Crossref: 75] [Cited by in F6Publishing: 71] [Article Influence: 9.4] [Reference Citation Analysis]
62 Espinosa JR, Sampedro P, Valeriani C, Vega C, Sanz E. Lattice mold technique for the calculation of crystal nucleation rates. Faraday Discuss 2016;195:569-82. [DOI: 10.1039/c6fd00141f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Anwar J, Zahn D. Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew Chem Int Ed Engl 2011;50:1996-2013. [PMID: 21271625 DOI: 10.1002/anie.201000463] [Cited by in Crossref: 181] [Cited by in F6Publishing: 127] [Article Influence: 16.5] [Reference Citation Analysis]
64 Gianetti MM, Haji-Akbari A, Paula Longinotti M, Debenedetti PG. Computational investigation of structure, dynamics and nucleation kinetics of a family of modified Stillinger-Weber model fluids in bulk and free-standing thin films. Phys Chem Chem Phys 2016;18:4102-11. [PMID: 26778494 DOI: 10.1039/c5cp06535f] [Cited by in Crossref: 25] [Cited by in F6Publishing: 9] [Article Influence: 4.2] [Reference Citation Analysis]
65 Zhao W, Wang Z, Xu Z, Sahai N. Osteocalcin facilitates calcium phosphate ion complex growth as revealed by free energy calculation. Phys Chem Chem Phys 2018;20:13047-56. [PMID: 29713719 DOI: 10.1039/c8cp01105b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
66 Leyssale J, Delhommelle J, Millot C. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride. The Journal of Chemical Physics 2007;127:044504. [DOI: 10.1063/1.2753147] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
67 Jin D, Coasne B. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering. Langmuir 2017;33:11217-30. [DOI: 10.1021/acs.langmuir.7b02238] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
68 Peters B, Trout BL. Obtaining reaction coordinates by likelihood maximization. The Journal of Chemical Physics 2006;125:054108. [DOI: 10.1063/1.2234477] [Cited by in Crossref: 253] [Cited by in F6Publishing: 217] [Article Influence: 15.8] [Reference Citation Analysis]
69 Vega C, Abascal JLF. Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys 2011;13:19663. [DOI: 10.1039/c1cp22168j] [Cited by in Crossref: 597] [Cited by in F6Publishing: 446] [Article Influence: 54.3] [Reference Citation Analysis]
70 Allen RJ, Valeriani C, Rein Ten Wolde P. Forward flux sampling for rare event simulations. J Phys Condens Matter 2009;21:463102. [PMID: 21715864 DOI: 10.1088/0953-8984/21/46/463102] [Cited by in Crossref: 223] [Cited by in F6Publishing: 167] [Article Influence: 17.2] [Reference Citation Analysis]
71 Vega C, Sanz E, Abascal JLF. The melting temperature of the most common models of water. The Journal of Chemical Physics 2005;122:114507. [DOI: 10.1063/1.1862245] [Cited by in Crossref: 293] [Cited by in F6Publishing: 251] [Article Influence: 17.2] [Reference Citation Analysis]
72 Shah M, Santiso EE, Trout BL. Computer Simulations of Homogeneous Nucleation of Benzene from the Melt. J Phys Chem B 2011;115:10400-12. [DOI: 10.1021/jp203550t] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
73 Moore EB, Molinero V. Ice crystallization in water’s “no-man’s land”. The Journal of Chemical Physics 2010;132:244504. [DOI: 10.1063/1.3451112] [Cited by in Crossref: 133] [Cited by in F6Publishing: 118] [Article Influence: 11.1] [Reference Citation Analysis]
74 Wu H, Khan MA. Quality-by-Design: An Integrated Process Analytical Technology Approach to Determine the Nucleation and Growth Mechanisms During a Dynamic Pharmaceutical Coprecipitation Process. Journal of Pharmaceutical Sciences 2011;100:1969-86. [DOI: 10.1002/jps.22430] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
75 Elts E, Greiner M, Briesen H. In Silico Prediction of Growth and Dissolution Rates for Organic Molecular Crystals: A Multiscale Approach. Crystals 2017;7:288. [DOI: 10.3390/cryst7100288] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
76 Metya AK, Singh JK, Müller-plathe F. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states. Phys Chem Chem Phys 2016;18:26796-806. [DOI: 10.1039/c6cp04382h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
77 Hussain S, Haji-akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020;152:060901. [DOI: 10.1063/1.5127780] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
78 Duff N, Peters B. Mitosis method for directly calculating the interfacial free energy of nuclei. Molecular Simulation 2010;36:498-504. [DOI: 10.1080/08927022.2010.483684] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
79 Duff N, Peters B. Polymorph specific RMSD local order parameters for molecular crystals and nuclei: α-, β-, and γ-glycine. J Chem Phys 2011;135:134101. [PMID: 21992276 DOI: 10.1063/1.3638268] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
80 Vega C, Sanz E, Abascal JLF, Noya EG. Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins. J Phys : Condens Matter 2008;20:153101. [DOI: 10.1088/0953-8984/20/15/153101] [Cited by in Crossref: 168] [Cited by in F6Publishing: 132] [Article Influence: 12.0] [Reference Citation Analysis]
81 Espinosa JR, Navarro C, Sanz E, Valeriani C, Vega C. On the time required to freeze water. J Chem Phys 2016;145:211922. [PMID: 28799362 DOI: 10.1063/1.4965427] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 8.5] [Reference Citation Analysis]
82 Conrad P, Ewing GE, Karlinsey RL, Sadtchenko V. Ice nucleation on BaF2(111). J Chem Phys 2005;122:064709. [PMID: 15740398 DOI: 10.1063/1.1844393] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 3.0] [Reference Citation Analysis]
83 Bai X, Li M. Test of classical nucleation theory via molecular-dynamics simulation. The Journal of Chemical Physics 2005;122:224510. [DOI: 10.1063/1.1931661] [Cited by in Crossref: 47] [Cited by in F6Publishing: 29] [Article Influence: 2.8] [Reference Citation Analysis]
84 Reinhardt A, Doye JPK. Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling. The Journal of Chemical Physics 2013;139:096102. [DOI: 10.1063/1.4819898] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
85 Picasso GC, Malaspina DC, Carignano MA, Szleifer I. Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water. The Journal of Chemical Physics 2013;139:044509. [DOI: 10.1063/1.4816523] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
86 Jungblut S, Dellago C. Pathways to self-organization: Crystallization via nucleation and growth. Eur Phys J E 2016;39. [DOI: 10.1140/epje/i2016-16077-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
87 Bause M, Bereau T. Reweighting non-equilibrium steady-state dynamics along collective variables. J Chem Phys 2021;154:134105. [PMID: 33832234 DOI: 10.1063/5.0042972] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Kaneko T, Bai J, Yasuoka K, Mitsutake A, Zeng XC. Liquid-solid and solid-solid phase transition of monolayer water: high-density rhombic monolayer ice. J Chem Phys 2014;140:184507. [PMID: 24832288 DOI: 10.1063/1.4874696] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
89 Croteau T, Bertram AK, Patey GN. Observations of High-Density Ferroelectric Ordered Water in Kaolinite Trenches using Monte Carlo Simulations. J Phys Chem A 2010;114:8396-405. [DOI: 10.1021/jp104643p] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
90 Gu C, Lustig S, Trout BL. Solvation Model Based on Order Parameters and a Fast Sampling Method for the Calculation of the Solvation Free Energies of Peptides. J Phys Chem B 2006;110:1476-84. [DOI: 10.1021/jp054602m] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]